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SrIrO3 with its large spin-orbit coupling and low charge conductivity has emerged as a potential candidate for efficient

spin-orbit torque magnetization control in spintronic devices. We here report on the influence of an interfacial oxide

layer on spin pumping experiments in Ni80Fe20 (NiFe)/SrIrO3 bilayer heterostructures. To investigate this scenario

we have carried out broadband ferromagnetic resonance (BBFMR) measurements, which indicate the presence of an

interfacial antiferromagnetic oxide layer. We performed in-plane BBFMR experiments at cryogenic temperatures,

which allowed us to simultaneously study dynamic spin pumping properties (Gilbert damping) and static magnetic

properties (such as the effective magnetization and magnetic anisotropy). The results for NiFe/SrIrO3 bilayer thin films

were analyzed and compared to those from a NiFe/NbN/SrIrO3 trilayer reference sample, where a spin-transparent,

ultra-thin NbN layer was inserted to prevent oxidation of NiFe. At low temperatures, we observe substantial differences

in the magnetization dynamics parameters of these samples, which can be explained by an antiferromagnetic interfacial

layer in the NiFe/SrIrO3 bilayers.

Charge to spin current conversion efficiency in heavy

metal(HM)/ferromagnet(FM) bilayers has become one of the

central themes of spintronics research, with the goal to ma-

nipulate the magnetization in the FM via spin-orbit torques

(SOT) induced at the interface to the HM.1–5 Heavy metals,

like Pt, W and Ta, have been successfully used in SOT ex-

periments in HM/FM bilayers owing to their large spin-orbit

coupling (SOC).4,6,7 Beyond these well-established HM ma-

terials, iridium-based oxides (iridates) with their high spin

Hall conductivity, low charge conductivity and large SOC are

promising candidates for SOT studies.8,9 Among them, the 5d

transition metal oxide SrIrO3 (SIO) in particular remains in

spotlight due to its exotic band structure with extended 5d or-

bitals. Compared to metals, the SOT effects in oxide materials

offer a wide tunability due to the dependency of the electronic

properties on the oxygen octahedral rotation or oxygen va-

cancies.10 A large spin Hall angle of 1.1 was reported for SIO

from second-harmonic Hall measurements in NiFe/SIO.11

The study of direct SOT effects requires patterning pro-

cesses and also demands sophisticated measurement proto-

cols. On the other hand, due to Onsager reciprocity12, spin

pumping experiments allow to study the inverse SOT effects

in blanket HM/FM bilayer structures. Here, magnetization dy-

namics is excited in the FM via an external microwave driving

field and excess angular momentum is pumped as a pure spin

current across the interface into the HM. Absorption of this
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pure spin current in the HM represents an additional contri-

bution to the damping of the magnetization dynamics. Eval-

uating the change in linewidth in combination with the volt-

age generated by the inverse SOT enables one to address and

quantitatively analyze the inverse SOT effects in the HM.13,14

Recent spin pumping experiments demonstrated a large SOT

for SIO, as compared to elemental heavy metals.11 All the

spin pumping experiments so far carried out in SIO employed

the metallic ferromagnet NiFe as a spin injector layer due to

its low damping, making it an ideal candidate for ferromag-

netic resonance (FMR) experiments.10 Yuelei Zhao et.al, de-

termined the Gilbert damping of NiFe/Al2O3 heterostructures

as a function of temperature and observed a peak in Gilbert

damping near T ∼ 50 K, which gradually becomes broader

with increase in NiFe thickness and vanishes above 20 nm of

NiFe.15 They interpreted this as a spin reorientation of the sur-

face magnetization of NiFe thin films arising from thermal ex-

citations.15 However, recently it was found that the choice of

NiFe in combination with oxide substrates invoked interfacial

oxidation showing antiferromagnetic ordering at low temper-

atures.16 This has not been taken into account in previous ex-

periments with NiFe/SIO bilayers, but needs to be addressed

to potentially tune the SOT efficiency.

In this letter, we study the influence of an interfacial oxide

layer between NiFe and SIO on spin pumping experiments. To

this end, we explore the spin transport in NiFe/SIO bilayers

with and without inserting a thin NbN spacer layer between

SIO and NiFe. The additional spacer layer allows to prevent

the diffusion of oxygen to the NiFe layer, while not strongly

suppressing spin transport. We employed the BBFMR tech-

nique to study the magnetization dynamics and extracted the
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FIG. 1. Structural properties of a SIO (30 nm) thin film grown

on a (001)-oriented SrTiO3 (STO) substrate. (a) 2θ -ω scan along

the [001] direction of STO. The inset shows the rocking curve of

the SIO(002) reflection and the derived full width at half maximum

(FWHM) value. (b), (c) Reciprocal space mappings around the sym-

metric STO(002) and the asymmetric STO(204) reflections, respec-

tively. The reciprocal lattice units (rlu) are related to the respective

STO(001) substrate reflection.

FMR spectroscopic parameters as a function of temperature.

A comparison of these parameters for samples with and with-

out NbN spacer layer permits us to identify the potential for-

mation of an interfacial oxide layer.

SIO thin films with a thickness of 5 nm were deposited on

single crystalline, (001)-oriented SrTiO3 (STO) substrates us-

ing pulsed laser deposition.17 Subsequently, NiFe (Ni80Fe20)

was DC sputter-deposited ex-situ on top of SIO and capped

with a 3 nm thin Al layer to prevent the top surface of NiFe

from oxidation. For comparison, an additional trilayer sam-

ple was fabricated with a 3 nm thin NbN layer between SIO

and NiFe to prevent the oxidation of the NiFe layer at this

interface. NbN is a well established diffusion barrier for

oxygen18, and a superconductor with TC around 18 K19. In

addition, we also fabricated a NiFe thin film grown directly

on top of an STO substrate and capped with 3 nm of Al to

explore its intrinsic properties. All sputter deposition pro-

cesses were performed at room temperature in an ultrahigh

vacuum system (base pressure in the 10−9 mbar range). The

sputtering process was carried out at 5x10−3 mbar in an Ar

(NiFe, Al) or an Ar and N2 mixture (NbN, flow ratio of Ar to

N2: 18.1/1.9) atmosphere. To ensure the sample quality, we

performed X-ray diffraction studies and magnetometry mea-

surements (SQUID magnetometer). Broadband ferromagnetic

resonance (BBFMR) measurements employed a vector net-

work analyzer (VNA) in combination with a 3D-vector mag-

net cryostat with a variable temperature insert.

High-resolution X-ray diffraction measurements reveal an

epitaxial growth of SIO on STO (see Fig. 1). The high crys-

talline quality of the samples is confirmed by 2θ - ω scans re-

vealing satellites around the SIO(002) reflection due to Laue

oscillations, indicating a coherent growth (Fig. 1(a)). The thin

films show a low mosaic spread, as demonstrated by the full

width at half maximum (FWHM) value of 0.02◦ extracted

from the SIO(002) rocking curve (inset in Fig. 1(a)). In addi-

tion, the reciprocal space maps (RSM) around the STO (002)

(Fig. 1(b)) and STO (204) reflections (Fig. 1(c)) reveal a lat-
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FIG. 2. Room temperature BBFMR measurements. (a) Schematic of

the experimental set-up and illustration of the sample stack mounting

on a CPW. (b) Experimental data (symbols) of the real (black) and

imaginary part (red) of S21 from the SIO/NiFe(5 nm) sample, excited

with f = 5 GHz. The lines are fits according to Ref. 20. (c) Gilbert

damping parameter, α as a function of 1/dFM in the in-plane geom-

etry with a linear fit (black line) indicating the intrinsic damping of

NiFe with spin pumping contribution for SIO/NiFe heterostructures.

For comparison, the single data point of one SIO/NbN/NiFe(5 nm)

trilayer sample has been added. For the trilayer, we connected with

a red line the singular data point with the same bulk damping α0.

(d) Effective magnetization, Meff as a function of 1/dFM with lin-

ear fit (line) indicating the presence of interface anisotropy in the

SIO/NiFe heterostructures. For comparison, the single data point of

one SIO/NbN/NiFe(5 nm) sample is also added.

tice matched growth of the SIO film on the STO as both share

the same reciprocal lattice units qH . Thus, the SIO exhibits a

compressive strain in the film plane.

For the investigation of the magnetization dynamics, we

performed BBFMR measurements using a coplanar waveg-

uide (CPW) with a 80 µm wide center conductor. We record

the complex microwave transmission parameter S21 at fixed

microwave frequencies f in the range from 5 GHz to 32 GHz

as a function of the in-plane magnetic field µ0Hext with a VNA

output power of 0 dBm. A schematic illustration of the exper-

imental set-up is shown in Fig. 2(a). The real and imaginary

part (black and red symbols) of the recorded transmission pa-

rameter S21 are fitted (black and red lines) to the Polder sus-

ceptibility as show in Fig. 2(b).21 From this fit we extract the

values of the FMR field µ0Hres and the FMR linewidth µ0∆H

for each frequency. Using the Kittel formula22 for the in-plane

magnetization case

µ0Hres =−µ0Hani −
µ0Meff

2
+

√

(

µ0Meff

2

)2

+

(

2π f

γ

)2

,

(1)

with γ the gyromagnetic ratio. Thus, we can extract the effec-

tive saturation magnetization Meff = Ms −Ku (with the satu-

ration magnetization Ms and the out-of-plane anisotropy field

Ku) and the in-plane anisotropy field µ0Hani along the CPW
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direction. In addition, we determine the Gilbert damping

parameter α as well as the inhomogeneous line broadening

µ0Hinh from the microwave frequency dependence of µ0∆H

via the relation23,24

µ0∆H = µ0Hinh + 2
2π f α

γ
(2)

(see supplementary material for frequency dependent

BBFMR data).

To quantify the role of spin pumping in our

SIO(5 nm)/NiFe(dFM) bilayer heterostructures, we ex-

tracted the Gilbert damping parameter α as a function of the

NiFe layer thickness dFM (see Fig. 2(c)). A linear dependence

of α on 1/dFM is clearly evident and is attributed to pumping

a spin current from the NiFe into SIO.25 Moreover, the y-axis

intercept allows to quantify the bulk Gilbert damping α0,

while the slope allows to determine the effective spin mixing

conductance g
↑↓
eff via26

α(dFM) = α0 +
γ h̄g

↑↓
eff

4πMs

(

1

dFM

)

. (3)

Here, h̄ is the reduced Planck’s constant, and Ms = 630 kA/m

is determined from SQUID magnetometry of our NiFe layers.

We obtain α0 = 6.44× 10−3 ± 8× 10−5, which corresponds

well to literature.27–30 In addition, we find g
↑↓
eff = 4.68×1018±

2.2 × 1017m−2 for these heterostructures at room tempera-

ture.20,31 This result agrees well with values in literature for

NiFe/heavy metal heterostructures32–34 and highlights the fea-

sibility of SIO for SOT devices.

To investigate the role of an interfacial NiFeOx oxide layer,

we conducted BBFMR measurements on a SIO/NbN/NiFe tri-

layer sample. To obtain an estimate for spin pumping from

this singular sample, we note that NiFe can be grown on

NbN with bulk properties (see supplementary material) and

consequently connected the measured data point with a line

through the singular data point with the same bulk damping

α0 = 6.44× 10−3. Despite the expected long spin diffusion

length of NbN (14 nm)35, we observe dramatically reduced

spin pumping in this sample. Assuming the formation of an

interfacial oxide NiFeOx layer when SIO is in direct contact

with NiFe, our results suggest that either this oxide layer al-

lows for more efficient spin current injection as already re-

ported for HMs in contact with NiFe36 or serves as a source

of spin memory loss37. However, more systematic studies are

required to unambiguously separate these two contributions

and better understand the role of the interfacial NiFeOx layer

for spin current transport.

The nature of the interfacial oxide layer in our bilayers were

further investigated by plotting µ0Meff versus 1/dFM as shown

in Fig. 2(d). This linear scaling with 1/dFM is an indica-

tion of interfacial anisotropy in the bilayer sample and may

be induced via the oxidation of NiFe.38 Interestingly, for the

SIO/NbN/NiFe trilayer we find a larger (∼ 15%) µ0Meff as

compared to bilayer samples with similar dFM. This clearly

indicates a change in interface anisotropy.

To more systematically investigate the role of an interfa-

cial NiFeOx layer, we investigated SIO (5 nm)/NiFe (5 nm)
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FIG. 3. BBFMR spectroscopic parameters as a function of

temperature. (a) Gilbert damping α , (b) effective magnetiza-

tion (Meff), (c) inhomogeneous line broadening (µ0Hinh), and (d)

anisotropy field µ0Hani plotted as a function of temperature for

SIO(5 nm)/NiFe(5 nm) (blue symbols), NiFe(5 nm) (red symbols)

SIO(5 nm)/NbN(3 nm)/NiFe(5 nm) (green symbols) samples. For

comparison, µ0Hc derived from SQUID magnetization measure-

ments is also shown in (d) for a SIO(5 nm)/NiFe(3.5 nm) (orange

symbols).

bilayer, NiFe (5 nm) single layer and SIO (5 nm)/NbN

(3 nm)/NiFe(5 nm) trilayer samples at 5 K ≤ T ≤ 300 K and

extracted the FMR spectroscopic parameters. Fig. 3(a) shows

the Gilbert damping α as a function of temperature for these

three samples (Fitting procedures are described in supplemen-

tary material Fig. S2). For both the SIO/NiFe bilayer and the

NiFe single layer samples, the Gilbert damping α increases at

low temperatures, reaches a maximum around 25 K, and then

decreases with decreasing temperature, highlighted as a yel-

low shaded region in Fig. 3(a). In contrast, we only observe a

weak temperature dependence for the SIO/NbN/NiFe trilayer

sample, which is in accordance with earlier reports of elemen-

tal 3d-transition FMs.39,40 We attribute the observed maxi-

mum in Gilbert damping for the SIO/NiFe bilayer and NiFe

single layer samples to the antiferromagnetic ordering16,36 of

an oxide layer (thickness ∼0.5 nm) formed between SIO or

STO and NiFe. This interfacial antiferromagnetic oxide layer

also contributes to the damping due to magnetic fluctuations

near the Néel temperature, which enhances the spin mixing

conductance across the interface and thus increases the ob-

served α . From additional temperature-dependent BBFMR

measurements on a SIO(5 nm)/NiFe(7 nm) bilayer, we extract

an estimate for g
↑↓
eff(T ) and find an enhancement of g

↑↓
eff around

50 K (see supplementary material). Similar results have been

reported by L. Frangou et al.16, where they showed that the

contribution of an interfacial antiferromagnetic oxide layer

formed between SiO2 and NiFe manifests as a peak in α near

T ∼ 50 K. At these low temperatures, we also find a larger

Gilbert damping for the SIO/NiFe bilayer sample compared

to the NiFe single layer sample. We attribute this observation

to the fact that the SIO thin film has larger roughness than the
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FIG. 4. SQUID magnetometry measurements: hysteresis loops for

in-plane applied magnetic fields recorded at various temperatures

for (a) SIO(5 nm)/NiFe(3.5 nm)/Al (2 nm capping layer) and (b)

SIO(5 nm)/NbN(3 nm)/NiFe(3.5 nm)/Al (2 nm capping layer), (stack

illustrations are shown respectively as inset).

STO substrate, which promotes a higher amount of NiFe ox-

idation. The effect of NiFe oxidation also manifests itself in

the values extracted for Meff, as plotted in Fig. 3(b) (see also

Fig. S3 in the supplementary material). For the SIO/NiFe

bilayer and NiFe single layer samples, the extracted Meff is

significantly lower as for the SIO/NbN/NiFe trilayer sample.

This change in Meff may be attributed to an additional sur-

face anisotropy, which originates from the formation of the

NiFeOx layer or the direct contact of NiFe to the SIO (see

supplementary material for further discussion). Most inter-

estingly, we also find a dramatic change in the temperature

dependence for the SIO/NiFe bilayer, and NiFe single layer

samples in µ0Hinh (Fig. 3(c)) and µ0Hani (Fig. 3(d)) as com-

pared to the SIO/NbN/NiFe trilayer sample. We can rule out

the enhancement of two magnon scattering for the observed

increase in µ0Hinh, since we extract similar values in out-of-

plane BBFMR measurements (see supplementary material).

To further investigate the role of the interface ox-

ide layer, we conducted magnetization measurements on

SIO (5 nm)/NiFe (3.5 nm) bilayer and SIO (5 nm)/NbN

(3 nm)/NiFe (3.5 nm) trilayer samples. We reduced the thick-

ness of the NiFe as compared to the samples above used for

the temperature dependent BBFMR studies to enhance the

contributions from the thin oxidized NiFe interfacial layer.

The magnetization measurements for the SIO/NiFe bilayer

and the SIO/NbN/NiFe trilayer sample are shown in Fig. 4

(a) and (b), respectively. As evident from these magnetiza-

tion versus field measurements, we find a reduction by 15%

in the saturation magnetization (extracted by using the nom-

inal thickness of the NiFe layer) for the SIO/NiFe bilayer as

compared to the SIO/NbN/NiFe trilayer. If we assume this

reduction originates only from oxidization, the NiFeOx thick-

ness is ∼ 0.5 nm. However, even for the SIO/NbN/NiFe tri-

layer sample we find a much lower saturation magnetization

than for bulk NiFe, which we attribute to a combination of

a magnetic dead layer and experimental uncertainties in the

determination of the volume of the NiFe layer. Moreover,

we observe a strong increase in coercive field µ0Hc for the

SIO/NiFe bilayer sample as compared to the SIO/NbN/NiFe

trilayer sample for temperatures below 100 K. We attribute

these larger µ0Hc values to an exchange bias effect, where the

ferromagnetic domains of NiFe are pinned by the antiferro-

magnetic NiFeOx phase.41,42 We note that we do not observe

a significant and systematic dependence of µ0Hc on the exter-

nal magnetic field applied while cooling down the sample. In

addition, we extract a similar temperature dependence of the

coercive field as compared to the determined BBFMR param-

eters for the SIO/NiFe bilayer sample. To illustrate this, we

plotted the coercive field µ0Hc in Fig. 3(d) as green-shaded

symbols. A similar temperature dependence is found for the

BBFMR extracted µ0Hani parameter and µ0Hc, indicating the

same physical origin of both phenomena, i.e., an oxide layer

formed at the SIO/NiFe interface.

In summary, the magnetization dynamics parameters of

SIO/NiFe bilayers were studied as a function of temperature

using the BBFMR technique. The room temperature mea-

surements show spin pumping from NiFe into SIO, which is

systematically studied and quantified by investigating a thick-

ness series of the NiFe layer. The extracted spin mixing

conductance of SIO/NiFe bilayers agrees well with results

for NiFe/heavy metal materials and proves the potential ap-

plication of SIO for SOT devices. In our low temperature

BBFMR measurements, we find a significant enhancement of

the Gilbert damping parameter around 50 K. We attribute this

observation to the formation of an oxide layer between NiFe

and SIO, which orders antiferromagnetically at 50 K and thus

leads to an enhancement of the spin mixing conductance via

magnetic fluctuations.43 Moreover, µ0Hinh and µ0Hani exhibit

an increase at low temperatures. We compared these results

to a SIO/NbN/NiFe trilayer sample, and found that the for-

mation of the oxidation layer can be avoided by inserting a

thin NbN spacer. Additional magnetization data showed an

exchange bias effect between NiFe and the antiferromagnetic

oxide layer and a reduction in the saturation magnetization

for the bilayer. Our work provides a new perspective on spin

current transport across metallic ferromagnet/SOT-active ox-

ide interfaces. In particular, our results show that a NiFeOx

layer at the interface of NiFe/SIO heterostructures leads to an

enhanced spin pumping at room temperature. This enhance-

ment can be either attributed to an enhanced spin mixing con-

ductance or an increase in spin memory loss mediated by the

NiFeOx layer. Further studies are required to analyze, whether

this interfacial oxide layer is detrimental or beneficial for the

spin current transport across the SIO/NiFe interface.

SUPPLEMENTARY MATERIAL

See supplementary material for details on the growth pa-

rameters and supporting BBFMR data.
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