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We here systematically investigate amplitude death (AD) phenomenon in a thermoacoustic system

using a mathematical model of coupled prototypical thermoacoustic oscillators, the horizontal

Rijke tubes. AD has recently been identified as a relatively simple phenomenon, which can be

exploited to stop the unwanted high amplitude pressure oscillations resulting from the occurrence

of thermoacoustic instability. We examine the effect of time-delay and dissipative couplings on a

system of two Rijke tubes when they are symmetrically and asymmetrically coupled. The regions

where appropriate combinations of delay time, detuning, and the strengths of time-delay and dissi-

pative coupling lead to AD are identified. The relative ease of attaining AD when both the cou-

plings are applied simultaneously is inferred from the model. In the presence of strong enough

coupling, AD is observed even when the oscillators of dissimilar amplitudes are coupled, while a

significant reduction in the amplitudes of both the oscillators is observed when the coupling

strength is not enough to attain AD. Published by AIP Publishing.

https://doi.org/10.1063/1.5009999

Most of the practical combustors used in rockets and gas
turbine engines are susceptible to thermoacoustic insta-
bilities. In simple terms, thermoacoustic instability may
occur when the heat release rate fluctuations from a heat
source in a confinement are in phase with the acoustic
pressure fluctuations, and in turn, amplify them. These
high amplitude pressure oscillations have many adverse
effects such as reduction in the lifetime of the engines and
structural damage. Many control techniques, both pas-
sive and active, have been implemented in the past to sup-
press these undesired oscillations. Here, we study an
approach based on amplitude death (AD) phenomenon to
suppress these oscillations in a system of coupled thermo-
acoustic oscillators. AD is a general outcome in coupled
oscillators, wherein individual oscillators cease to oscil-
late when coupled appropriately. The possibility of sup-
pression of high amplitude oscillations in coupled
thermoacoustic engines using the AD phenomenon has
recently been explored. However, the physical mecha-
nisms leading to limit cycle oscillations in thermoacoustic
engines are significantly different from those which lead
to thermoacoustic instability in the system we consider.
In this paper, we examine the effects of time-delay and
dissipative couplings on the AD behaviour of a system of
two coupled horizontal Rijke tubes—prototypical
thermoacoustic oscillators. The combinations of parame-
ters such as coupling strength, delay time, detuning, and
heater power at which bifurcation to AD happens are
determined, and the regions of AD in various parameter
planes are identified. Interesting results are also obtained
when two oscillators of different amplitudes are coupled,
and when asymmetry is introduced in the coupling.

I. INTRODUCTION

Coupled nonlinear oscillators exhibit a range of interest-

ing phenomena such as synchronization and oscillation

quenching, depending on the dynamics of the system and the

manner in which the coupling is organized.1 Generally, weak

coupling leads to synchronization or phase locking,2,3 while

strong coupling will have effects on amplitude, leading to

oscillation quenching.4,5 The oscillation quenching phenom-

enon has two structurally different manifestations, namely,

amplitude death (AD) and oscillation death (OD). When the

parameter values of a system of coupled oscillators are

appropriate to bring about AD, the oscillations of the indi-

vidual oscillators cease, and subsequently all the oscillators

return to the same steady state of the system.6 On the con-

trary, oscillation death (OD) results from the symmetry

breaking of the system and the individual oscillators occupy

altered steady states which are different from the original

steady state of the system.7 Although both phenomena have

been widely observed in nature and have many useful appli-

cations, in this paper, we restrict our study to the occurrence

of AD in coupled thermoacoustic oscillators exhibiting limit

cycle behaviour.

The first instance of AD was reported by Rayleigh in a

system of two organ pipes positioned side by side.8 He

observed that, when the two pipes were kept close by, their

effect on each other caused the sound from both to die down,

whereas each of them sounded with its own frequency when

kept far away, free from the influence of the other pipe.

Recent studies by Abel et al.9,10 made use of experiments

and mathematical models to explain this phenomenon based

on synchronization theory. Subsequently, AD has been

experimentally observed in a variety of systems such as elec-

trically coupled chemical oscillators,11 thermo-kinetic oscil-

lators,12 and many coupled electronic circuits.5,13 Differenta)Electronic mail: sirshendumondal13@gmail.com
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types of couplings including dissipative, time-delay,

dynamic, conjugate, and nonlinear are experimentally found

capable of leading coupled oscillatory systems to a state of

AD.14 With proper control strategies, we can avoid unwanted

oscillations in certain systems by inducing AD; while, in

other instances where oscillations have to be maintained

(e.g., pulse combustors15,16), we can ensure that the system

never reaches the AD state. AD phenomenon finds applica-

tions in fields such as neuronal disorders, laser applications,

and meteorological phenomena.14 From all these studies, we

can infer that AD is a general outcome in coupled nonlinear

oscillator systems with many important applications.

In this paper, we investigate the occurrence of AD in a

mathematical model of thermoacoustic oscillators coupled

through time-delay and dissipative couplings. Generally, a

thermoacoustic system consists of a heat source (or flame)

confined in a duct. Thermoacoustic engine is another com-

mon system where thermal power is converted into acoustic

power, resulting in high-amplitude pressure oscillations.17 A

typical thermoacoustic engine consists of a porous stack,

installed between hot and cold heat exchangers, inside a

tube. The pressure disturbances in the working gas are ampli-

fied because of the temperature gradient across the stack,

which results in the generation of a loud sound when a steady

state is reached.17,18 In contrast, thermoacoustic instabilities

arise from a positive interplay between the acoustic field of

the duct and the heat release rate fluctuations from the flame,

resulting in the system dynamics reaching a state of very

high-amplitude oscillations.19 The physical mechanisms

underlying thermoacoustic instability, resulting from com-

bustion driven oscillations,20 is markedly different from

what happens inside a thermoacoustic engine. The impor-

tance of thermoacoustic instability can be inferred from the

fact that it has been observed in systems ranging from high

performance propulsive systems such as rockets and aircraft

engines to power generation units such as gas turbine

engines and boilers.21,22 Very often, adverse effects such as

flame flashback and blowout of the flame23 happen due to

thermoacoustic instability. In addition to this, high-

amplitude pressure oscillations cause large levels of vibra-

tions which can lead to a reduction in the lifetime of engines

or cause serious structural damage.20 Therefore, prediction

and control of these high amplitude oscillations are of pri-

mary importance in real engines.24,25

Hitherto, the high amplitude pressure oscillations

observed during thermoacoustic instability were suppressed

using passive controls such as the installation of acoustic

dampers, liners, baffles, and changing the flame anchoring

position.20,26 Despite the simplicity of these passive control

approaches, they are effective only over a limited range of

operating conditions. A different approach involves active

control strategies such as feedback control27 and adaptive

control28 which could suppress the undesired thermoacoustic

instabilities using actively functioning electro-mechanical

devices. However, in active control, analyzing the pressure

fluctuations and actively taking the necessary steps to stop

thermoacoustic instability requires complicated electro-

mechanical feedback systems, which limits the practical

applicability of such control methods in actual gas turbine

engines.29 Another approach for damping these thermo-

acoustic oscillations is to use external periodic forcing30,31

(open-loop control), which also falls short of practicality

because of the difficulty in installing the actuators in real

combustors. Recently, Biwa et al.32 made use of a simple

approach based on AD phenomenon to suppress the pressure

oscillations in coupled thermoacoustic engines, wherein they

coupled two such systems using a needle valve (dissipative

coupling) and a vinyl tube (time-delay coupling). For appro-

priate values of coupling parameters, they observed complete

suppression of oscillations or AD in both the engines.

Almost all of the previous studies on thermoacoustic

instabilities considered the suppression of oscillations in iso-

lated systems. Suppression of these oscillations in coupled

systems is not a much explored field which can be of signifi-

cance in many practical systems, for instance, can and can-

annular type combustors.33 Although, Biwa et al.32 provides

experimental evidence of AD in thermoacoustic engines, the

system they studied does not involve mean flow and physi-

cally has very little in common with thermoacoustic instabil-

ity observed in practical combustors. Further, their

modelling was based on simple equations of coupled Van

der Pol oscillators, which do not adequately capture the

dynamics of a practical thermoacoustic system. Further, in

majority of the previous studies,14 the focus was on symmet-

ric coupling; however, in practice, such an ideal scenario is

unlikely to exist. Therefore, we study the effect of asymmet-

rical coupling on AD behaviour of thermoacoustic systems.

Also, the oscillations inside similar (dimensionally) practical

combustors operating at the same conditions may not be

identical owing to the inhomogeneities involved in real sys-

tems. Hence, we further investigate the prospect of achieving

AD or at least suppressing the oscillations to a good extent

in such systems.

To that end, we adopt a prototypical model of a thermo-

acoustic oscillator, known as horizontal Rijke tube,34 and

perform the first systematic theoretical investigation on the

effects of the two different types of couplings (time-delay

and dissipative) applied separately and simultaneously on

such systems. We observe the response of the system to

varying coupling parameters and note the bifurcation points

where the dynamics of both the oscillators transition from

limit cycle to AD. While dissipative coupling can lead to AD

only if there is a sufficient difference in the natural frequen-

cies (detuning) of the two oscillators,35 time-delay coupling

of sufficient strength with appropriate delay can bring about

AD even in a system of two identical oscillators.5

Simultaneous application of the two couplings leads the cou-

pled thermoacoustic oscillators to reach AD state more easily

(with a lesser coupling strength). We also establish that the

increased heater power or equivalently increased amplitude

of oscillations requires higher coupling strength for achiev-

ing AD in the same system. Further, the effect of asymmetry

on the coupling parameters required to achieve AD is noted.

Results from the model also indicate that AD or at least a

significant reduction in amplitude is possible even in a sys-

tem of two Rijke tube oscillators with considerably different

amplitudes.
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II. MODEL FOR COUPLED RIJKE TUBE OSCILLATORS

The prototypical thermoacoustic system we use here is

the horizontal Rijke tube. It is a horizontal duct with a con-

centrated heat source (a heated cylinder in the model used

here). The Rijke tube oscillator was often chosen to study

the intricacies of thermoacoustic instabilities in the

past,25,34,36,37 because of its analytical tractability.

In this study, we build on the model developed by

Balasubramanian and Sujith.34 The linearized momentum [Eq.

(1)] and energy [Eq. (2)] equations for the acoustic field, neglect-

ing the effect of mean flow (zero Mach number approximation)

and mean temperature gradient in the duct, are given as34

�q
@~u0

@~t
þ @~p0

@~x
¼ 0; (1)

@~p0

@~t
þ c�p

@~u0

@~x
¼ ðc� 1Þ _~Q

0
dð~x � ~xf Þ: (2)

In this model, ~x is the distance along the axial direction,

~xf is the location of the heat source, ~t is the time, ~u0 is the

acoustic velocity, ~p0 is the acoustic pressure, �q and c are the

mean density and the ratio of specific heats of the medium,

respectively, and
_~Q
0
is the heat release rate fluctuations per

unit area due to the heated cylinder. Dirac delta (d) function

is used to capture the compactness of the heat source.

The pressure (~p) at both ends of the duct are equal to the

ambient pressure (�p). Therefore, the acoustic pressure fluctua-

tions (~p0) at the boundaries are negligible, as ~p0 ¼ ~p � �p ¼ 0.

As a consequence, we can impose the boundary conditions as

~p0 ¼ 0 at both ends of the duct. Variables in Eqs. (1) and (2)

are non-dimensionalized as follows:

x ¼ ~x

l
; t ¼

~t

l=c0
; u0 ¼ ~u0

u0
; p0 ¼ ~p0

�p
;

_Q
0 ¼

_~Q
0

c0�p
; M ¼ u0

c0
: (3)

Variables with tilde are dimensional and those without

tilde are non-dimensional. Here, l is the length of the duct,

u0, and �p are the steady state velocity, pressure, and tempera-

ture of the flow, respectively, c0 is the speed of sound, and M

is the Mach number of the mean flow.

After non-dimensionalizing and adding a damping term

[fp0 in Eq. (2), where f is the damping coefficient], the gov-

erning equations take the following form:37

cM
@u0

@t
þ @p0

@x
¼ 0; (4)

@p0

@t
þ cM

@u0

@x
þ fp0 ¼ ðc� 1Þ _Q0dðx� xf Þ: (5)

The heat release rate in the duct is modelled using a

modified form of King’s law.38,39 This correlation quantifies

the quasi-steady heat transfer from a heated cylinder to the

flow around it. The thermal inertia of the heat transfer in the

medium is captured by a parameter time lag (s1). Therefore,

an empirical model was suggested in which the heat release

rate fluctuations are written in terms of the acoustic velocity

fluctuations (i.e., u0f ðt� s1Þ observed at the heater location,

xf, and with a delay s1) as
37,39

_Q
0ðtÞ ¼ 2LwðTw � �TÞ

S
ffiffiffi
3

p
c0�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pkCvu0�qlc
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
�
�
�

1

3
þ u0f ðt� s1Þ

�
�
�
�

s

�
ffiffiffi

1

3

r
2

4

3

5; (6)

where lc, Lw, and Tw are the radius, length, and temperature

of the heater wire, respectively, S is the cross sectional area

of the duct, �T is the steady state temperature of the flow, k,

C
v
are thermal conductivity and specific heat at constant vol-

ume, respectively, of the medium within the duct.

Substituting Eq. (6) in the energy equation, Eq. (5), we

obtain37

@p0

@t
þ cM

@u0

@x
þ fp0

¼ ðc� 1Þ 2LwðTw � �TÞ
S

ffiffiffi
3

p
c0�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pkCvu0�qlc
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
�
�
�

1

3
þ u0f ðt� s1Þ

�
�
�
�

s

�
ffiffiffi

1

3

r
2

4

3

5dðx� xf Þ: (7)

The set of partial differential equations (PDE) given by Eq.

(4) and Eq. (7) can be reduced to ordinary differential equa-

tions (ODE) using the Galerkin technique.40 To that end,

velocity (u0) and pressure (p0) fluctuations in the duct are

written in terms of basis functions or the Galerkin modes.34

These basis functions are nothing but the natural acoustic

modes of the duct in the absence of heat release. These func-

tions form a complete basis and also satisfy the boundary

conditions (p0ð0; tÞ¼ 0; p0ð1; tÞ¼ 0). The basis functions for

u0 and p0 can be written as follows:

u0 ¼
XN

j¼1

gj cos ðjpxÞ; (8)

p0 ¼ �
XN

j¼1

_gj
cM

jp
sin ðjpxÞ: (9)

Here, gj and _gj correspond to the time-varying coefficients of

the acoustic velocity (u0) and the acoustic pressure (p0) in the

Galerkin expansion, respectively, and N represents the num-

ber of Galerkin modes considered. In this study, we choose

first ten modes, since addition of further modes brought

about only negligible improvement to the solution.37

The following ODEs are obtained by substituting the

expansions for u0 [Eq. (8)] and p0 [Eq. (9)] into the PDEs

given in Eqs. (4) and (7) and then projecting along the basis

functions34

dgj

dt
¼ _gj ; (10)

d _gj

dt
þ 2fjxj _gj þ x2

j gj

¼ �jpK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
�
�
�

1

3
þ u0f ðt� s1Þ

�
�
�
�

s

�
ffiffiffi

1

3

r
2

4

3

5sin ðjpxf Þ; (11)
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where

u0f ðt� s1Þ ¼
XN

j¼1

gjðt� s1Þ cos ðjpxÞ; (12)

and xj ¼ jp is the non-dimensional angular frequency of the

jth duct mode. The coefficient of the second term on the left-

hand side of Eq. (11), 2fjxj _gj , represents the frequency

dependent damping,36,41,42 where fj can be written as

fj ¼
1

2p
c1

xj

x1

þ c2

ffiffiffiffiffiffi
x1

xj

r" #

: (13)

Here, c1 and c2 are the damping coefficients, values of which

determine the amount of damping in the system. The values

of c1 and c2 are chosen as 0.1 and 0.06, respectively, for all

the simulations in this study. These values are chosen such

that it conforms to the cold decay rate calculated from

experiments.43 The value of xf is chosen to be 0.25 (¼ l=4),
as it is the most favourable location for the onset of thermo-

acoustic instability.36

In Eq. (11), K represents the non-dimensional heater

power which is defined as

K ¼ 4ðc� 1ÞLwðTw � �TÞ
cMc0�pS

ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pkCvu0�qlc
p

: (14)

When the value of K is increased beyond a critical value

(KHopf¼ 0.62), the system undergoes a Hopf bifurcation,

wherein the oscillations in the system grow and saturate at a

high amplitude value [Fig. 1(a)]. This is the state of limit cycle

oscillations (LCO). The waveform and amplitude spectrum of

the acoustic pressure signal corresponding to K¼ 0.75 are

shown in Figs. 1(b) and 1(c), respectively. At LCO, the sys-

tem oscillates with a constant amplitude [Fig. 1(b)] and

frequency [x¼ 3.25 in Fig. 1(c)]. When the value of K is

reduced in the reverse path, a fold bifurcation happens at a

lower value of K (Kfold¼ 0.52) than KHopf. This results in a

bistable (hysteresis) region, which is the characteristic of sub-

critical Hopf bifurcation,37 as can be seen from Fig. 1(a).

The study by Balasubramanian et al.34 is taken as the

reference for choosing the values of constants involved in

Eq. (14). The resulting set of equations, Eqs. (10) and (11)

along with Eqs. (13) and (14) gives the time evolution equa-

tions of the system dynamics.

Let the superscripts “a” and “b” denote the first and sec-

ond Rijke tubes, which are coupled through both time-delay

and dissipative couplings as shown in Fig. 2. Now, the modi-

fied governing equations for the first Rijke tube oscillator are

as shown below:

dgaj

dt
¼ _gaj ; (15)

d _gaj

dt
þ 2fjxj _g

a
j þ x2

j g
a
j

¼ �jpKa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
�
�
�

1

3
þ u0af ðt� s1Þ

�
�
�
�

s

�
ffiffiffi

1

3

r
2

4

3

5sin ðjpxf Þ

þ Kdð _gbj � _gaj Þ
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Dissipative coupling

þKsð _gbj ðt� sÞ � _gaj ðtÞÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Time-delay coupling

: (16)

The governing equations for the second Rijke tube oscil-

lator can be obtained by flipping the superscripts “a” and “b”

in the above differential equations. The second and third

terms on the right-hand side of Eq. (16) are the dissipative

and time-delay coupling terms, respectively. Inserting

Ks ¼ 0 reduces the dynamical system to dissipatively cou-

pled oscillators, while Kd ¼ 0 yields time-delay coupled

ones. The four parameters which are varied in the model to

FIG. 1. (a) Bifurcation diagram showing the variation of non-dimensional

p0rms with non-dimensional heater power (K). In the forward path, we observe

a Hopf bifurcation point around KHopf¼ 0.62. However, in the reverse path,

the bifurcation happens through fold point around Kfold¼ 0.52. (b) The

waveform and (c) amplitude spectrum of the acoustic pressure signal corre-

sponding to K¼ 0.75 (a state of limit cycle oscillation) are shown. For the

given set of parameter values, we observe a dominant peak in non-

dimensional frequency around x¼ 3.25.

FIG. 2. A simplified illustration of the two coupled Rijke tube oscillators

(named as “a” and “b”) subjected to both dissipative (Kd ; Dx) and time-

delay (Ks, s) couplings. The time varying coefficient, _g, of the acoustic pres-

sure term is the variable being coupled. The flow direction is from left to

right and the compact heat source is a single cylindrical wire, shown by red

dashed lines.
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study their effect on AD are dissipative coupling strength

(Kd), time-delay coupling strength (Ks), detuning (Dx

¼ jxa � xbj), and delay time (s). In all the simulations per-

formed in this study, the quantities xb=xa (xa and xb being

the natural frequencies of the first and the second Rijke tube

oscillators, respectively, where x ¼ 2pf , f being the fre-

quency) and Dx are varied by keeping xa constant at 3.25

[determined from the fast Fourier transform of the pressure

time series, Fig. 1(c)] and varying xb.

The ODEs given in Eqs. (15) and (16) are solved numer-

ically using the fourth order Runge-Kutta scheme, and p0 and
u0 are calculated from Eqs. (8) and (9), respectively.

III. RESULTS AND DISCUSSIONS

In this section, we demonstrate the effect of two types of

couplings, namely, time-delay and dissipative coupling, on

the occurrence of AD in the system of two coupled thermo-

acoustic oscillators. We first demonstrate the effect of individ-

ual coupling on the occurrence of AD in both the oscillators

and then study the case where they are applied simulta-

neously. The results are summarized in the bifurcation plots.

In the one-parameter bifurcation plot, a root mean square

value of the acoustic pressure oscillations (p0rms) is plotted as a

function of one of the parameters (e.g., time delay, s) which is

varied. The value of p0rms is calculated when the transients are

over and the acoustic pressure oscillations achieve an asymp-

totic state after the application of coupling.

In the two-parameter bifurcation plot, the variation of the

coupling strength required to achieve AD is plotted as a func-

tion of the corresponding coupling parameter—delay time or

detuning. While the one-parameter bifurcation plot helps in

detecting the transition points of both oscillators from limit

cycle oscillations (LCO) to AD state, the two-parameter bifur-

cation plot aids in depicting the regions of AD in the system

dynamics for a given range of the parameter values.

A. Effect of time-delay coupling

First, we analyze the effect of time-delay coupling

alone, i.e., when Kd ¼ 0, on the system of two identical

(Dx¼ 0) thermoacoustic oscillators (Fig. 3). Coupling in

majority of the physical systems involves time-delay, due to

the finite time a signal needs to travel from one system to the

other. When two conservative systems are coupled through

the first time-derivative of the variable involved in the gov-

erning equations ( _g or equivalently acoustic pressure in the

case of Rijke tube oscillators) with delay, they can exhibit

AD.14 Physically, in the system considered here, the cou-

pling strength and delay time may be varied by changing the

diameter and length, respectively, of the tube that couples

the two Rijke tube oscillators. Ideally, if the length of the

connecting tube is zero, there will be no delay between the

signals from the two oscillators. In such a case, the oscilla-

tors are said to be dissipatively coupled.

Figures 3(a) and 3(b) are two representative plots show-

ing the effect of time-delay coupling on the amplitude of

acoustic pressure signal acquired from one of the oscillators.

Since the thermoacoustic oscillators considered in this case

are identical, and the coupling between them is symmetric,

the variation of acoustic pressure exhibited by these oscilla-

tors is also identical. In both the cases [Figs. 3(a) and 3(b)],

the non-dimensional heater power in both Rijke tubes

(Ka¼Kb¼K) is maintained constant at 0.92. This value of K

is chosen because it is sufficiently higher than the K value

corresponding to the Hopf point (KHopf¼ 0.62) for the indi-

vidual Rijke tube oscillators.37 In these two figures, the time-

delay coupling strength (Ks) is the sole parameter varied

across the two cases, other parameters being kept constant:

non-dimensional delay time (s¼ 0.5), dissipative coupling

constant (Kd ¼ 0), and detuning (Dx¼ 0).

Figure 3(a) shows the case where the coupling strength

between the two Rijke tube oscillators is not strong enough

(Ks ¼ 0.04) to achieve AD. We observe that the amplitude of

the LCO shows a small decrease from the instant where the

coupling is applied, before saturating to another steady state

value. On the other hand, when the coupling is strong enough

(Ks ¼ 0.2) to achieve AD [Fig. 3(b)], the amplitude of LCO

of the acoustic pressure (p0) decays exponentially to a zero

value, once the coupling is applied. We show a one-

parameter bifurcation plot in Fig. 3(c) that shows the

FIG. 3. The temporal variation of non-

dimensional acoustic pressure (p0),
when time-delay coupling between the

two oscillators is (a) not strong enough

(Ks ¼ 0.04 and s¼ 0.5) and (b) strong

enough (Ks ¼ 0.2 and s¼ 0.5) to

achieve AD. The vertical line (shown in

red) indicates the instant at which cou-

pling is applied. (c) One-parameter

bifurcation plot showing the variation

of p0rms with s (Ks ¼ 0:16). (d) Two-

parameter bifurcation diagram in the

parameter plane of time-delay coupling

strength (Ks) and delay time (s) show-

ing the region of AD. For all plots,

Kd ¼ 0, Dx¼ 0, and Ka¼Kb¼ 0.92.
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variation of p0rms with s for one of the Rijke tube oscillators

while the time-delay coupling strength is held constant

(Ks ¼ 0.24). We observe that the bifurcation of LCO to AD

happens around s¼ 0.4, where the p0rms value of LCO sud-

denly falls to zero. We further notice that, prior to the bifur-

cation, when the delay is not sufficient to achieve AD for the

given value of Ks, the amplitude of LCO continuously

reduces by a small value with increase in s. A qualitatively

similar bifurcation plot is obtained when s is kept constant

and the value of Ks is varied [shown in the supplementary

material, Fig. S1(a)].

The effect of time-delay coupling on AD characteristics

of two identical thermoacoustic oscillators is further studied

using a two-parameter bifurcation plot [Fig. 3(d)] in which

the time-delay coupling strength (Ks) required to achieve

AD is plotted against delay time (s). The bifurcation diagram

turns out to be a U-shaped plot in the range of parameter val-

ues considered. The Ks - s combinations which lie inside the

U-shaped plot exhibit AD, while those lying outside do not.

The points indicated by the markers along the U-shape are

the points where bifurcation occurs from LCO to AD. These

points correspond to the smallest coupling strength, at a par-

ticular s, for which AD occurs in the dynamics of both the

oscillators.

From Fig. 3(d), we observe that AD most easily occurs

around s ¼ 0:94. This corresponds to a value of xs close to

p. Although in most of the previous studies14,44 on mutually

coupled oscillators, AD was most favoured around

xs ¼ p=2, this is not the same in the present study.

Achieving AD near xs ¼ p might be a characteristic of the

specific system we study. Furthermore, in other studies on

closed-loop forcing of thermoacoustic oscillations, a phase

delay of p has been implemented as a strategy of active con-

trol in thermoacoustic systems.27 In such cases, reduction in

the amplitude has been found due to the negative feedback

between self-sustained oscillations and phase-lagged oscilla-

tions of the feedback signal. This might be a reason behind

the observation of AD region around the phase delay of p

when time-delay coupling alone is implemented in our sys-

tem. However, the precise reason behind achieving AD

around xs ¼ p in coupled Rijke tube oscillators needs fur-

ther investigation.

B. Effect of dissipative coupling

Now, we study the effect of dissipative coupling alone

(for Ks ¼ 0) on the coupled behaviour of the system of two

non-identical (Dx 6¼ 0) Rijke tube oscillators (Fig. 4). We

observe that, when Kd is not high enough (Kd ¼ 0.1) to reach

AD state, the amplitude of LCO of both the oscillators

reduces a bit and oscillates around this reduced value once

the coupling is applied [see Fig. 4(a)]. At this state, the oscil-

lations of both oscillators show a beat like behaviour,

because of the interaction between the two oscillators with

FIG. 4. The temporal variation of non-dimensional acoustic pressure (p0), when the dissipative coupling between the two oscillators is (a) not strong enough

(Kd ¼ 0.1 and Dx¼ 0.24) and (b) strong enough (Kd ¼ 0.3 and Dx¼ 0.24) to achieve AD, respectively. (c) One-parameter bifurcation plot showing the varia-

tion of p0rms with xb=xa (Kd ¼ 0.18). (d) Two-parameter bifurcation diagram in the parameter plane of dissipative coupling strength (Kd) and ratio of natural

frequencies (xb=xa), showing regions of AD, phase locking (PL), and phase drifting (PD). Circles (in black) indicate the boundary between AD and PL region,

while diamonds (in red) mark the boundary between PL and PD. (e) Phase plots showing the variation of relative phase (D/) between the two oscillators for

(i) PL region and (ii) PD region. Note that phase locking in (e-i) follows a small interval of transients wherein the signals show phase drifting behaviour. The

vertical lines (shown in red) in (a), (b), and (e) indicate the instant at which coupling is applied. For all the plots, Ks ¼ 0 and Ka¼Kb¼ 1.02.
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two different but close by frequencies. However, when the

Kd value is high enough (Kd ¼ 0.3) to achieve AD, ampli-

tude of both the oscillators dies down after the application of

coupling [Fig. 4(b)]. In Fig. 4(c), we plot a one-parameter

bifurcation plot that shows the variation of p0rms with the ratio

of natural frequencies (xb=xa) of the two Rijke tube oscilla-

tors, while the dissipative coupling strength (Kd) between

them is kept constant at 0.18. We observe from Fig. 4(c) that

it is impossible to achieve AD through dissipative coupling

alone, when the natural frequencies of the two oscillators are

very close by. In the current case with the given dissipative

coupling strength (Kd ¼ 0.18), oscillations were observed in

the range of xb=xa values from 0.95 to 1.05, and AD on

either sides. We obtain a second one-parameter bifurcation

plot [shown in supplementary material, Fig. S1(b)], qualita-

tively similar to that in Fig. 3(c), when xb=xa is kept con-

stant at 0.93 (or Dx¼ 0.24) and the value of Kd is varied.

Further, we illustrate the regions of AD in the parameter

plane of Kd and xb=xa, when time-delay coupling is absent

in the system of two Rijke tube oscillations, i.e., Ks ¼ 0 [Fig.

4(d)]. In Fig. 4(d), the circular (in black) and diamond (in

red) markers correspond to the points where bifurcation from

phase locking (PL) to AD and phase drifting (PD) to PL

occur, respectively. Phase drifting is said to occur between

two oscillators, when the relative phase between them is

unbounded and exhibit an increase with time. On the other

hand, phase locking is the scenario where the relative phase

between the oscillators is bounded. For those combinations

of Kd and xb=xa values which are segregated solely by the

curve with circular markers, AD will occur, and for other

combinations of Kd and xb=xa values, AD is not observed.

In the region amidst the curves with circular and diamond

markers, the relative phase between the two oscillators will

become locked after the coupling is applied [Fig. 4(d)].

The relative phase dynamics with one such combination

of Kd and xb=xa in the PL region is shown in Fig. 4(e-i).

However, this phase locking follows a small interval of

phase drifting after the application of coupling, owing to the

transients [Fig. 4(e-i)]. In contrast, phase drifting happens in

the region below the curve with diamond markers [Fig.

4(d)]. The relative phase dynamics with a combination of Kd

and xb=xa in the PD region is shown in Fig. 4(e-ii).

Therefore, we infer that, as the coupling strength

between the two oscillators is increased, the system moves

from phase drifting to phase locking (or synchronization)

and then to AD. However, when the natural frequencies of

the two oscillators are very close by, even very high values

of coupling strength are not sufficient to achieve AD, as can

be seen from the range of xb=xa values around 1 (0.93 to

1.08) in Fig. 4(d). This is in accordance with the earlier liter-

ature on AD,32,35 which states that there should be a suffi-

cient difference between the frequencies of the two

oscillators for a purely dissipative coupling to bring about

AD. However, phase locking easily happens in the region of

xb=xa values around 1 as the frequency values of the two

oscillators are already very close. Furthermore, the zone of

phase locking in the range of xb=xa values around 1

becomes wider as we increase the coupling strength, which

is similar to the experimental observation reported by Biwa

et al.32

Further, we note that the bifurcations observed in Fig.

4(d) are different from the bifurcation diagram plotted in the

parameter space of / (analogous to dissipative coupling

strength) and Df (frequency detuning, corresponding to Dx

in the present study) by Biwa et al.32 In their study, the tran-

sitions are (i) from phase drifting (PD) to phase locking (PL)

through AD when Df is sufficiently large and (ii) a direct

transition from PD to PL when Df is small. In contrast, we

observe the transitions (i) from phase drifting (PD) to ampli-

tude death (AD) through phase locking (PL) when the value

of xb=xa is away from 1, and (ii) direct transition from PD

to PL when the value of xb=xa is close to 1. We believe that

this dissimilarity in the first transition could be due to the dif-

ference in the underlying mechanisms which lead to the

onset of self-sustained oscillations in the two systems.

C. Effect of simultaneous application of time-delay
and dissipative coupling

We now consider the effect of simultaneous application

of time-delay and dissipative couplings on the regions of AD

in the two-parameter bifurcation plots. Here, the non-

dimensional heater power for both the Rijke tube oscillators

(Ka¼Kb¼K) is kept constant. The bifurcation diagrams in

the parameter plane constituted by Ks and s shown in Fig.

5(a) represent the case where dissipative coupling is applied

to a system which is already coupled through time-delay.

The bifurcation plot when time-delay coupling alone is

applied on a system of two identical oscillators is shown in

Fig. 5(a-i) for comparison, while in Figs. 5(a-ii) to 5(a-iv),

the oscillators are non-identical. We see that the introduction

of detuning (Dx¼ 0.24) between the oscillators results in the

splitting of the AD region into 3 unequal regions, even when

Kd ¼ 0, as shown in Fig. 5(a-ii). This change in regions of

AD can have practical implications. In practice, for a set of

seemingly identical oscillators, we expect them to give rise

to AD for a certain set of parameter values, as indicated in

Fig. 5(a-i). However, we may not achieve AD in such cases

with the given set of parameter values, because of the inher-

ent detuning (Dx 6¼ 0) between the oscillators (Fig. 5a-ii).

At this detuning (Dx¼ 0.24) when dissipative coupling is

introduced (Kd ¼ 0.05), we notice the merging of these sepa-

rated AD zones into a single W-shaped region as seen in Fig.

5(a-iii). Finally, with further increase in Kd, the central W-

shaped region becomes more flattened, resulting in the

appearance of a single unsymmetric U-shaped region in the

two-parameter plane, as can be seen from Fig. 5(a-iv).

We further show the effect of applying time-delay cou-

pling to a system which is already coupled through dissipa-

tive coupling in Fig. 5(b). The regions of AD in the two-

parameter bifurcation plot in the parameter plane of Kd and

xb=xa is affected as a consequence of adding time-delay

coupling. The circular markers correspond to the case where

dissipative coupling alone is applied to the system. As the

time-delay coupling strength applied on the oscillators is

increased, the graphs shift downward and the region near the

xb=xa value of 1, where AD is unattainable, narrows down.
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The values of s¼ 0.5 and Ks ¼ 0.04 and 0.08 are chosen

such that the system does not exhibit AD with time-delay

coupling alone. We can conclude that the Kd value needed

for the bifurcation of LCO to AD is smaller in the presence

of a small value of time-delay coupling, which alone is not

sufficient to bring about AD, than in the case where dissipa-

tive coupling alone is applied. These trends from Fig. 5(b)

make it evident that simultaneous application of both the

couplings makes it easier to achieve AD. Please note that we

focus on the occurrence of AD from Fig. 5 onward.

Therefore, unlike Fig. 4, we do not distinguish PL and PD so

as not to clutter the plots.

D. Effect of amplitude of oscillations on AD
phenomenon

Another factor which decides if a certain set of coupling

parameters can lead the system to AD is the amplitude of

limit cycle oscillations. The amplitude of acoustic pressure

oscillations in a Rijke tube can be controlled using the heater

power value. In the model, this is achieved by changing the

non-dimensional heater power value (K). An increase in K

value will result in an increase in the amplitude of the

LCO.43 The two-parameter bifurcation plots in two different

parameter planes (Kd versus xb=xa and Ks versus s), for

three different values of the heater power (K), are shown in

Figs. 6(a) and 6(b), respectively. Note that the values of

heater power in both Rijke tube oscillators are changed in an

identical manner (i.e., Ka¼Kb). When dissipative coupling

alone is applied on this system, an increase in K results in

the bifurcation plot moving up, as shown in Fig. 6(a). Also,

the region near the xb=xa value of 1, where AD is not

observed, becomes wider. In a similar fashion, when time-

delay coupling alone is applied, the U-shaped bifurcation

plot shifts up and becomes narrower as we increase the K

value [Fig. 6(b)]. As the amplitude of oscillations increases

with an increase in heater power value, we infer from the

Figs. 6(a) and 6(b) that the higher the amplitude of oscilla-

tions, the higher the coupling strength needed at a certain

value of time-delay or detuning to achieve AD. This also

suggests that the size of the region of AD in the parameter

planes decreases with increase in the amplitude of LCO.

E. AD phenomenon when two oscillators of different
amplitudes are coupled

All the coupling scenarios we studied above are for two

oscillators with identical amplitudes of the LCO. In practical

conditions, the coupled oscillators might be oscillating with

considerably dissimilar amplitudes. Such a situation can be

explored by controlling the K values of individual Rijke tube

oscillators in the model. We consider the case where two

Rijke tube oscillators with significantly different limit cycle

amplitudes of their acoustic pressure oscillations are coupled

through time-delay alone. In Figs. 7(a) and 7(b), we fix the

heater power value (Ka¼ 0.72) of the Rijke tube “a” and

show the effect of two different heater power values of Rijke

tube “b” (Kb) at a particular coupling strength (Ks ¼ 0.4).

We choose high values of Kb compared to Ka in both cases

[Figs. 7(a) and 7(b)] to realize a considerable amplitude

FIG. 5. Two-parameter bifurcation

diagram in the parameter plane of (a)

Ks and s, when (i) Kd ¼ 0, Dx¼ 0; (ii)

Kd ¼ 0, Dx¼ 0.24; (iii) Kd ¼ 0.05,

Dx¼ 0.24; and (iv) Kd ¼ 0.1,

Dx¼ 0.24. (b) Kd and xb=xa for three

different Ks values keeping the value

of s constant at 0.5: Plus—Ks ¼ 0;

Circle—Ks ¼ 0.04; Diamond—

Ks ¼ 0.08.
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difference between the two oscillators. These high values of

heater power (Kb) cause period doubling of the limit cycle

oscillations in the Rijke tube “b.” Therefore, in both the

cases, we are coupling the period-2 LCO in Rijke tube “b”

with the period-1 LCO in “a.” The occurrence of period-2

limit cycle oscillations with a high value of K has been

reported earlier in the study by Subramanian et al.37 using

the same model and by Gopalakrishnan et al.45 in experi-

ments. In this study, the purpose of using a high value of K is

to create very high amplitude oscillations in one of the Rijke

tube oscillators. One may need great care to design such a

system to ensure that the heater does not melt at such high

values of heater power. However, the effect of period-2

dynamics on the AD phenomena was not our focus and

needs further investigation.

Figure 7(a) shows the instance where low amplitude

oscillations in Rijke tube “a” are coupled with high ampli-

tude oscillations in “b,” resulting in a complete cessation of

oscillations in both. The amplitude of oscillations (or equiva-

lently the Kb value) in Rijke tube “b” is further increased in

Fig. 7(b). We observe that, after the coupling is applied, the

LCO amplitude of the second Rijke tube oscillator “b”

reduces considerably and then remains constant at this

reduced value. The interesting phenomena observed here is

that, even when this particular coupling strength is not strong

enough to bring about AD, we could still suppress the very

high amplitude oscillations in Rijke tube “b” considerably

with the low amplitude oscillations in Rijke tube “a.” After

the application of coupling, the oscillation amplitude of the

high amplitude oscillator becomes almost as low as that in

the low amplitude one.

F. Effect of asymmetrical coupling on AD
phenomenon

Further, we try to understand the effect of asymmetrical

coupling on the coupled dynamics of the two Rijke tube

oscillators. A system of two oscillators is said to be asym-

metrically coupled when the coupling strength as perceived

by the two oscillators is different, which may be the case in

many practical systems. We use symmetry parameters

n ð0 � n � 1Þ and m ð0 � m � 1Þ to bring in asymmetry to

the coupled Rijke tube oscillator model as shown below:

Ka
d ¼ nKd; Kb

d ¼ ð1� nÞKd; (17)

Ka
s ¼ mKs; Kb

s ¼ ð1� mÞKs: (18)

Two-parameter bifurcation diagram in which Ks required to

attain AD is plotted against m, in the range of m values from

0 to 0.5, is shown in Fig. 8(a).

We observe that, the Ks value needed to attain AD

increases with an increase in the asymmetry in the coupling.

This increase is very marginal when asymmetry is less (in

the range of m values from 0.5 to 0.25), but becomes very

sharp as m approaches zero. When the variation of Ks with

m is plotted in the log-log scale, we obtained a straight line,

which indicates that there exists a power law relation

between the smallest Ks value required to achieve AD and

the asymmetry parameter (m). This implies that the oscilla-

tory behavior of the system is not affected gradually, but in

FIG. 7. Temporal variation of non-dimensional acoustic pressure (p0) in

both the coupled oscillators (for Ka 6¼ Kb), when (a) AD is attained

(Kb¼ 1.72) and (b) AD is not attained (Kb¼ 2.72), while keeping the value

of Ka constant at 0.72. The orange and blue time series correspond to the

oscillators “a” and “b,” respectively. The other fixed parameters are s¼ 0.4,

Ks ¼ 0.4, Dx¼ 0, and Kd ¼ 0. The vertical line (shown in red) indicates the

instant at which coupling is applied.

FIG. 6. Two-parameter bifurcation diagrams for different values of K

(Ka¼Kb) in the parameter plane of (a) Kd and xb=xa, where diamond, cir-

cle, and plus markers correspond to K values of 1.22, 1.52, and 1.82, respec-

tively. (b) Ks and s, where diamond, circle, and plus markers correspond to

K values of 0.72, 0.92, and 1.12, respectively.
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an exponential manner when the asymmetry in the time-

delay coupling is varied. Further studies need to be done to

understand the physics behind this power law relation.

Figure 8(a) will be symmetrical about m¼ 0.5, as increas-

ing the m value beyond 0.5 is equivalent to interchanging

the two identical oscillators. In other words, the degree of

asymmetry for the identical oscillators essentially increases

in the same manner, as we move away from 0.5 in either

directions. The combinations of Ks and m values for an

asymmetrically coupled system, which can lead to AD are

those which lie above the curve. We see that there is only

negligible increase in the Ks values required to attain AD

around m¼ 0.5 to 0.2 [Fig. 8(a)]. Therefore, the model for

symmetrical coupling is sufficient to predict the time-delay

coupling strength required to attain AD even in practical

coupled oscillators, where slight asymmetry is bound to

occur.

We also analyze the effect of asymmetry in dissipative

coupling alone on the system of two coupled Rijke tube

oscillators. Figure 8(b) represents the two-parameter bifurca-

tion diagram in parameter plane of Kd and n. However, we

notice that asymmetry in dissipative coupling does not seem

to exhibit a power law behavior as in the case of time-delay

coupling [Fig. 8(a)]. Further, AD is attained only in the range

of n values around 0.35 to 0.76 (for, Dx¼ 0.55). Also, it is

important to note that this plot is not symmetrical about

n¼ 0.5, as the two coupled oscillators are nonidentical.

Since there are two different frequencies associated with the

two oscillators, increasing the m value beyond 0.5 is not

equivalent to interchanging the oscillators.

IV. CONCLUSION

We explored the effect of time-delay and dissipative

couplings on the occurrence of amplitude death phenomenon

in a system of two coupled thermoacoustic oscillators known

as horizontal Rijke tubes. Bifurcation plots obtained from

the mathematical model give us an idea about the combina-

tion of coupling parameters that need to be set to achieve

AD in the thermoacoustic oscillators considered. The results

indicate that AD is more easily achieved when both the cou-

plings are applied together. The fact that theoretically AD is

possible under asymmetric coupling and in coupled oscilla-

tors with dissimilar amplitudes is also demonstrated. This

phenomenon of AD in the Rijke tube oscillator model, if

found experimentally feasible, can be extended to real com-

bustion systems where the unwanted high amplitude oscilla-

tions which may lead to a serious structural damage can be

inhibited. The theoretical finding that AD can occur even in

oscillators with considerably dissimilar amplitudes also

needs experimental verification in practical thermoacoustic

systems.

SUPPLEMENTARY MATERIAL

See supplementary material for the one parameter bifur-

cation plots showing variation of p0rms with coupling

strengths Ks and Kd separately.
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