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Abstract:    Numerical exercises are presented on the thermally induced motion of internally heated beams under various heat 

transfer and structural boundary conditions. The dynamic displacement and dynamic thermal moment of the beam are analyzed 

taking into consideration that the temperature gradient is independent as well as dependent on the beam displacement. The effect of 

length to thickness ratio of the beam on the thermally induced vibration is also investigated. The type of boundary conditions has 

its influence on the magnitude of dynamic displacement and dynamic thermal moment. A sustained thermally induced motion is 

observed with progress of time when the temperature gradient being evaluated is dependent on the forced convection generated due 

to beam motion. A finite element method (FEM) is used to solve the structural equation of motion as well as the heat transfer 

equation. 
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INTRODUCTION 

 

It is well known that the topic of thermally in-

duced vibrations is of great concern for structural 

components of spacecrafts and has been extensively 

investigated by Thornton and co-authors (Thornton 

and Foster, 1992; Thornton and Kim, 1993; Gulick 

and Thornton, 1995; Johnston and Thornton, 2000). 

Pioneering works of Boley (1956), Boley and Barber 

(1957) have shown the influence of time dependence 

of the temperature on the structural transients. 

Manolis and Beskos (1980) used the Laplace trans-

form and method of Papoulis to obtain thermally 

induced vibrations of beam subjected to rapid heating. 

They also discussed the effects of axial load, internal 

viscoelastic damping and external viscous damping 

on thermal vibrations of simply supported beam 

subjected to rapid heating. Boley (1972) evolved an 

approximate method by deriving a simple formula for 

the ratio of the maximum dynamic to static deflection 

in order to study the thermally induced vibrations of 

beams and plates. In the same article the effect of 

damping and axial (or in-plane) load on the thermal 

vibration of beams and plates was also discussed. 

Dynamic stresses and deformations were evaluated 

by Stroud and Mayers (1971) for a rapidly heated 

rectangular plate using the dynamic thermo-elastic 

variational principle. Lyons (1966) suggests that the 

best practical way of providing sudden heat input to 

beams, plates and shells is by instantaneous supply of 

electrical energy and by gamma radiation. Associated 

governing equation of motion for infinitely long cy-

lindrical shell and the displacement response solution 

has been presented. Seibert and Rice (1973) carried 

out studies on thermally induced vibration of a simply 

supported beam using the uncoupled and coupled 

thermoelastic governing equations for thin and thick 

beams. Kidawa-Kukla (1997; 2003) analyzed the 

thermally induced vibration of uniform simply sup-

ported beam heated by a harmonically moving laser 

beam (mobile heat source). The solution to the prob-

lem in analytical form was obtained by using the 
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properties of the Green functions and also a time 

partitioning method was used to improve the con-

vergence of the series solution to the heat conduction 

problem.  

Thus it is noted that, sufficient analytical studies 

on the thermal induced motion of beams and plates 

are available. This article attempts a detailed 

investigation on the effect of boundary condition and 

free and forced convection effects on the thermal 

induced motion of beam. Numerical results are 

presented based on the finite element formulation for 

an Euler-Bernoulli beam subjected to thermal load. 

The study considers the beam with insulated surface 

and the opposite surface subjected to convective heat 

transfer. A thermal moment arising from the tem-

perature variation across the thickness of the beam is 

the source of forcing function for the structure. Dy-

namic response of the beam due to temperature tran-

sients is presented for various boundary conditions. 

The dynamic thermal moment for each case is ex-

amined providing an insight on the mechanism and its 

relation on the dynamic response of the internally 

heated beam. 

 

 

EQUATION OF MOTION OF BEAM SUBJECTED 

TO INTERNAL HEAT SOURCE 

 

Fig.1 shows the simply supported beam sub-

jected to internal heating and exposed to ambient 

conditions on one side and insulated on the other side. 

Practically, internal heating may be achieved by sev-

eral means. One method is the instantaneous supply 

of large amount of electrical energy to a structure by 

applying very high current across the thickness of the 

structure, and second method is by supply of current 

of desired amperage and voltage. This would allow 

each molecule of the structure to act as the interior  

 

 

 

 

 

 

 

 

 

 

heat source. Third method of inducing vibrations 

caused due to internal heat sources is by the instan-

taneous exposure of the structure to radiation or 

gamma rays (Lyons, 1966), as in nuclear power plants. 

Fig.2 shows the free body diagram of a differential 

element, dx, of the thin beam under the action of 

mechanical, inertial and thermal loads. TT and TB 

correspond to temperatures on top and bottom sur-

faces respectively, F is the shear force and P is the 

load intensity. 

 

 

 

 

 

 

 

 

 

 
The governing equation of motion for a beam in 

the transverse direction in the presence of thermal 

moment is given by (Boley, 1956) 
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        (1) 

 

where, ρ is the mass density, M is the bending mo-

ment produced by the applied forces, MT is the ther-

mal moment, v is the transverse deflection in the y 

direction, E the Young’s modulus and I the moment of 

inertia of beam cross section. The boundary and ini-

tial conditions for the problem are as follows 
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where mT is the non-dimensional thermal moment. 

For the beam subjected to internal heat source 

and insulated on one side and undergoing convection 

heat loss on the other side, the thermal moment acts as 

a forcing function which is given as 
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where, ∆T is the change in temperature, α is the co-
Fig.1  Simply supported beam subjected to internal

heating 

Fig.2  Free body diagram of a beam subjected to

mechanical and thermal loads 
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efficient of thermal expansion and A is the cross sec-

tional area, b is the width of the beam and yi indicates 

thickness at ith layer measured along the y axis (Fig.3). 

The thermal moment is calculated at uniform inter-

vals across the thickness from the top to bottom sur-

faces of the beam and it is summed up in order to get 

the total thermal moment across the section. The 

thermal moment along the length is assumed to be 

constant as there is no temperature variation along the 

length of the beam hence, MT=MT(t). The following 

non-dimensional parameters are defined (Boley, 

1956): The non-dimensional time τ is: 
 

2/ ,t hτ κ=                            (4) 
 

where, κ=k/(ρcp) is thermal diffusivity, k is thermal 

conductivity, cp the specific heat and h the total 

thickness of beam. The non-dimensional displace-

ment V is given as  
 

4 2π /(192 ),V kv Q Lα=                    (5) 

 

where, Q is the heat flux in W/m
2
 and L is the length 

of the beam. mT is given as 
 

4
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The parameter B is the square root of the ratio of 

the characteristic time h
2
/κ of heat transfer problem to 

characteristic time (ρAL
4
/EI)

1/2
 of the vibration 

problem (or proportional to the natural period of vi-

bration). Thus B is large for beams with low diffu-

sivity, low density and high bending rigidity; it is low 

if the beam is slender or dense. 

 

Determination of temperature distribution across 

the beam thickness 

The evaluation of the temperature distribution 

across the thickness of the beam is found by using the 

finite element idealization as illustrated in Fig.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 
The finite element equation for temperature 

evaluation across beam thickness when the beam is 

subjected to sudden internal heating, exposed to am-

bient condition on one side and insulated on other side 

is as follows: 
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(7) 

 

In Eq.(7) the second matrix on LHS and second vector 

on RHS are contribution from convection and will be 

taken into consideration only for last element, hc is 

convective heat transfer coefficient, T1 and T2 are the 

nodal temperatures and T∞ is the ambient temperature. 

The global finite element equation for time dependent 

temperature distribution has the following form: 

 

comb cap
+ = ,

Q
K T K T F                       (8) 

 

where Kcomb is elemental conduction and/or convec-

tion matrix, Kcap is elemental capacitance matrix and 

Q
F  is force vector. Eq.(8) must be solved for the 

variation of temperature in space and time domain to 

obtain the temperature distribution across the thick-

ness of the beam. 

 

Beam finite element formulation 

The finite element idealization for the simply 

supported beam subjected to heat source on one side 

Fig.3  Geometry and temperature details for the calcu-

lation of thermal moment 

Fig.4  Finite element idealization across the beam

thickness for thermal analysis 
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and insulated on other side is shown in Fig.5. The 

weak form of the governing equation Eq.(1) is as 

follows: 
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where, the first term refers to shear force, the second 

term refers to moment, the third term will give the 

stiffness matrix, the fourth term will yield the mass 

matrix, the fifth term gives the shear force and the last 

term will be zero as there is no change in thermal 

moment along the length of the beam. N
T
 is the weight 

function. Hermite shape functions are used to develop 

the various finite element matrices. In the standard 

Galerkin’s method, weight functions are chosen as the 

shape functions. Transverse displacement field would 

be expressed in terms of cubic Hermite shape func-

tions and nodal displacement as follows: v(x,t)= 
4

1

.
i i

i

N v
=
∑  After obtaining the time dependent tem-

perature distribution across the beam thickness, force 

vector FT is evaluated which will contain the thermal 

moment MT only. Subsequently, static equation 

Kv=FT is solved. The displacement thus obtained at 

time t is termed as the static displacement vst. New-

mark’s method is used to solve the second order 

equation of motion involving the time dependent 

forcing function 

 

T .+ =Mv Kv F                          (10) 

 

 

 

 

 

 

 
The displacement obtained by solving Eq.(10) is 

termed as dynamic displacement vdyn. From the dy-

namic displacement vector, the displacement for the 

central element of the beam is extracted to calculate 

the thermal moment at the centre of the beam and is 

termed as dynamic thermal moment: 

e e e

TD dyn
( ) ( ) ( ) ,=M K v                    (11) 

 

where, superscript e refers to elemental solution. 

Hence, the dynamic thermal moment at the centre of 

the beam is given as: 
 

node

T dyn TD Tst
,M M M= ±    (12) 

 

where MT st=MT. It is to be noted that the structural 

damping is ignored and that material properties are 

independent of temperature. 
 

 

RESULTS AND DISCUSSION 

 

Numerical exercises are presented for thin 

beams with different boundary conditions like simply 

supported (SS), clamped simply supported (CS) and 

clamped free (CF) for the analysis of dynamic re-

sponse and dynamic thermal moment when the beam 

is subjected to internal heating with heat transfer 

boundary conditions as insulation and convection 

heat loss occurring due to constant heat transfer co-

efficient and forced convection caused by transverse 

motion of beam. The slenderness ratios of the beam 

considered for the study are 88 and 165. Length of the 

beam is 0.254 m and has unit width. The evaluation of 

the temperature distribution across the cross section 

of the beam has been validated with the close form 

solution given by Boley (1956) or Carslaw and Jaeger 

(1959). The finite element approach for the analysis 

of the dynamic response of beam subjected to thermal 

boundary conditions has been validated with the re-

sults reported by Boley (1956) and Manolis and 

Beskos (1980) for the simply supported beam. 

 

Validation 

The thermal structural data for the validation of 

the FEM formulation to analyze thermally induced 

vibration are reproduced below from (Boley, 1956): 

b=1 m, L=0.254 m, k=201.87 W/(m·K), α=22.0×10
−6

 

/°C, ρ=2700 kg/m
3
, cp=869.38 J/(kg·°C), Q=1.63×10

6
 

W/m
2
, E=73.5×10

9
 Pa, and G=26.0×10

9
 Pa and other 

data are listed in Table 1. Fig.6 shows good agreement 

of the FE and close form solution (Boley, 1956) for 

temperature distribution across the thickness of the 

beam with surface heating in the form of step heat 

input and opposite surface insulated.  

Fig.5  Finite element idealization of beam for structural

analysis 
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The non-dimensional plots of dynamic mid-span 

deflection (Fig.7a) and mid-span thermal moment 

(Fig.7b) for various values of B were obtained and 

compared with the results given by Boley (1956) and 

Manolis and Beskos (1980). It was found that the 

trends of the results are in good agreement for simply 

supported beam subjected to rapid heating. The 

variation of the ratio of maximum dynamic mid-span 

deflection to maximum static mid-span deflection 

with the thickness of a rectangular simply supported 

aluminium beam was also studied and it was inferred 

that, in order to avoid dynamic oscillations due to 

heating it is preferable to have higher thickness of the 

beam. The thermal structural data for aluminium 

beam provided by Manolis and Beskos (1980) are the 

same as those given by Boley (1956) except the 

length of the beam was taken to be equal to L=1 m and 

thickness of the beam was h=0.00385 m. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Effect of natural convection on thermally induced 

vibrations of internally heated beams 

The beam is subjected to internal heating of Q= 

10.63×10
6
 W/m

2
. A beam with L/h=165 is considered 

for the analysis. Other data remain unchanged. Fig.8 

shows the temperature variation across the thickness 

of the simply supported beam subjected to internal 

heating and undergoing convective heat loss with heat 

transfer coefficient hc=20 W/(m
2
·K). It can be seen 

from the figure that with the passage of time the 

temperature increases linearly and that the tempera-

ture variation across the thickness of the beam is 

almost negligible. 

Fig.9 shows the corresponding dynamic midspan 

thermal moment. The trend of the thermal moment is 

the same as the one shown in Fig.8 for simply sup-

ported beam subjected to step heating on one side and 

insulated on the other side, but the amplitude of 

non-dimensional dynamic mid-span thermal moment 

is considerably less than that shown in Fig.7b. 

B L/h H (m) t (s) 

0 25400   0.000010 0.000002 

1 165   0.001544 0.04 

∞ 10   0.025400 10.0 

Table 1  Geometric and time data for validation problem 

Fig.6  Close form solution (a) and FEM solution (b) of 

temperature variation across the thickness of the beam 

as referred from (Boley, 1956) for B=1 

Fig.7  Non-dimensional dynamic mid-span deflection (a)

and  thermal moment (b) of simply supported beam for

various values of B 
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Fig.10 shows the non-dimensional dynamic 

mid-span deflection of simply supported beam sub-

jected to internal heating for various values of con-

vective heat transfer coefficient (hc). The convective 

heat transfer coefficient of zero i.e. hc=0 refers to the 

beam which is insulated on both sides and as seen 

from Fig.10 the vibration amplitude is zero, the same 

is true as seen in Fig.12 and Fig.14 for CS and CF 

beam respectively. As the convective heat transfer 

coefficient is increased, during the initial time period, 

the non-dimensional displacement is almost equal to 

zero but later on there is increase in the amplitude of 

the non-dimensional dynamic displacement showing 

the oscillatory trend about some mean position (not 

shown). 

The thermal moment for clamped-simply sup-

ported beam illustrated in Fig.11 shows a linear in-

crease in its amplitude with slight oscillatory trend as 

the time progresses. Referring to Fig.12, as the con-

vective heat transfer coefficient is increased the non 

dimensional displacement is equal to zero during the 

initial time period, but later on there is increase in the 

amplitude of the dynamic displacement and shows an 

oscillatory trend about some mean position (i.e. 

thermal static deflection and is not shown). 

In case of clamped free beam, the dynamic ther- 
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mal moment at the free end is equal to zero due to free 

expansion of the beam as shown in Fig.13. The dy-

namic deflection of clamped-free beam at the free end 

depends on the magnitude of the heat transfer coeffi-

cient. As illustrated in Fig.14, when the convective 

heat transfer coefficient is increased, there is gradual 

increase in the amplitude of the dynamic displace-

ment at the free end. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effect of varying convection on thermally induced 

vibrations of internally heated beams 

Numerical investigations were carried out for 

internally heated simply supported beam with forced 

convection on one surface and opposite surface being 

insulated. The variation of convection along the 

length of the beam is chosen to be a function of the 

transverse displacement of the beam. This assumption 

on the convection heat transfer coefficient will lead to 

minimum convection towards the simply supported 

ends and will increase toward the centre of the beam 

to a maximum value. This characteristic variation of 

heat transfer coefficient is based on the physical in-

terpretation that, when the beam executes upward 

motion from the mean position, this will result in 

displacing the air upwards and it is reasonable to 

assume the heat transfer coefficient to be proportional 

to the velocity of the beam and the displacement 

vector. As the beam executes downward motion, the 

convection coefficient is assumed to decrease in 

proportion to the velocity and displacement vector 

under the circumstances that the air currents put in 

motion previously need finite time to change their 

direction. This decrease in convection coefficient is 

assumed to take place until the beam attains the mean 

position and for subsequent downward motion of the 

beam a constant natural convection is assumed to 

prevail. From the maximum downward position, as 

the beam executes upward motion until mean position, 

again the convection heat transfer coefficient is as-

sumed to remain constant. The natural convective 

heat transfer coefficient is taken to be equal to 20 

W/(m
2
·K) which has been obtained experimentally 

under laboratory conditions. Thus, the spatial and 

time variation of heat transfer coefficient can be rep-

resented as follows: 
 

c max

max max

( , ) ( ) ( , ) / ,

0  and 0,

h x t h h t v x t v

v v v v

= +

< ≤ ≤ <
                  (13) 

c max max( , ) , 0 and 0,h x t h v v v v= < ≤ − − ≤ <    (14) 

 

where, hc is natural convective heat transfer coeffi-

cient, v(x,t) is transverse displacement of beam, vmax is 

maximum displaced position of beam, x is position 

along x-axis. Approximating the velocity of air equals 

velocity of oscillating beam, the Reynolds number is 

computed. Using this Reynolds number Re, the Nus-

selt number Nu is found which helps in finding the 

convective coefficient of heat transfer h(t). The 

correlation given by Zhukauskas for computation of 

Nusslet number for flow over a circular cylinder in 

cross flow is, 
 

1/ 4( / ) ,m n

sNu CRe Pr Pr Pr=                (15a) 

and the empirical correlation given by Hilpert is 
 

 air( ) / ,h t Nuk L=            (15b) 

 

where C is constant (C is 0.75 for Pr<40, C is 0.51 for 
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Pr>40), m is constant (m=0.4 for Pr<40, m=0.5 for 

Pr>40), Pr is Prandlt number evaluated at ambient 

temperature T∞, n=0.36 for Pr≤10 and n=0.37 for 

Pr>10, Prs=Prandlt number at instantaneous tem-

perature Ts. Eqs.(15a) and (15b) are referred to from 

(Incropera and DeWitt, 2002). The Prandlt number at 

instantaneous temperature can be obtained from the 

table of thermodynamic properties of air as referred to 

from (Incropera and DeWitt, 2002). The Prandlt 

number is given for every 50 °C temperature differ-

ence, starting from temperature of 27 °C (300 K). To 

obtain the Prandlt number at intermediate tempera-

tures the third degree polynomial fit is carried out for 

the thermodynamic properties of air (Incropera and 

DeWitt, 2002), with instantaneous temperature, Ts, as 

the variable which is given as: 

 
4 7 2

s s

10 3

s

0.84071 6.8066 10 8.796 10

2.9261 10 .

sPr T T

T

− −

−

= − × + ×

− ×
(16) 

 

Prs is used in Eq.(15a) to evaluate the Nusselt number. 

The above expression is also used to evaluate Prandlt 

number at ambient temperature. 

Accounting for forced convection arising due to 

motion of the beam, Fig.15 shows the temperature 

variation across the thickness of the simply supported 

beam. The slenderness ratio of the beam is 165. The 

internal heating was 1000.63×10
6
 W/m

3
. It was found 

that the temperature increases as time progresses. 

However the temperature at various points (nodes) 

across the thickness does not vary during the initial 

time period. But as the time progresses a small tem-

perature difference is found to occur between various 

nodes across the thickness of the beam. The static 

displacement monotonously increases but the dy-

namic displacement continuously oscillates about the 

static displacement with increase in amplitude with 

respect to time as illustrated in Fig.16. The static 

thermal moment has exponential characteristics 

which can be observed for a small fraction of time 

during the initial stage and subsequently it increases 

linearly. The dynamic thermal moment continuously 

oscillates about zero with increase in amplitude with 

respect to time as illustrated in Fig.17. In case of 

beam subjected to varying convection, the amplitude 

of dynamic displacement continuously increases with 

time, however, when constant convection is consid-

ered, the oscillations are steady. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
For L/h=165, the characteristic time of the heat 

transfer problem is equal to the characteristic time of 

vibration problem. In case of L/h=200, the charac-

teristic thermal time is less than characteristic time of 

vibration problem. Thus the magnitude of thermal 

oscillations is higher in case of L/h=200 when com-

pared to L/h=165, as shown in Fig.18. As the thick-

ness of the beam increases, the characteristic time of 
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the heat transfer problem increases. Hence, when L/h 

decreases, i.e. 125, 96 and 88, it was observed that 

there were no thermally induced oscillations, how-

ever there exists static thermal deflection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

CONCLUSION 
 

A theoretical analysis was presented on the 

thermally induced vibrations of beams under various 

heat transfer and structural boundary conditions sub-

jected to internal heating. The major observations for 

the case of constant convection boundary condition 

are: (1) With the passage of time the temperature 

increases linearly and the temperature variation 

across the thickness of the beam is almost negligible; 

(2) As the convective heat transfer coefficient is in-

creased there is increase in the amplitude of the 

non-dimensional dynamic displacement; (3) The dy-

namic displacement has lower amplitude in case of 

clamped simply supported beam as compared to the 

other two; (4) The trends of the non-dimensional 

dynamic thermal moment for SS beam is the same as 

the one shown for SS beam with step heating and 

insulated boundary condition, but for CS beam the 

dynamic thermal moment linearly increases with time 

and the dynamic thermal moment for the CF beam at 

the free end is zero. It was also observed that when the 

convective heat transfer coefficient is a function of 

beam motion, the amplitude of dynamic displacement 

continuously increases with time, however, when  

 

 

 

 

constant convection is considered, the oscillations are 

steady. Finally, irrespective of the type of heat transfer 

and structural boundary condition the vibrations oc-

curred in the first mode. 
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Fig.18  Comparison of non-dimensional dynamic and

static mid-span deflection of the simply supported beam

with internal heating and forced convection for L/h=165

and 200 


