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We present a systematic investigation of the effect of external noise on the dynamics of a system

of two coupled prototypical thermoacoustic oscillators, horizontal Rijke tubes, using a mathematical

model. We focus on the possibility of amplitude death (AD), which is observed in the deterministic

model of coupled thermoacoustic oscillators as studied by Thomas et al. [Chaos 28, 033119 (2018)],

in the presence of noise. Although a complete cessation of oscillations or AD is not possible in the

stochastic case, we observe a significant reduction in the amplitude of coupled limit cycle oscillations

(LCOs) with the application of strong coupling. Furthermore, as we increase the noise intensity, a

sudden drop in the amplitude of pressure oscillations at the transition from LCO to AD, observed

in the noise free case, is no longer discernible because of the amplification of noise in AD state.

During this transition from LCO to AD, we notice a qualitative change in the distribution of the

pressure amplitude from bimodal to unimodal. Furthermore, in order to demarcate the boundary of

the transition from LCO and AD in the noisy case, we use 80% suppression in the amplitude of LCO,

which generally occurs in the parameter range over which this qualitative change in the pressure

distribution happens, as a threshold. With the help of bifurcation diagrams, we show a qualitative

change as well as a reduction in the size of amplitude suppression zones that happen due to the

increase in noise intensity. We also observe the relative ease of suppressing the amplitude of LCO

with time-delay coupling when detuning and dissipative couplings are introduced between the two

thermoacoustic oscillators in the presence of noise. Published by AIP Publishing. https://doi.org/10.

1063/1.5040561

Practical combustors involved in most of the propulsive

systems and power generation units are prone to ther-

moacoustic instabilities. Thermoacoustic instability is a

consequence of the establishment of a positive feedback

loop between the acoustic field and the unsteady heat

release rate in a combustor, which leads to high amplitude

pressure oscillations. These oscillations can have adverse

effects on the life as well as performance of engines, and

hence, the occurrence of such instabilities need to be con-

trolled. Here, we study an approach based on coupling two

thermoacoustic systems to suppress these unwanted ther-

moacoustic oscillations. Previous studies1,2 have shown

that AD or a complete cessation of oscillations is possi-

ble in such a scenario if the system dynamics is completely

deterministic. However, all practical thermoacoustic sys-

tems are often subjected to inherent random fluctuations

from different sources. In this paper, we study the effect

of noise on the coupled behaviour of a system of two

thermoacoustic oscillators working in the regime of limit

cycle oscillations. We observe that, although attaining a

complete cessation of oscillations through coupling is very

difficult in the presence of noise, we can still achieve a sig-

nificant suppression in the amplitude of limit cycle oscil-

lations by an appropriate choice of coupling parameters.

We further note that it is easier to achieve suppression

when a small detuning is introduced between two time-

delay coupled noisy thermoacoustic oscillators. When a

a)Electronic mail: sirshendumondal13@gmail.com

weak dissipative coupling is applied on this system, the

amplitude suppression is achieved with even greater ease.

Similar to the earlier studies on stochastic systems, we use

histogram of pressure amplitude as a measure to iden-

tify the increasingly continuous transitions from LCO to

AD in the presence of noise. With an increase in noise

intensity, we observe a departure from the abrupt nature

of the transition from LCO to AD due to the growth of

fluctuations near the bifurcation point in the AD state.

It is similar to a phenomenon of prebifurcation noise

amplification3 that happens for a single oscillator during

the transition from steady state to LCO as the control

parameter is changed. Further, a reduction in the size of

amplitude suppression zones in the parameter planes, at

higher values of noise intensity, is also observed.

I. INTRODUCTION

The effect of fluctuating environments or noise on the

behavior of deterministic nonlinear systems has always been

of interest in the scientific community. This is due to the

fact that, more often than not, the deterministic descrip-

tions are incapable of capturing the influence of inherent

noise present in natural systems. For instance, convection in

atmospheric layers, formation of sand dunes under winds,

etc., are all phenomena caused by instabilities occurring in

a noisy environment.4 Therefore, several theoretical models

are developed to study the effect of noise on the dynamics of
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nonlinear systems, and in turn, better predict the system

behavior.

The term noise induced transitions is often used to refer to

the capability of external fluctuations to induce novel dynami-

cal states and transitions in deterministic systems.5 In addition

to the trivial disorganizing effect, noise is also found to sta-

bilize or destabilize the steady state of a system, as seen

in many previous studies.6,7 Noise also possesses the char-

acteristic of amplification of its fluctuations in the vicinity

of a bifurcation point, wherein the fluctuations grow as a

result of the decrease in damping coefficients of the nonlinear

system.3 Such behaviour of the noise is referred to as prebi-

furcation noise amplification.8 Since this phenomenon occurs

just before the bifurcation to limit cycle oscillation (LCO),

it has been studied as a precursor to bifurcation.3,8 In con-

trast, in the present study, we observe an existence of noise

amplification which happens after the bifurcation from LCO

to noisy amplitude death (AD) state in a system of coupled

thermoacoustic oscillators.

As can be seen from the literature, coupling can give

rise to phenomena such as synchronization and oscillation

quenching in self-sustained nonlinear oscillators, depending

on the dynamics of the system and the type and strength of

the coupling.9 Generally, weak coupling leads to synchroniza-

tion or phase locking,10,11 while strong coupling will affect

the amplitude of oscillations resulting in phenomena such

as oscillation quenching.12,13 Amplitude death (AD) is one

of the two structurally different manifestations of oscilla-

tion quenching (the other being oscillation death), wherein

the oscillations of the individual oscillators cease completely

and a stabilization to the fixed point of the system occurs.14

We study the possibility of occurrence of AD or a con-

siderable suppression of the amplitude of LCO when two

thermoacoustic oscillators are coupled in the environment of

noise.

In the present study, we numerically simulate the influ-

ence of external noise on the dynamics of two coupled

prototypical thermoacoustic oscillators using a mathematical

model. In simple terms, a thermoacoustic system is a duct

with a heat source confined in it. When the acoustic pres-

sure fluctuations in the duct are in phase with the heat release

rate fluctuations, the acoustic field in the system amplifies

and saturates to a state of large amplitude periodic oscilla-

tions called thermoacoustic instability.15 Such instabilities are

observed in a wide range of combustion systems including

high performance propulsive systems such as rockets and air-

craft engines, and power generation units such as land based

gas turbine engines and boilers.16–18 In addition to the adverse

effects such as flame flashback and blowout,19 the high ampli-

tude oscillations that occur during thermoacoustic instability

have the potential to cause structural damage and reduced per-

formances of the engines and the control systems.20 Recently,

several efforts have been made to gain a deeper insight of

the phenomenon using synchronization theory.21–25 Further,

given these adverse effects, the prediction and control of such

instabilities are of great importance in real engines.26,27

Over the years, many passive20,28 and active17,29,30

methodologies have been developed to suppress the high

amplitude pressure oscillations that are observed during

thermoacoustic instabilities. Most of the passive approaches

work well only over a limited range of operating conditions.

On the other hand, active control approaches require com-

plicated electro-mechanical feedback systems, limiting their

practical applicability in real life gas turbine engines.31 Rel-

atively, newer strategies for damping these thermoacoustic

oscillations include the use of external periodic forcing32 and

coupling of two thermoacoustic systems.1,2 The difficulty in

installing actuators with large control authority in real com-

bustors, however, makes the approach based on external forc-

ing practically challenging to implement. On the other hand,

the methodology based on coupling of two or more thermoa-

coustic systems exhibiting limit cycle oscillations is relatively

simpler. Recently, Thomas et al.2 have used this coupling

strategy and showed the possibility of achieving complete

suppression of limit cycle oscillations in a deterministic model

of two coupled thermoacoustic oscillators.

However, a complete cessation of oscillations is far-

fetched in practical systems. All such thermoacoustic systems

are subjected to inherent noisy fluctuations from different

sources such as combustion processes and incoming turbulent

flows.33 Furthermore, it has been hypothesized in the past that

the sources of these turbulent fluctuations can be represented

as additive34 and parametric35,36 noise. The effect of different

kinds of noise (white, pink, blue, etc.) on the dynamics of an

individual thermoacoustic oscillator has been studied in the

past.33,37 In the present study, we use coupled thermoacoustic

oscillators and restrict ourselves to white noise. White noise

is a random signal with a constant power spectral density,

i.e., the energy is equally distributed among all the frequen-

cies. We add white noise separately to the two individual

self-sustained thermoacoustic oscillators, which are then cou-

pled to achieve amplitude suppression in both the oscillators.

Such suppression of thermoacoustic instabilities in coupled

thermoacoustic oscillators is not a much explored field, but

has significance in practice. However, complete cessation or

AD in coupled thermoacoustic oscillators may not be possible

in reality due to the presence of noise in the system. There-

fore, a study on the effect of noise on the dynamics of coupled

thermoacoustic oscillators needs to be performed.

To that end, we add white noise to the pre-existing model

of the two Rijke tube systems coupled through dissipative and

time-delay coupling.2 While in the deterministic case, a com-

plete cessation of oscillations or AD is possible with suitable

coupling, the amplitude of oscillations does not go to zero in

the presence of noise. However, we still get a considerable

suppression under the appropriate coupling conditions. As the

transition in the presence of noise lacks a clear cut indica-

tion of the occurrence of AD, we make use of the qualitative

change in distribution of pressure amplitudes, as shown by

histograms, towards this purpose. The change in the distri-

bution from bimodal to unimodal demarcates the bifurcation

from LCO to AD in the noisy case. However, since this

change in the pressure distribution happens over a range of

parameter values over which 80% suppression in the ampli-

tude of LCO generally occurs, we use this level of suppression

as the threshold. Further, from one-parameter bifurcation dia-

grams we observe that, with increase in the noise intensity,

the abruptness of transitions from LCO to AD diminishes due
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to the post bifurcation growth of noisy fluctuations in the AD

state. We also observe the reduction in the size of amplitude

suppression zones with noise intensity in the two-parameter

bifurcation diagrams. In addition to this, these plots demon-

strate the fact that, in the noise case also, it is easier to achieve

amplitude suppression when the non-identical thermoacoustic

oscillators are coupled simultaneous with the time-delay and

dissipative coupling mechanisms.

II. MODEL FOR COUPLED RIJKE TUBE OSCILLATORS

We use a prototypical thermoacoustic system known as

horizontal Rijke tube to conduct our study. A typical Rijke

tube oscillator consists of a horizontal duct with a concen-

trated heat source (here, a heated cylinder). The analytical

tractability offered by a Rijke tube oscillator has very often

made it a preferred candidate for studying thermoacoustic

instabilities in the past.27,38–40

The mathematical model developed by Balasubramanian

and Sujith39 for a single Rijke tube oscillator is used as the

reference for the current study. A detailed explanation of mod-

eling the coupling of two such Rijke tube oscillators can be

found in the work by Thomas et al.,2 where the study has

been performed on a deterministic system. In this model,

the linearized momentum and energy equations are solved to

obtain the acoustic field in the duct by neglecting the effects

of mean flow and mean temperature gradient. These equa-

tions are then non-dimensionalized, and an acoustic damping

term41 is added. Thus, we obtain a set of partial differential

equations (PDEs), which govern the dynamics of the thermoa-

coustic system. Further, we use Galerkin technique to reduce

the PDEs to a set of ordinary differential equations (ODEs).

This is done by writing the acoustic pressure and velocity

fluctuations in terms of basis functions, as shown in Eqs. (1)

and (2). These basis functions are nothing but the natural

acoustic modes of the duct in the absence of heat release rate

oscillations.

u′ =
N

∑

j=1

ηj cos( jπx), (1)

p′ = −
N

∑

j=1

η̇j

γ M

jπ
sin( jπx). (2)

Finally, after adding the coupling terms and the stochastic

component, the temporal evolution of one of the Rijke tube

oscillator can be obtained as follows:

dηa
j

dt
= η̇a

j , (3)

dη̇a
j

dt
+ 2ζjωjη̇

a
j + ω2

j η
a
j

= −jπKa

[√
∣
∣
∣
∣

1

3
+ u′a

f (t − τ1)

∣
∣
∣
∣
−

√

1

3

]

sin( jπxf )

+ Kd(η̇
b
j − η̇a

j )
︸ ︷︷ ︸

Dissipative coupling

+Kτ (η̇
b
j (t − τ) − η̇a

j (t))
︸ ︷︷ ︸

Time-delay coupling

+ σǫ(t)
︸ ︷︷ ︸

Noise

.

(4)

Here, the superscripts a and b correspond to the two Rijke tube

oscillators. The subscript j refers to the jth Galerkin mode. The

variables, ηj and η̇j are, respectively, the time-varying coeffi-

cients of the acoustic velocity (u′) and acoustic pressure (p′)
in the Galerkin expansion, t is the time, ζ is the damping

coefficient, xf is the heater location along the duct, u′
f is the

acoustic velocity at xf ,Kd is the dissipative coupling constant,

and Kτ is the time-delay coupling constant. While thermal

inertia of the heat transfer in the medium is captured by the

time lag τ1, the delay associated with the time-delay coupling

is represented by τ . All the variables mentioned above are

non-dimensional quantities, details of which are explained in

Thomas et al.2 and Balasubramanian and Sujith.39

In Eq. (4), K represents the non-dimensional heater power

which is defined as,

K =
4(γ − 1)Lw(Tw − T̄)

γ Mc0p̄S
√

3

√

πλCvu0ρ̄Rw, (5)

where Rw, Lw, Tw are the radius, length, and temperature of

the heater wire, respectively, S is the cross sectional area of the

duct, T̄ is the steady state temperature of the flow. λ and Cv are

the thermal conductivity and specific heat at constant volume

of the medium within the duct, respectively. The values of all

the constants used in this model are the same as in the study

by Balasubramanian and Sujith.39

In the stochastic term of Eq. (4), σ is the strength of the

additive noise and ǫ(t) is the Gaussian white noise with zero

mean and a variance proportional to the square root of the

time step used in the computation.42 We also define a non-

dimensional noise intensity given by

β =
I

P
, (6)

where I is the root mean square value of the applied white

noise (calculated from the rms of σǫ over a period of time)

and P is the root mean square value of the acoustic pressure

oscillations in the absence of noise.

III. RESULTS AND DISCUSSIONS

In this section, we investigates the effect of noise on the

dynamics of a system of two coupled thermoacoustic oscil-

lators. The two types of couplings that we use in this study

are time-delay coupling and dissipative coupling. We first

show the effect of the external Gaussian white noise added to

the time-delay coupled thermoacoustic oscillators on the time

evolution of the acoustic pressure signal. We compare this to

the noise free case. As can be seen later in this section, a sud-

den drop in the pressure values at the bifurcation, as observed

in the deterministic case, is not perceivable in the presence of

noise. Therefore, we use histograms, which show the distri-

bution of pressure amplitudes, to characterize the increasingly

smooth bifurcations with the increase in noise intensity.

Furthermore, we show one-parameter bifurcation dia-

grams, wherein the root mean square value of the pressure

signal (p′
rms) is plotted against a coupling parameter for dif-

ferent levels of noise intensities, to demonstrate the changes

in the nature of bifurcations relative to the deterministic case.

The p′
rms value is calculated over a long time series (to even

out the effect of random perturbations on the calculation) after
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FIG. 1. Temporal variation of non-dimensional

acoustic pressure (p′) obtained from the ther-

moacoustic oscillator “a” in the absence of noise

[(a), (b), and (c)] and in the presence of noise

[(d), (e), and (f)]. (a) In the absence of coupling

(Kτ = 0, β = 0), (b) in the presence of relatively

weak time-delay coupling (Kτ = 0.06, β = 0),

and (c) in the presence of relatively strong

time-delay coupling (Kτ = 0.12, β = 0) which

can lead to AD state. The corresponding cases in

the presence of noise are shown in (d) Kτ = 0,

β = 0.012, (e) Kτ = 0.06, β = 0.012, and

(f) Kτ = 0.12, β = 0.012. The red vertical line

indicates the time instant at which coupling is

applied. For all the plots, the non-dimensional

heater powers of the two Rijke tubes, Ka = Kb =
0.8, Kd = 0, and delay time, τ = 0.5, are fixed.

sufficient time is given for the unsteady pressure oscillations

to reach their asymptotic state, post coupling. We also mark

the zones of amplitude suppression in two-parameter bifurca-

tion diagrams, where the coupling strength required to achieve

a stipulated suppression is plotted as a function of delay time

(τ ) or detuning (ω).

A. Effect of time-delay coupling

We start with comparing the time series of acoustic

pressure signals obtained in the absence and presence of

noise from the system of coupled thermoacoustic oscillators,

respectively. We can see that the addition of white noise

causes random fluctuations in the amplitude of the signal com-

pared to the deterministic case [Figs. 1(d)–1(f)]. For all the

cases in Fig. 1, the non-dimensional heater power value, K,

is kept constant at 0.8 (KHopf = 0.62) and the time-delay

coupling strength (Kτ ) is increased from Figs. 1(a) to 1(c)

(without noise) and from Figs. 1(d) to 1(f) (with noise), while

Kd is fixed to zero. In Fig. 1, time-delay coupling strength

(Kτ ) is the only parameter varied across the three cases of the

absence [Figs. 1(a)–1(c)] and the presence [Figs. 1(d)–1(f)] of

noise. We observe that there is a decrease in the magnitude of

LCO once the coupling is applied in both the cases, as shown

in Figs. 1(b) and 1(e). However, when the coupling strength is

further increased so as to achieve AD, a complete elimination

of oscillations is observed in the noise free case [Fig. 1(c)],

while low amplitude aperiodic oscillations persisted in the

noisy case [Fig. 1(f)] even after the transition to AD.

The dynamics of these aperiodic oscillations observed during

the noisy AD state [Fig. 1(f)] are due to the growth of fluctua-

tions of the added noise near the bifurcation point. Further, the

amplitude spectrum of such noisy oscillations is broadband

with a low amplitude peak near the frequency of LCO.

Since the pressure oscillations do not really die down

to zero even with strong coupling in the stochastic case

[Figs. 1(d)–1(f)], it is difficult to determine when the tran-

sition to AD occurs. Therefore, we make use of histograms

FIG. 2. Histograms plotted for the time series data of acoustic pressure obtained from the thermoacoustic oscillator “a” for the two cases: in the absence of noise

[(a), (b), and (c)] and in the presence of noise [(d), (e), and (f)]. ψ2 represents the variance in the pressure time series. (a) Kτ = 0, β = 0, ψ2 = 2.164 × 10−5;

(b) Kτ = 0.06, β = 0, ψ2 = 1.324 × 10−5; (c) Kτ = 0.12, β = 0, ψ2 = 0; (d) Kτ = 0, β = 0.012, ψ2 = 2.215 × 10−5; (e) Kτ = 0.06, β = 0.012, ψ2 =
1.437 × 10−5; (f) Kτ = 0.12, β = 0.012, ψ2 = 7.023 × 10−7. The transients in the time series are not included in the data used for plotting histograms. We see

that the acoustic pressure amplitude distribution changes from bimodal to unimodal with increasing Kτ which can be ascribed to the transition from LCO to

AD. The red colored arrows indicate the position of the peaks.
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FIG. 3. Bifurcation diagrams depicting

the variation of root mean square value

of the non-dimensionalized acoustic pres-

sure (p′
rms) with time-delay coupling

strength (Kτ ) between the two thermoa-

coustic oscillators for different values of

noise intensity, β. (a) β = 0, (b) β =
6.8 × 10−3, (c) β = 1.37 × 10−2, (d)

β = 2.04 × 10−2, (e) β = 2.73 × 10−2,

and (f) β = 3.41 × 10−2. For all the

figures, Ka = Kb = 0.8, Kd = 0, and

τ = 0.5. We observe a departure from

the abrupt nature of the transition from

LCO to AD with increase in β, due to

the amplification of noise after the bifur-

cation point.

to detect the bifurcations from LCO to AD in the stochas-

tic case. In Fig. 2, we present six histograms corresponding

to the six cases presented in Fig. 1. The value on the ordi-

nate, N , represents the number of data points in the pressure

time series, p′. We can see that, in the absence of noise, the

amplitude distribution of p′ is bimodal with two distinct peaks

seen away from the mean [Fig. 2(a)], as described in the

earlier literature.42,43 As we introduce a time-delay coupling

between the two oscillators, we observe that these two peaks

come closer to the mean of the distribution [Fig. 2(b)]. When

we further increaseKτ to a value greater thanKτ ,critical = 0.09

so as to reach the state of AD, we see that pressure distribu-

tion essentially exhibits a spiky behaviour at the mean [see

Fig. 2(c)], which is zero in this case. On the other hand, when

we add external noise to the uncoupled system, we observe

that there is a decrease in the height of the peaks as well as

an increase in the spread of distribution [Fig. 2(d)]. Also the

peaks become broader in the stochastic case in contrast to the

sharp peaks observed in the deterministic case. The increase

in the spread conforms to increase in the variance (ψ2) of the

pressure time series when the noise is added. Similar to the

case of absence of noise, these two peaks in the distribution

come closer to the mean when the coupling is introduced in

the system, as depicted in Fig. 2(e). With further increase in

the Kτ value [Fig. 2(f)], we see that the two peaks merge into

a single peak. We can characterize this transition in the pres-

sure distribution from bimodal to unimodal as an indicator of

the bifurcation to AD in the stochastic case. However, this

transition from LCO to AD is a smooth process and hence it

is difficult to mention a critical parameter value at which the

distribution changes from bimodal to unimodal.44

Now, we study the effect of variation in the noise intensity

on the one-parameter bifurcation diagram. Figure 3 refers to

the case where time-delay coupling alone is applied on a sys-

tem of two identical (ωb/ωa = 1) thermoacoustic oscillators.

We can observe a change in the abrupt nature of the tran-

sition with a change in Kτ , when we increase β, as shown

in Figs. 3(a)–3(f). We notice that, when β = 0, a subcritical

Hopf bifurcation happens at a critical Kτ value [i.e., the value

ofKτ at which a sudden drop in the p′
rms happens in Fig. 3(a)].

Figure 3(b), where β = 6.8 × 10−3, also exhibits a similar

behavior although the p′
rms values do not reach zero after bifur-

cation. As we further increase β, the drop in p′
rms becomes less

abrupt and more smooth, as observed from Figs. 3(c)–3(f),

FIG. 4. Two-parameter bifurcation diagram in the parameter plane of time-delay coupling strength (Kτ ) and delay time (τ ) for different values of noise

intensities: (a) β = 0, (b) β = 1.37 × 10−2, and (c) β = 2.73 × 10−2. The markers in (a) correspond to the points in the parameter plane where bifurcation from

LCO to AD occurs. In (b) and (c), the markers correspond to the points where the time-delay coupling between the two thermoacoustic oscillators leads to the

suppression of LCO amplitude to 20% of its uncoupled value (i.e., when Kτ = 0). For all the plots, Ka = Kb = 0.8, Kd = 0, and ωb/ωa = 1. LCO marked in

the plots refers to the stochastic limit cycle oscillations. We observe that, introduction of noise results in a qualitative change as well as a reduction in the size of

amplitude suppression zones.
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FIG. 5. One-parameter bifurcation dia-

grams depicting the variation of p′
rms

with ωb/ωa for different values of noise

intensity: (a) β = 0, (b) β = 5.3 × 10−3,

(c) β = 1.07 × 10−2, (d) β = 1.59 ×
10−2, (e) β = 2.13 × 10−2, and (f) β =
2.66 × 10−2. Here, Ka = Kb = 1.02, Kτ

= 0, and Kd = 0.16. We observe that

similar to Fig. 3, the transition from

LCO to AD becomes smoother with

increasing β.

which is due to the amplification of noise after the bifurcation

of LCO to AD. Therefore, in the context of transition to AD,

we can say that noise induces a change in the sudden drop

of the values of acoustic pressure, as observed for a subcriti-

cal Hopf bifurcation in the deterministic case. This behaviour

of the amplification of noise after the transition from LCO to

AD is similar to the results from earlier studies on the effect

of noise on nonlinear oscillator models, which predicted a

smoothing effect on the transition from steady state to LCO

due to the phenomenon of prebifurcation amplification of

noisy fluctuations.3,42–46 On the contrary, in Fig. 3, we observe

the amplification of noise after the bifurcation of LCO to AD.

We also observe that, in contrast to the case where noise is

absent [Fig. 3(a)], a complete cessation of oscillations as in

amplitude death (AD) is not possible in the presence of noise

[Figs. 3(b)–3(f)]. Furthermore, from Fig. 3(b) we can see that,

with the addition of low amplitude external noise, the bifurca-

tion to AD happens at a lower value of Kτ than the noise-free

case [Fig. 3(a)]. Such cases where bifurcation happens earlier

in the presence of noise is found in the past literature.44

Further, we use a two-parameter bifurcation diagram to

demonstrate the zones of the maximum suppression achieved

through the coupling of two Rijke tube oscillators. Figure 4

is the bifurcation diagram in the parameter plane of time-

delay coupling constant (Kτ ) and delay time (τ ). The data

points in Figs. 4(b) and 4(c) correspond to the points where

the amplitude of oscillations in both the Rijke tube oscil-

lators become approximately 20% of their initial uncoupled

amplitude. Since the nontrivial response of the thermoacoustic

system to noise causes p′
rms value to increase to higher ampli-

tudes from the base noise level,47 we consider “80% reduction

in the initial amplitude of LCO” as a good measure of sup-

pression of the oscillatory state in the presence of noise. Here,

when the amplitude of oscillations is approximately equal to

or lesser than 20% of its initial value, we refer to it as AD

state, and when this amplitude value is greater than 20%, we

call it as LCO state. This is in contrast with the complete sup-

pression of oscillations to a zero value, as observed in the

deterministic case.2 For the case without noise, we observe a

U-shaped plot which is centered around the value of ωτ = π ,

where ω = 3.26 for both the Rijke tube oscillators in this case

[see Fig. 4(a)]. However, this is an ideal scenario and there-

fore may not be achieved in real systems. As we introduce a

small amount of noise into the coupled system, we see that,

in the range of Kτ and τ values considered, the plot breaks

into two independent U-shaped parts centered around the val-

ues of ωτ equal to π /2 and 3π /2. As we further increase

the noise intensity, we observe an increase in the coupling

strength required to attain the 80% reduction in the amplitude

of LCO. We also notice an increase in the gap between the

two U-shaped regions. Therefore, while aiming for a particu-

lar amount of suppression, we need to have an idea about the

FIG. 6. Two-parameter bifurcation dia-

gram in the parameter plane of dissi-

pative coupling strength (Kd ) and ratio

of natural frequencies (ωb/ωa) of the

two coupled thermoacoustic oscillators

for different values of noise intensities

(for Kτ = 0): (a) β = 0, (b) β = 1.07 ×
10−2, and (c) β = 2.13 × 10−2. We

observe that with an increase in β, the

amplitude of suppression zones becomes

smaller in the region considered.
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FIG. 7. Two-parameter bifurcation dia-

gram in the parameter plane of time-delay

coupling strength (Kτ ) and delay time

(τ ), when (a) ωb/ωa = 1, Kd = 0; (b)

ωb/ωa = 0.923, Kd = 0; (c) ωb/ωa =
0.923, Kd = 0.05. For all the three cases,

β = 1.37 × 10−2. Note that the ordinates

are not the same for all the plots.

intensity of noise prevailing in the system to choose the right

values of coupling strength and delay time.

B. Effect of dissipative coupling

We now consider the effect of noise on the one-parameter

bifurcation diagram of a dissipatively coupled thermoacoustic

systems alone (i.e., Kτ = 0). Since dissipative coupling alone

is not capable of achieving AD in a system of two identical

(ωb/ωa = 1) oscillators,48 the two thermoacoustic oscillators

considered in this case have non-identical natural frequencies

(ωb/ωa �= 1).

Figure 5 depicts the variation of p′
rms with the ratio of nat-

ural frequencies of the two thermoacoustic oscillators. From

the deterministic case [Fig. 5(a)] we note that, AD is possible

with dissipative coupling alone only when there is sufficient

detuning between the two thermoacoustic oscillators. We can

see that p′
rms drops to zero on either side of ωb/ωa = 1, when

the transition to AD happens. Similar to Fig. 3, we can observe

a change in the abrupt nature of the transition as the noise

intensity is increased from Figs. 5(a) to 5(f). We observe that,

the sudden drop in the value of p′
rms at a critical ωb/ωa, as seen

in the deterministic case [Fig. 5(a)], now becomes smoother

with increase in β. We also see that a complete cessation of

oscillation as in amplitude death (AD) is not possible in the

presence of noise [Figs. 5(b)–5(f)]. However, a good amount

of suppression is achievable with dissipative coupling, when

there is sufficient detuning between the two thermoacoustic

oscillators.

We further investigate the effect of noise on the two-

parameter bifurcation diagram when the dissipative coupling

alone is present between two oscillators. Figure 6 is the

two-parameter bifurcation diagram produced in the plane of

dissipative coupling strength (Kd ) and the ratio of natural

frequencies (ωb/ωa). The markers in Fig. 6 have the same

meanings as in Fig. 4. The synchronization characteristics of

LCO region for different values of these coupling parame-

ters are elaborately discussed in Thomas et al.2 We see that a

significant reduction in the amplitude of pressure fluctuations

can be attained in two dissimilar (ωb/ωa �= 1) thermoacous-

tic oscillators coupled in the presence of noise (β �= 0) by

applying the appropriate value of dissipative coupling. The

bifurcation diagrams in the two-parameter plane in the pres-

ence of noise [Figs. 6(b) and 6(c)] are qualitatively similar to

the noise free case [Fig. 6(a)]. The increase in the noise inten-

sity leads to a reduction in the size of the region for which

amplitude suppression is observed in the parameter plane.

Also, it can be noted that as the value of β is increased from

1.07×10−2 in Fig. 6(b) to 2.13×10−2 in Fig. 6(c), the plot

shifts up and the gap around ωb/ωa = 1 widens. Therefore, we

can conclude that higher coupling strength and higher detun-

ing are needed to achieve the same amount of suppression

with increased noise levels (β) in the system.

C. Effect of simultaneous application of time-delay
and dissipative coupling

Furthermore, we examine the case where both the cou-

plings (time-delay and dissipative) are applied simultaneously1

on the thermoacoustic oscillators in the presence of noise

(Fig. 7). From Fig. 7(b), we note that the introduction of

detuning results in the joining of two distinct regions of AD

[as seen in Fig. 7(a)], which in turn, causes an increase in the

overall region for which 80% suppression (or noisy AD state)

is observed in the thermoacoustic oscillations. We also notice

a small reduction in the minimum value of Kτ (for example,

near τ = 0.5 and 1.5) at which AD is observed in both the

oscillators [see inset of Figs. 7(a) and 7(b)]. Further, on the

application of a dissipative coupling (Kd = 0.05), we observe

an additional decrease in the values of Kτ required to achieve

80% amplitude suppression (refer to the region for τ values

from 0 to 1.5 in Fig. 7(c). Therefore, we can conclude that the

addition of weak dissipative coupling in addition to a finite

detuning in the time-delay coupled thermoacoustic oscillators

increases the ease of achieving amplitude suppression in noisy

case. Similar observations of effectiveness in achieving AD

at lower value of coupling parameters from the simultaneous

application of time-delay and dissipative couplings have been

reported previously by Biwa et al.1 and Thomas et al.2 in the

deterministic case.

IV. CONCLUSIONS

In the present study, we numerically investigate the effect

of Gaussian white noise on the dynamics of a system of two

coupled horizontal Rijke tubes—prototypical thermoacous-

tic oscillators. We find that, although a complete cessation

in the amplitude of limit cycle oscillations (LCO) or ampli-

tude death (AD), as in the deterministic case, is not possible

in the presence of noise, coupling is still capable of sup-

pressing the unwanted acoustic pressure oscillations to a great

extent. We also observe the relative ease of achieving ampli-

tude suppression through the simultaneous application of both

time-delay and dissipative coupling mechanisms on the ther-

moacoustic systems in the presence of noise. Furthermore,

we notice a qualitative change in the amplitude distribution

of acoustic pressure oscillations from bimodal to unimodal

as the dynamics of oscillators change from LCO to AD.

We observe that, with increase in the noise intensity, the

abrupt transition from LCO to AD, observed during determin-

istic case, becomes smoother. We ascribe this smoothening
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behaviour of the transition to the phenomenon of noise ampli-

fication that happens in the vicinity of bifurcation in the AD

state. However, a detailed investigation of this phenomenon

of growth in the fluctuations of noise after the transition from

LCO to AD in the system of coupled limit cycle oscillators

needs further investigation and will be a subject of future

study.
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