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1. Introduction. Dual extremum principles [1] have been used to obtain error bounds for

a wide class of boundary value problems.

In this note, the dual extremum principles are formulated associated with the set of

operator equations of the form

Ljfj ~ Tj*kjTj<pj = in Dp j= 1,2, (1)

with the boundary conditions

<Pj = aj on Tj = 3Dj - T, j = 1,2, (2)

and the interface matching conditions

®i(<P2 - <Pi ~ g) = 0 onr< (3)

a*klTlcp1 - o?k2T2(p2 = h(x, y) on T. (4)

Hereafter, whenever the subscript "j" appears, it should be understood that j = 1, 2

unless otherwise specified. Dj is a closed convex region in R", n = 1, 2, 3, with boundary

9£>;, T = 3D, n 3D2 being the interface. T*\ H" -> HJ on Dj is the formal adjoint

operator of Ty. HJ —> H" on Dj such that

(«. T,v)j = <Tj*u> <?);+("' a/<P)3d,; (5)

a*: H" —* HJ on 9Dj is the adjoint operator of ay: HJ —> H" such that

(w, Ojcp) = (a*, u, cp) on 3Z); (6)

and HJ —> HJ ■ HJ and HJ are Hilbert spaces of functions defined on D; with the

innerproducts ( , )y and ( , );, respectively, and ay and g and h are known functions

defined on the boundary and the interface, respectively. These kinds of problems occur in

many branches of mathematical physics such as heat conduction [2], electromagnetic

theory [3] and fluid dynamics [4], When 7^ = grad, g = 0 and kt is the thermal conductiv-

ity of the medium D-, the problem (l)-(4) reduces to finding the steady state temperature

distribution cp/ in the media which are in perfect contact, h(x, y) being the source function
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defined on the interface [2], The interface problem (1)—(4) reduces to finding the magnetic

vector potential <p in a medium such that the magnetic vector potential and the magnetic

intensity at the interface are continuous when Tt = curl and k~1 is the magnetic permea-

bility of the medium Dr After deriving the bounding functional to the extremizing

functional, an error estimate is obtained for the approximate solution in terms of the

bounding functionals. The theory is illustrated by the steady state heat conduction in a

composite medium and the approximate solution is obtained by the method of Kantoro-

vich [5],

2. Variational formulation. Consider the action functional

2

/(«!, «2,<Pi, <P2) = E ("r Ti<Pi) Wj(uj<<Pj)
7 = 1

+ (o*Uj,<Xj - <Py)r] + (o?uu<p2 - <Pj - g)r - (h, <p2)r (7)

= E [(T/Uj,^- Wjiuj,?;) + (afUj,aj)T\
j= i

+ <<p2, o*ul - o*u2 - h)v - (a*ux, g)r, (8)

where

and

WAur %■) = \ (^+ o' FA%)) (9)

F:'/(%)= J ' fA0 dt-

This leads to

A necessary and sufficient condition for stationary behaviour of I at (up cpf) is that the

Frechet derivatives

4L=4L=o. do)
OUj 0(p.

SW:
rlV, - in D„ (11)

% = aj °n F/) (12)

°i(<P2 - <Pi - g) = 0 on T, (13)

81V,
T*U> = J^mDr (14)

ct*Wj — a*u2 = h on I\ (15)

and
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Equations (11)—(15) are nothing but the canonical forms of the interface problem

described by equations (l)-(4). Hence it is evident that («y, cpf) is the solution of (l)-(4).

3. Dual extremum principles and error estimate. Let (u/,cpJ) be the exact solution of

(1)—(4) so that

81 81 A / \
11 ("/•*■)•

Define two sets of functions

s< - {(«/•»/ <i6»

<17)

Using (7) and (8) form

J(B1,B2) = l(ur,u;,BlfB2), (u*> Bj) G Sj, (18)

and

G(Al, A2) = /(/<!, A2, <p*, <p*), (Aj,<p;)<=S2, (19)

where u* = u*(Bt) and <p* = <p*( Af). We have restricted the action I to the sets S, and S2

to form J(Bt, B2) and G(AX, A2). Each of these two restricted forms of the action is

stationary at the critical point (ur <p.), and because of the way they are constructed, the

stationary results are said to be dual [1], In deriving (19), the existence of f'1 is assumed.

It can be easily shown that

G(A,, A2) < /(«,, u2,<p1,<p2) < J(BX, B2), (20)

if Wf( ur <p;) is convex in u., concave in m and at least one of these is definite.

It is, from equation (9), evident that Wt-(Uj, <p;) is convex in u/ and is definite. The

sufficient condition for WXu,, <p;) to be concave in m is that

-dfj/d<pj> yj>0. (21)

Since the exact solution (m ., <py) is related through the Eqs. (9) and (11) we can take

Ai = W„

where tp- is any function satisfying the constraint

a*klT1\pl — o*k2T2\l/2 = h on Y.

Consequently (20) becomes

G(klTi\pl, k2T2^2) — ipx, ip2) < I(uu u2, <plt <p2) ̂  J( Bx, B2) (22)

and \(/j = Bf will be the exact solution when the equality signs hold. From (22)

J(BX, B2) - ip2) > J(B1, B2) - I(uu u2, <px, (jd2)

2

= L M&) + <€/.- (23)
7 = 1

where and <p/r = tB/ + (1 — 0 < t < 1.
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From (5), (6), and (23) it follows that

2

2[7(fl„ B2) - //(*,. *2)] > I {(Ti*kiT£n */> + <*;• -df^i/dy,)}
7-1

+ (af^iTili, li)r, + (a2*^2^2^2' £2)1%

+ crf^A:!7"j, £,)r — (o*k2T2^2, £2)r

> £(A + Y,)<M,>' (24)
7 = 1

where A is a lower bound to the least eigenvalue of

TfkjTjO, = X0, in DJ (25)

with = 0 on and 0, = d2 and a*k{Tx8x = o*k2T282 on F. Hence the required error

estimate is

||£||2/.,<2[y-//]/(A + Y), (26)

where y = min/ y..

4. Application to steady-state heat conduction in a composite medium. Let D be a region

in the (x, y) plane consisting of two parts Dl and D2. The plane which occupies the region

D is a homogeneous material of thermal conductivity ky. We want to investigate typical

boundary value problems in steady-state heat conduction for the composite medium D

with the source term /,(%), the temperature being prescribed on the boundaries. One

matching condition is obtained by assuming that no sources are created on the interface.

The other condition is obtained by requiring that the temperature be continuous at the

interface, which is reasonable on physical grounds when Dl and D2 are in intimate

contact.

The governing differential equation is given by

Lj(pj = -V • (kjV<Pj) = /,(<?,) in Dj, (27)

with <p; = aj on T; and the matching conditions = <p2 on T and h ■ k1Vyl = h ■ k£7(p2

on T, where n is the unit outward normal vector to T.

The bounding functionals J and G, for /^cpj) = -a2yl + fx(x, y) and /2(<p2) = ~b2<P2

+ g2(x, y), defined by (18) and (19) are given by

2 J(Bj,B2)= f (k^vB,)2 + a2B\ - 2/1(.x, y)Bl} dx dy
JDl

+ j {k2(vB2)2 + b2B2 - 2g2(x, y) B2} dx dy (28)
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and

\P2) = a~2 {(^i)2 + fi(x, y) ~ 2fi(x, y)Ll\pl} dx dy

+ ki/" (Vxpi)2 dx dy + k2 f (V\p2)2 dx dy
jdx jd2

+ b~2f^{(L2*P2)2 + #22(*- y) - 2g2(x, y)L2\p2 J dxdy

-2Lk'-td*-2L">k'ifcds- <29>

In our further calculations we take

£>, = {(x, y)/-1 < jc < 0, -1 < y < \ ), D2 = {(*, y)/ 0 <jc<l,-l<_y<l},

«/ = 0, /,(*, y) =fu{x)fn(y), andg2(x, y) = gu(x)gu(y).

4.1. Minimization of J. Let us assume that the solution BJ is of the product form

Bj(x, y) = m/(x)n(y). (30)

By substituting (30) in (28) we see that J depends upon m-t and n. If we assume that n is

an a priori known function satisfying w(-l) = «(1) = 0, then J, as a functional of mj [5], is

given by

2J{mx, m2) = J"+ Aismi(x) + dx

+ rfBn(~?) + Bi5mKx) + Bi4gn(x)m2(x)\ dx, (31)
dx

where the constants depend upon the assumed form of n(y):

An(") = f^i»2(y) dy, Bu(n) = k2n2(y) dy..

A . 3

A |4

An(»)=J\ki(^) ; Bn(") =/[^j dy,

(n) = C a2n2(y) dy\ Bl3(n) = C b2n2(y) dy,
-l •'-l

(«) = -2 f1 fn(y)n(y) dy, Bl4(n) = -2 gn(y)n(y) dy,
J-1

^is(i) = An + ^13- and Bis = Bn + Bu-

We may determine m/ so that J is minimized. This leads to the following Euler-Lagrange

equations for m ■:

d2fnl 2 A14 s / \ , „ „ „
__ _ ^ = —/„(*), -1 < x < 0,

n\m2 = 4w~gi\{x), 0<*<1, (32)
dx2 '2 2 2 B 11
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with the conditions

mx(-1) = m2( 1) = 0, mx( 0) = m2( 0),

and

dm, dm, . .
kj—— = k2—r— at * = 0, (33)

a.r z ax

where i)] = /l15//lu and = Bl5/Bu.

Maximization of H. Choose the trial function

<Pj(x, y) = tiB.(x, y), (34)

where rj is the unknown parameter to be determined. Substituting (34) in (29) we have

-2//U1^2) = 7)2[/1 + /2]-2t)/3 + /4,

where

Ix=a2( (LXBXY dx dy + kx ( (vBx)~dxdy,
jdx ' JDt

I2 = b2( ( LtB^Y dx dv + k2 ( (vB^)'dxdv,
J d2 " ' jd2

h = a2( fx(x, y)LlBldxdy + b2 f g2(x, y)L2B2dx dy,
JD, J D2

h = "2 ( fi(x, y) dx dy + b2f g;(x, y) dx dy.
•/Di jD2

dH/dt] = 0 leads to r; = I3/Ix + I2.

4.3. Numerical results. Numerical calculations are carried out with kx = 0.18, k2 = 0.14,

/[(.v, y) = g2(x, y) = x and a2 = b2 = 1. The solution of (32) and (33) and the value of 77

for

n(y)= coshW _ 1 M = 3.1379909,
cosh fi

are given by m^x) = p.expfijyjc] + <7 .exp[-rj-.x] + CjX in [-1,0] and [0,1], respectively,

where

p{ = 0.323063133, qx = -0.047463513, p2 = 0.03837185,

q2 = 0.23722777, tj, = 2.906658224, r/2 = 3.167958905,

Cj = -0.850763427, c2 = -0.920835684, tj = 0.9379559949.

The corresponding extremum values of the functionals are found to be

J = -0.09806582, G = -0.20685117.

The lower bound to the least eigenvalue to the corresponding problem is taken to be [6]

A = 0.6908723.

Consequently, the mean square error is given by

||£|t 0.1286735
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and one can improve the estimate by applying a more sophisticated method like the Finite

Element Method.

5. Construction of Green's function. As an example of (1) and (2) with source or sink on

the interface, we consider the one-dimensional heat conduction equation. If there is a unit

sink at the origin and the boundary is kept at zero temperature, the one-dimensional heat

conduction equation is given by [2]

d2(p/dx2 = 8(x), -1 < jc < 1, (35)

with <p(-l) = 0, <p(l) = 0. Note that

(8(x),<p(x)) = lim -[<S(x - t>),<p(jc)> + (8(x + e),<p(x))].
1

e-0

If <p = <p j = 1, 2, 3 in [-1, -e], [-e, e] and [e, 1], respectively, (35) reduces to d2<p./dx2 = 0,

j = 1, 2, 3, in (-1, -e), (-£, e) and (e, 1), respectively, with the constraints

d<Pi( , d<P i/ x 1 d<p3 d<p2 1
rf7(-e)--&w" rf7(e)-2-

<Pi(-£) = <P2(-e); <P3(£) = <P 2(e); <Pi(-l) = <P3(!) = °-

Application of the dual extremum principles leads to

<Pi(x) = - -^(x + 1), -1 < x < -e; (p2(x) = ^-(e - 1), -e < x < e,

and

(jP3(x) = ^"(x — 1), £ < X < 1,

which is the exact solution when £ -» 0.

6. Concluding remarks. Dual extremum principles can be formulated for nonconvex and

multiply-connected domains by subdividing the domain into convex domains and using

the matching conditions on the cuts. Green's function, in two dimensions for the heat

conduction equation, can be constructed by just extending the principle used in the case of

one dimension.
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