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Abstract. Contact transformation is an operator transformation method in time-independent perturba-
tion theory which is used successfully in molecular spectroscopy to obtain an effective Hamiltonian. Flo-
quet theory is used to transform the periodic time-dependent Hamiltonian, to a time-independent Floquet 
Hamiltonian. In this article contact transformation method has been used to get the analytical representa-
tion of Floquet Hamiltonian for quadrupolar nuclei with spin I = 1 in the presence of an RF field and first 
order quadrupolar interaction in magic angle spinning NMR experiments. The eigenvalues of contact 
transformed Hamiltonian as well as Floquet Hamiltonian have been calculated and a comparison is made 
between the eigenvalues obtained using the two Hamiltonians. 
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1. Introduction 

Solid state nuclear magnetic resonance spectroscopy 
is an important technique to study structures, dyna-
mics and electric charge distribution around nuclei in 
solids. It is also more difficult to perform and ana-
lyse than solution state NMR because in solutions 
rapid tumbling of the molecules leads to averaging out 
of anisotropic NMR interactions such as chemical 
shift, dipole–dipole interactions and quadrupolar in-
teractions resulting in narrow spectral lines in the 
latter case. However, in solid state, the very same 
interactions can lead to broadening of the spectral 
lines.1,2 
 The study of nuclear electric quadrupolar interac-
tions by solid state NMR spectroscopic technique is 
important in the analysis of electric charge distribu-
tions and is also relevant as almost three-fourths of 
NMR active nuclei in periodic table are quadrupolar 
in nature. Quadrupolar nuclei (I > 1/2) have non-
spherical distribution of charges inside the nucleus 
and thus possess a nuclear quadrupole moment which 
interacts with the electric field gradient present at 
the nucleus developed by surrounding charges outside 
the nucleus (largely due to electrons and thus contri-
buting to the chemistry of such solids) and results in 

electrostatic energy. This interaction energy ranges 
from a few KHz to several MHz in frequency units 
and is usually stronger than other anisotropic nuclear 
spin interactions such as chemical shift and dipolar 
couplings, causing substantial broadening of spectral 
line shapes for powder samples. 
 The most common line narrowing technique in 
solid state NMR spectroscopy is magic angle spinning 
(MAS) developed by Andrew et al3 and Lowe et al4 
which averages out non-selectively all kinds of first 
order anisotropic interactions present in the system. 
MAS involves rotation of samples about an axis 
making an angle of 54⋅736° with respect to the applied 
static magnetic field at specific spinning speeds and 
imparts a periodic time-dependence to the spin 
Hamiltonian which renders theoretical description of 
the experiments difficult. Time-dependent, periodic 
Hamiltonians have been studied either by the aver-
age Hamiltonian theory of John Waugh and cowork-
ers5,6 or by Floquet theory by Vega and coworkers7–13 
based on the approach by Shirley14 in 1965. In this 
paper we make use of the latter approach and pre-
sent modifications to Floquet Hamiltonians derived 
earlier. The transformation of the time-dependent, 
periodic Hamiltonian to a time independent Floquet 
Hamiltonian is a rather straightforward process, how-
ever, the basis in which the Floquet Hamiltonian is 
expressed is an infinite basis set as opposed to the 
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finite basis set corresponding to the spin-only basis 
functions used in NMR. The basis set for Floquet 
transformation is constructed by the direct product 
of the spin basis with the Fourier basis. The infinite 
dimensionality of the basis set is due to the fact that 
the Fourier index n, can take all integer values rang-
ing from –∞ to +∞ in principle. In practice it is re-
quired to truncate this at a suitable value of the 
Fourier index. 
 In order to study the dynamics and time evolution 
of the spin system, it is important to diagonalize the 
Floquet Hamiltonian (described in the infinite di-
mensional basis set). In the past these were at-
tempted using numerical diagonalization procedure 
extensively. An analytic representation of effective 
Floquet Hamiltonians has been given using the 
method of contact transformation15 or the van Vleck 
method recently. It has been used to study the MAS 
NMR of spin systems.16–19 
 In this paper the contact transformation method is 
extended to obtain an analytic representation of Flo-
quet Hamiltonian for quadrupolar nuclei with spin 
I = 1. The focus is on the study of first order quad-
rupolar interaction in MAS experiments. The exten-
sion of the algebra described here to second order 
quadrupolar interactions is straightforward and is 
not included here for the sake of brevity. We want to 
limit ourselves to describing the extension of spin ½ 
algebra to higher spins using spherical tensor opera-
tors which are the natural extensions of spin ½ angular 
momentum operators. Spin 1 is the first non-trivial 
system for this purpose and the methods described  
in sections 2–4 can be extended to higher spins as 
well. 

2. The method of contact transformation 

The method of contact transformation is an operator 
transformation which involves a series of unitary 
transformations on a Hamiltonian to obtain an effec-
tive Hamiltonian. The unitary transformations are 
performed sequentially to identify combinations of 
off-diagonal operators which will have diagonal 
contributions to the leading diagonal operators. Such 
combinations lead to eigenvalues closer to the eigen-
values of the overall Hamiltonian and are known as 
effective Hamiltonians. The advantage of this 
method lies in the fact that all perturbation correc-
tions are obtained in terms of operators, and hence can 
be used as effective Hamiltonians for the study of 
nuclear spin dynamics. 

 The general form of the Hamiltonian expressed in 
terms of a series of terms of decreasing order of 
magnitude is given by 
 
 H = H0 + λH1 + λ2H2 + … (1) 
 
where λ is the perturbation parameter. A series of 
unitary transformations represented collectively by 
U on the Hamiltonian H is performed as 
 
 

2
2( ) ( )1 ... ....

n
ni S i SH UHU e eλ λ−= =  

   × 
2

1 1 2 ( )( ) ( ) ( ) .... ...
n

ni Si S i S i Se He e e λλ λ λ −− −  (2) 
 
in which the exponential operators represent contact 
transformation operators (themselves being unitary). 
Sn’s in each exponential are chosen as Hermitian 
operators in order to make the exponential operators 
unitary. 
 The transformed Hamiltonian H(1) after the first 
transformation is given by, 
 

 
1 1( ) ( )(1) 1

1 1
(1) (1) 2 (1)
0 1 2

e e

= ...  .

i S i SH U HU H

H H H

λ λ

λ λ

−−= =

+ + +
 (3) 

 
The importance of this method lies in the determina-
tion of S operators. S1 is chosen in such a way that 

(1)
1H  has no off-diagonal elements up to order λ. 

 On expanding H(1) we have, 
 

(1)
0 1 1 0( [ , ])H H H i S Hλ= + +  

    2
2 1 1 1 1 0

1[ , ] [ ,[ , ]] ...
2

H i S H S S Hλ ⎛ ⎞+ + − +⎜ ⎟
⎝ ⎠

 

    (1) (1) 2 (1)
0 1 2 ...H H Hλ λ= + + +  (4) 

By equating powers of λ on both sides we get, 
 
 (1)

0 0H H=  

 (1)
1 1 1 0[ , ]H H i S H= +  

 (1)
2 2 1 1 1 1 0

1[ , ] [ ,[ , ]]
2

H H i S H S S H= + −  (5) 

The diagonal part of the above Hamiltonian gives 
diagonal correction of order λ2 to the zeroth order 
Hamiltonian in addition to the diagonal term of H2. 
Thus the Hamiltonian (1) (1) 2 (1)

0 1 2
d dH H Hλ λ+ +  is more 

effective than the Hamiltonian 2
0 1 2 .d dH H Hλ λ+ +  

 The general term (1)
nH  is given by, 
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1

(1)
1 1 1

0
[ ,[ ,.....[ , ]...] ]

( )!

−−

= −

= +
−∑
n mn

n n m
m n m

iH H S S S H
n m

 (6) 

 
The above procedure is repeated to perform second 
or higher order transformations on H (1). 

3. Floquet Hamiltonian for spin I = 1 

The time-dependent MAS Hamiltonian20 for a spin 
I = 1, exhibiting a first order quadrupolar interaction 
and experiencing an RF field of strength ω1I is given as, 
 
 1 1 1( ) [ cos( )I I x Q rH t I g tω ω ω ψ= − + + +  

     2 2
2 2cos(2 )][3 ]r zg t I Iω ψ+ −  (7) 

 
where, ωQ is the quadrupolar coupling frequency, ωr is 
the rotor frequency, η is the asymmetry parameter and 
 

 2
1
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    2 2 2 1/ 2cos sin 2 ]I Iβ η γ+  

2
2 2 2

2
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2 2 2
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1
1
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I
I

I I
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η γ β
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1
2 2 23

2 2

cos sin 22 tan .
sin cos2 (1 cos )

I I
I

I I I
η
β γψ α η
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The transformation of this periodic time-dependent 
Hamiltonian to Floquet Hamiltonian is done using 
standard procedure described elsewhere.10 The cor-
responding Floquet Hamiltonian is given by, 
 

 11 22 33[ ]F
I rH N N Nω= + +  

    12 21 23 321
0 0 0 0[( ) ( ) ( ) ( ) ]

2
I I I I Iω

+ − + −− + + +  

    
2

11 22 33

2
0

2 [ 2 ]Q
n n n n

n
n

Z Z Zω
=−
≠

+ − +∑  (8) 

where, 
 
 1 | 1 , 2 | 0 , 3 | 1≡ + 〉 ≡ 〉 ≡ − 〉  and 

   | | | |
1 exp
2 | |

Q
n Q n n

ng i
n

ω ω ψ⎧ ⎫
= ⎨ ⎬

⎩ ⎭
. 

 
The matrix elements of the complete set of Floquet 
operators for spin I = 1 are given in a basis set (which 
is infinite dimensional) and a spin basis set (which is 
three-dimensional), i.e. |n〉 ⊗ |Im〉 (n = –∞ ,…, –1, 0, 
1, … ∞, m = –1, 0, 1) as 
 

11 221, | |1, , 2, | | 2, ,〈 〉 = 〈 〉 =n N n n n N n n  

33 11 13, | | 3, , 1, | |1, ,
2

〈 〉 = 〈 + 〉 =mn N n n n Z n m  

22 331 12, | | 2, , 3, | | 3, ,
2 2

〈 + 〉 = 〈 + 〉 =m mn Z n m n Z n m  

12 231, | ( ) | 2, 1, 2, | ( ) | 3, 1,+ +〈 + 〉 = 〈 + 〉 =m mn I n m n I n m  

21 322, | ( ) |1, 1, 3, | ( ) | 2, 1,− −〈 + 〉 = 〈 + 〉 =m mn I n m n I n m  
 

12 231 11, | ( ) | 2, , 2, | ( ) | 3, ,
2 2+ +〈 + 〉 = 〈 + 〉 = −m mn Z n m n Z n m

 

21 321 12, | ( ) |1, , 3, | ( ) | 2, ,
2 2− −〈 + 〉 = 〈 + 〉 = −m mn Z n m n Z n m

 

2 13 2 311, | ( ) | 3, 1, 3, | ( ) |1, 1.+ −〈 + 〉 = 〈 + 〉 =m mn I n m n I n m  

4. Application of contact transformation 

The Floquet Hamiltonian in (8) is decomposed into 
zero order and first order perturbing Hamiltonians as, 
 
 11 22 33

0 [ ]rH N N Nω= + + −  
 

    12 21 23 321
0 0 0 0[( ) ( ) ( ) ( ) ]

2
I I I I Iω

+ − + −+ + +  (9) 

 
 

 
2

11 22 33
1

2
0

2 [ 2 ].Q
n n n n

n
n

H Z Z Zω
=−
≠

= − +∑  (10) 

 
The transformation function S1 is chosen such that 
the commutator i[S1, H0] compensates off-diagonal 
terms present in H1. In order to solve for S1, it is 



Manoj Kumar Pandey and Mangala Sunder Krishnan 

 

420 

written as a linear combination of complete set of 
operators for spin I = 1 system with arbitrary coeffi-
cients as follows, 
 

 

11 33 12 23

21 32

2
11 22 33 12

1
2 23 21 320
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( ) {( ) ( ) }

{( ) ( ) }

( 2 ) {( ) .

( ) } {( ) ( ) }

{( ) } {( ) }

n n n n n n

n n n

n n n n n n
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n n n n n

n n n n
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S i D Z Z Z E Z

Z F Z Z

G I H I

+ +

− −
−

+
=
≠ + − −

+ −

⎡ ⎤⎧ ⎫− + + +
⎢ ⎥⎪ ⎪

+ +⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪

= − + + +⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥+ +⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥+ +⎢ ⎥⎩ ⎭⎣ ⎦

∑  

  (11) 
 
The coefficients are obtained by solving the equation, 
 

 1 1 0[ , ] 0.H i S H+ =  (12) 
 

Expressions for coefficients An, Bn, Cn, Dn, En, Fn, 
Gn and Hn are obtained as 
 

 ( )( )1 1
3 3 2

1

2
4

Q
n r I r I

n
r r I

n n
D

n n
ω ω ω ω ω

ω ω ω
− +

=
−

 

 1
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1

3 2 ,
4

Q
n I

n n
r I
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 1
3 3 2

1

3 .
4

Q
n I

n n
r r I

G H
n n

ω ω
ω ω ω

= =
−

  

 

The coefficients An, Bn and Cn are identically zero for 
all n. 
 Using the expression for S1, diagonal corrections 
to the Hamiltonian are obtained from 
 

 (1)
2 2 1 1 1 1 0

1[ , ] [ ,[ , ]].
2

H H i S H S S H= + −  (13) 

 
In the present case H2 = 0 and H1 is off-diagonal, so 
we have 
 

 (1)
2 1 1[ , ].

2
iH S H=  (14) 

 
The commutation relations used in (12) and (13) are 
given in table 1. Using these relations the diagonal

 
 

Table 1. Commutation relations derived for various Floquet operators for the case 
of spin I = 1 system. 

11 11 11 22 22 22 33 33 33[ , ] [ , ] [ , ]n n n n n nZ N nZ Z N nZ Z N nZ= = =  
11 12 12 22 12 12 33 121 1

2 2[ , ( ) ] ( ) [ , ( ) ] ( ) [ , ( ) ] 0n m n m n m n m n mZ I I Z I I Z I+ + + + + + += = − =  
11 21 21 22 21 21 33 211 1

2 2[ , ( ) ] ( ) [ , ( ) ] ( ) [ , ( ) ] 0n m n m n m n m n mZ I I Z I I Z I− − + − − + −= − = =  
11 23 22 23 23 33 23 121 1

2 2[ , ( ) ] 0 [ , ( ) ] ( ) [ , ( ) ] ( )n m n m n m n m n mZ I Z I I Z I I+ + + + + + += = = −  
11 32 22 32 21 33 32 211 1

2 2[ , ( ) ] 0 [ , ( ) ] ( ) [ , ( ) ] ( )n m n m n m n m n mZ I Z I I Z I I− − − + − − += = − =  
11 2 13 2 13 22 2 13 33 2 13 2 131 1

2 2[ , ( ) ] ( ) [ , ( ) ] 0 [ , ( ) ] ( )n m n m n m n m n mZ I I Z I Z I I+ + + + + + += = = −  
11 2 31 2 31 22 2 13 33 2 31 2 311 1

2 2[ , ( ) ] ( ) [ , ( ) ] 0 [ , ( ) ] ( )n m n m n m n m n mZ I I Z I Z I I− − + + + − += − = =  
12 11 22 12 21 11 22 21[( ) , ( )] ( ) [( ) , ( )] ( )n n n nI N N n I I N N n I+ + − −+ = + =  
23 22 33 23 32 22 33 32[( ) , ( )] ( ) [( ) , ( )] ( )n n n nI N N n I I N N n I+ + − −+ = + =  

2 13 11 33 2 13 2 31 11 33 2 31[( ) , ( )] ( ) [( ) , ( )] ( )n m n mI N N n I I N N n I+ + − −+ = + =  
23 32 22 33 12 21 11 22[( ) , ( ) ] 2( ) [( ) , ( ) ] 2( )n m n m n m n m n m n mI I Z Z I I Z Z+ − + + + − + += − = −  
12 23 2 13 21 32 2 31 12 2 31 32[( ) , ( ) ] ( ) [( ) , ( ) ] ( ) [( ) , ( ) ] ( )n m n m n m n m n m n mI I I I I I I I I+ + + + − − − + + − − += = − = −  
23 2 31 21 32 2 13 12 21 2 13 23[( ) , ( ) ] ( ) [( ) , ( ) ] ( ) [( ) , ( ) ] ( )n m n m n m n m n m n mI I I I I I I I I+ − − + − + + + − + + += = − =  
12 32 23 21 21 23[( ) , ( ) ] 0 [( ) , ( ) ] 0 [( ) , ( ) ] 0n m n m n mI I I I I I+ − + − − += = =  
12 2 13 23 2 13 32 2 31[( ) , ( ) ] 0 [( ) , ( ) ] 0 [( ) , ( ) ] 0n m n m n mI I I I I I+ + + + − −= = =  
21 2 31 2 13 2 31 11 33[( ) , ( ) ] 0 [( ) , ( ) ] 2( )n m n m n m n mI I I I Z Z− − + − + += = −  
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Table 2. Parameters used for 
the calculation of eigenvalues. 

θm 54⋅736° 
β1 0° 
αI 90° 
γI 60° 
η 0⋅1 
ω1I 44 KHz 
ωQ 80 KHz 

 
 
 
Table 3. Comparison between eigenvalues of trans-
formed and untransformed Floquet Hamiltonian. 

ωr First Numerical  
  transformation diagonalization 
 

10 kHz –4⋅14387 –4⋅14349 
 0⋅0 0⋅0 
 4⋅14387 4⋅14349 

20 kHz –4⋅17196 –4⋅17129 
 0⋅0 0⋅0 
 4⋅17196 4⋅17129 

30 kHz –14⋅25496 –14⋅25261 
 0⋅0 0⋅0 
 14⋅25496 14⋅25261 

 
 
 
corrections obtained for zero order Hamiltonian is 
given by 
 

 

2
12 23
0 0

(1) 2
2 0

21 32
0 0

3 {( ){( ) ( ) }
4

( ){( ) ( ) }}

− + +
=−
≠

− − −

⎡ ⎤
+⎢ ⎥

⎢ ⎥=
⎢ ⎥
⎢ ⎥− +⎣ ⎦

∑ Q
n n

n
n

Q
n n

E I I
H

F I I

ω

ω

 (15) 

 
The final form for the diagonal part of the once-
transformed equation, truncated to one order is given 
as 
 

 11 22 33
eff [ ]rH N N Nω= + + +  

 

    

12 231
0 02

2 21 321
0 0 0

3 ( ) {( ) ( ) }
4 2

3 ( ) {( ) ( ) }
4 2

Q I
n n

n Q I
n n n

E I I

F I I

ωω

ω
ω

− + +

=−
≠ − − −

⎡ ⎤⎧ ⎫− +⎨ ⎬⎢ ⎥
⎩ ⎭⎢ ⎥
⎢ ⎥⎧ ⎫− + +⎢ ⎥⎨ ⎬
⎢ ⎥⎩ ⎭⎣ ⎦

∑ .  

 (16) 

5. Numerical results 

In this section, the eigenvalues of the Hamiltonian in 
(16) obtained by contact transformation method are 
compared with the untransformed Floquet Hamilto-
nian given by (9) and (10). A matrix of dimension 
213 × 213 was employed for the diagonalization of 
untransformed Hamiltonian (n = 35, dimension is 
(2n + 1) × 3), while in the case of contact transfor-
mation effective Hamiltonian corresponding to a given 
Fourier label n is diagonalized. The latter is a 3 × 3 
matrix for a spin-1 system. The values given here 
are for n = 0. Due to the periodicity of the untrans-
formed Hamiltonian, the eigenvalues for any n can 
be generated from the eigenvalues of the case for 
n = 0. All eigenvalues for a given n are obtained using 
the equation ω= +0 .n

i i rE E n  
 From table 3 it is clear that the eigenvalues ob-
tained from contact transformation are in good agree-
ment with the eigenvalues obtained for untransformed 
Floquet Hamiltonian using a much bigger basis set. 
However, the agreement is less striking and quite far 
off for values of beta significantly different from 
zero. In table 4 eigenvalues for two non-zero beta 
values for which the first order correction does not 
give satisfactory results are given. This is our cur-
rent topic of interest. 
 The application of RF pulse to a spin-1 system is 
shown here as a preliminary result. The approach 
has to be generalized in order to include free evolu-
tion of the spin systems between RF pulses. Several 
experimental pulse schemes are proposed to be studied 
using this approach for both spin-1 and spin-3/2 sys-
tems which are most commonly used quadrupolar 
nuclear spins in this area. 

6. Conclusion 

In this article, a procedure has been evolved for gen-
eralizing the contact transformation method devel-
oped for the analysis of Floquet Hamiltonians to 
dipolar coupled spin ½ systems to the study of quad-
rupolar spins with I = 1 as an example. The model is 
developed for first order interactions though it is 
equally applicable for second order quadrupolar in-
teractions. The commutators given in table 1 form 
the basis for the application of contact transforma-
tion method. Only preliminary results have been re-
ported here and no attempt has been made to include 
spin 1 experimental results. The extension to spin 1 
using spherical tensor operators is a novel approach
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Table 4. Comparison between eigenvalues of transformed and untransformed Floquet 
Hamiltonian for two non-zero βI values with retaining all other parameters of table 2. 

 First Numerical First Numerical  
 transformation diagonalization transformation diagonalization 
ωr (βI = 90°) (βI = 90º) (βI  = 45°) (βI = 45°) 
 

10 kHz –2⋅40156 –2⋅10225 –3⋅10701 –4⋅60134 
 0⋅0 0⋅0 0⋅0 0⋅0 
 2⋅40156 2⋅10225 3⋅10701 4⋅60134 
20 kHz –4⋅13931 –8⋅47241 –3⋅49869 –3⋅80512 
 0⋅0 0⋅0 0⋅0 0⋅0 
 4⋅13931 8⋅47241 3⋅49869 3⋅80512 
30 kHz –13⋅45274 –10⋅79703 –14⋅73702 –10⋅60056 
 0⋅0 0⋅0 0⋅0 0⋅0 
 13⋅45274 10⋅79703 14⋅73702 10⋅60056 

 
 
which we hope to pursue further for more elaborate 
studies on quadrupolar systems of I = 3/2 and 
higher. 
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