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Abstract 
Rate of Penetration (ROP) is one of the important factors influencing the drilling efficiency. Since cost recovery is an 

important bottom line in the drilling industry, optimizing ROP is essential to minimize the drilling operational cost and 

capital cost. Traditional the empirical models are not adaptive to new lithology changes and hence the predictive 

accuracy is low and subjective. With advancement in big data technologies, real- time data storage cost is lowered, and 

the availability of real-time data is enhanced. In this study, it is shown that optimization methods together with data 

models has immense potential in predicting ROP based on real time measurements on the rig. A machine learning 

based data model is developed by utilizing the offset vertical wells’ real time operational parameters while drilling. 
Data pre-processing methods and feature engineering methods modify the raw data into a processed data so that the 

model learns effectively from the inputs. A multi – layer back propagation neural network is developed, cross-validated 

and compared with field measurements and empirical models. 
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Nomenclature 

ROP Rate of Penetration (ft/hr) h Bit wear fraction 𝐴𝑏 Area of bit (in2) 𝑞 Flow rate (gal/min) 

D Hole Depth (ft) DOC Depth of cut (ft/min) 

WOB Weight on Bit (klbs) 𝑏𝑜 − 𝑏6 Regression constants 

RPM Rotation per minute d Diameter of bit (in) 

SPP Stand Pipe Pressure (psi) s Standard Deviation 𝑔𝑝 Pore pressure gradient (lb/gal) n Number of samples 𝑑𝑛 Diameter of nozzle (in) µ Apparent viscosity (Centipoise) 𝜌𝑐 ECD at the bottom (lb/gal) N Number of rotation 𝐷𝐼𝐹𝐹𝑃𝑅𝐸𝑆𝑆 Differential pressure (psi) 𝑎1−8 Constants of Bourgyne model 
 

 

1. Introduction 
The ever-increasing complexity of the wells escalate drilling cost and the focus of the drilling 

industry shifted towards reducing the NPT (Non-Productive time) and ILT (Invisible lost time). 

ILT is caused by under optimized drilling, poor rate of penetration and this inefficiency in the 

drilling operation is estimated to cost 15% of the total well cost (Zakariya et al., 2015). ROP is 

the related to the speed with which drilling takes place and maximizing it under rig and 
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operational environment has always been an objective for the drillers. In the gloomy oil market, it 

has become more imperative than ever to maximize the rate of penetration and reach the drilling 

target in the development wells at a faster pace. 

 

Rate of penetration (ROP) prediction with mathematical models and optimization of the drilling 

variables based on these models has been active area of research. ROP depends on many drilling 

variables and its complex relationships, like the operational parameters, formation properties, 

compressive strength, well hydraulics, borehole shape and size, mud properties, type of bit, hole-

cleaning etc. ROP is the key business performance indicator in the drilling industry and a measure 

of additional contractual incentives. Hence, accurately optimizing it in real time with 

mathematical model has a direct business benefit for the industry. 

 

For rotary drilling process, the ROP model proposed (Bourgoyne and Young, 1974) is considered 

as a comprehensive model for the drilling optimization as it was based on physical behaviour and 

validated with field results. 

 𝑅𝑂𝑃 = 𝑑𝐷𝑑𝑡 = exp(𝑥1+𝑥2𝑎2 + 𝑥3𝑎3 + 𝑥4𝑎4 + 𝑥5𝑎5 + 𝑥6𝑎6 + 𝑥7𝑎7 + 𝑥8𝑎8)                              (1) 

where, 𝑥1−8 represents the effects on ROP and are evaluated by Table 1. 

 

 
Table 1. Bourgoyne and Young Model 

 

Equation Effect 𝑥1= 𝑎1  
 

Formation Strength 𝑥2 = (10000 − 𝐷)  
 

Formation Depth 𝑥3 = 𝐷0.69(𝑔𝑝 − 9)  Formation Compaction / Pore pressure 𝑥4 = 𝐷(𝑔𝑝 − 𝜌𝑐)  
 

Differential pressure 

𝑥5 =  ln (𝑊𝑂𝐵𝑑 − (𝑊𝑂𝐵𝑑 )𝑡 4 −  (𝑊𝑂𝐵𝑑 )𝑡 ) Bit Diameter and Bit weight 

𝑥6 = 𝑙𝑛 𝑁 60 

 
Rotary Speed 𝑥7 = −ℎ Bit Wear 𝑥8 =  (𝜌𝑞)350µ𝑑𝑛 Bit Hydraulics 

 

 

 

Warren and Armagost (1988) developed an imperfect cleaning model to predict the ROP in soft 

formation based on experimental data, dimensional analysis and generalized response curves. A 

case specific model developed for natural diamond bits (Hareland and Rampersad, 1994) is based 

on the assumption that when weight is applied on the drilling bit, it will penetrate a certain depth. 

The length of penetration depends on the cutter size, shape, rock strength and scraping action. 

This kind of bit model which was changed (Motahhari et al., 2010) to suit the PDC 

(polycrystalline diamond compact) bit and to include motor effects. 
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The traditional empirical models discussed above involves a number of constants which needs to 

be evaluated based on field results or experimental methods This results in time consumption and 

cannot be generalized for the entire well resulting in inaccurate prediction (Eskandarian et al., 

2017). The abundance of real time drilling data together with increased big data infrastructure and 

computing resulted in the development of machine learning and non-linear statistical models for 

predicting ROP. Neural network technique involving two parameters namely WOB and RPM 

(Dunlop et al., 2011) was used to optimize ROP. The data models suffer the drawback of 

understanding the physics behind the problem as they are mostly used as black box models which 

was overcome by enabling coupling conditions between neural network and regression analysis 

(Mantha and Samuel, 2016). Weak machine learning predictors are coupled together (ensemble) 

so that an integrated model produce accurate predictions than individual predictors. The data 

modelling by such ensemble methods of machine learning (Hegde and Gray, 2017) can infer 

parameters affecting ROP optimization rather than predicting them. 

 

In the current work, a new model was developed to predict the ROP of adjacent wells by 

performing data analytics and developing an artificial neural network model from the offset well 

real time drilling data. In order to reduce the amount of uncertainties in the drilling scenario, only 

vertical wells drilled with similar BHAs from the same field is considered for the development of 

the model. In order to prove the effectiveness of the model from traditional approaches, the data 

model is compared with traditional models in the field namely the linear regression models and 

Bourgoyne and Young model. The workflow followed for the development of the model involves 

two phases 

a) Data exploration  

b) Model development 

 

The data exploration is the process of transforming and converting the data into a form which 

could be easily handled by the mathematical algorithms for developing an accurate model. The 

second process is a computationally intensive process of choosing the best mathematical 

representations for the features in the dataset. In our work, we made use of the libraries in scikit 

learn – python for the model development process. The overall objective was to use every 

available information in real-time to perform ROP optimization overcoming static pre-drill 

configuration and allowing the use of data driven analytics in the drilling industry. 

 

2. Data Exploration 
The process of data exploration involves data selection, data quality analysis, exploratory data 

analysis and feature engineering. 

 

2.1 Data Selection 
In this study, data from vertical wells drilled in the same onsite field in Asia is used. The real time 

data is collected from drilling data acquisition units on the surface of the rig. It includes weight on 

bit (WOB), rotation (RPM), torque, stand pipe pressure (SPP), differential pressure, hookload 

measurement, hook height measurement, bit depth, flow measurement. These datasets are depth 

indexed sampled at 0.5 ft interval and the three wells used in this study spans a total footage of 

6000 ft. In order to ensure consistency between wells, the wells are so chosen that their static 

parameters namely the drill string configuration, bottom- hole assemblies, mud properties, the 

nature of drill bits, blade counts, drill – bit cutter configurations are the same. These dataset span 

five different types of formation (named 1-5) (rock types) and these formations were drilled with 

12.25-inch diameter bits. As a representation, the instantaneous ROP measurement from Well A 
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on the five continuous formation that it is shown in Figure 1. In general, ROP is a function of 

three overall characteristics. 

 

ROP = function (Operational Parameters, Environmental Parameters, Structural parameters) 

 

Operational Parameters involves the drilling parameters, environmental parameters involve 

formation parameters and structural parameters include the BHA and drill bit configuration. In 

this work, the wells are so chosen that the BHA configuration, drilling bit were the same. It 

ensures that the effect of one variable (structural parameter) is minimized. Moreover, the BHA 

configuration will be constant in a section and may not induce any variance which is essential for 

building an artificial neural network model section-wise. 
 

 

 
 

Figure 1. Well A – Instantaneous ROP measurement 

 

 

2.2 Data Quality Analysis 
Abnormal data can influence the model negatively and may restrict the model in its 

generalization. Suspect data is flagged in the range validation procedure which checks if the 

measurement can be within the limits of rig limitations and acceptable trends. For example, WOB 

can never be zero or negative during drilling in non- mud motor runs. The dataset is tested for 

anomaly by Z-score outlier detection algorithm where a threshold Z-Score of 3 is selected 

(Tripathy et al., 2013) and any data points above this threshold is marked as an outlier and 

excluded from the training data. The dataset is further processed and smoothened by a low pass 

second order Butterworth filter (Selesnick and Burrus, 1998) on high variance curves namely 

RPM curves and the flow curves as shown in Figure 2. These curves showed high magnitude in 

the statistic attribute (standard deviation / mean) as shown in Table 2. 
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Table 2. High variance curves 
 

Parameters Standard deviation /mean 

Torque 0.16 

Stand pipe pressure (SPP) 1.79 

RPM 4.62 

Flow 6.48 

Weight on Bit (WOB) 0.35 

Differential Pressure 0.82 

Hookload (HKLI) 0.06 

 

 

 
 

Figure 2. Smoothening of variables 

 

 

2.3 Exploratory Data Analysis (EDA) 
EDA is the aspect in data analysis that employs a variety of visualization and statistical 

techniques to obtain maximum information from the data and to uncover complex patterns in the 

data. In the well under consideration, the dataset contains five lithology types of varying 

hardness. It is observed from Figure 1 that the number of points for formation 5 is significantly 

lower than other formation types and in order to have a balanced training, formation type 5 was 

not taken into consideration during model building. The inter-relationships between the variables 

can be studied using cross plots as shown in Figure 3 where the regression coefficients between 

the two drilling variables are represented. A regression coefficient closer to 1 represents positive 

correlation and closer to -1 represents negative correlation between the drilling variables. It 

should be noted that when absolute value of the regression coefficient is closer to zero, it means 

that the variables are not linearly correlated and there are chances of higher order correlations or 

no correlation. Hence, these variables are retained in the subsequent model development. It is 

observed that DOC and ROP are perfectly correlated which is an expected behaviour. Similarly, 

the SPP is also correlated by 0.89 with the flow pumps which indicate there was no influx or 

abnormal pressure exhibited by the formation. 
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2.4 Feature Engineering  
Feature engineering is the process to generate better enhancements in the training dataset to 

uncover the underlying patterns in the data and its inter-relationship so that maximum accuracy is 

achieved from the machine learning model. In the current modelling scheme, feature 

augmentation is adopted where adjacent raw measurements are appended to the current 

measurement. For example, new features of flow measurement at the current depth is appended 

with the flow measurements at 0.5 ft, 1 ft, 1.5 ft and 2 ft less than the current depth. Similarly, 

other surface parameters (WOB, TORQUE and RPM) are also augmented to generate a feature 

space of 36 dimensions. Such a scheme is possible because considering the uncertainty scenario 

in the drilling process, the operating parameters at a measured depth will not be at exact depth but 

within a tolerance band. Moreover, the data acquisition system applies transformations functions 

like decimation or filtering on the raw data feed which can potentially induce numerical scaling, 

thereby validating the augmentation process. 

 

 

 
 

Figure 3. Pairs plot between the drilling variables for Well A 

 

 

3. Model Development 

3.1 Data Model 
This section describes the implementation of artificial neural network type of machine learning 

for ROP modelling. Artificial neural network (ANN) are analogous to biological neural system 

consisting of dendrites that carry external impulses to the cell. The cell body processes the 

information and provides an output to the axon which is interconnected to other neurons through 

synapses. Figure 4 show the mechanism of artificial neuron where input channel is analogous to 

the dendrites, cell body to the activation function and axons to the output channel. 
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Figure 4. Mechanism of artificial neuron depicting biological neuron 

 

 

In the modelling scheme, all the drilling parameters mentioned in Table 2 serve as input 

parameters to the neural network together with augmented features and derived features. The 

output of the network is the instantaneous rate of penetration. Hence, the problem is 

mathematically formulated as a classic supervised learning regression problem. The model was 

constructed with a back propagation three layered neural network using scikit learn libraries in  

Python language (Pedregosa et al., 2011). 

 

The dataset of Well A was used with 80% of the input data taken for network training and 20% 

for validation. All the input parameters are normalized so that the input feature space and output 

ROP will fall in the range of zero and unity to avoid numerical scaling issues. The accuracy of the 

data model is demonstrated by root mean square which serves as a metric to score the predictions 

of the ANN model with the expected result. It is given by 

 

RMS Error = 
√∑ 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑2 −𝑦𝑎𝑐𝑡𝑢𝑎𝑙2𝑛                                                                                                                    (2) 

 

The challenges in the design of neural network are to perfectly tune the hyper parameters and to 

make proper choice of activation function so that the network generalizes well and do not 

perform over fitting. The available activation functions with scikit-learn in python module is 

shown in Table 3 which can possibly cause the model to over fit or under fit. 

 

 
Table 3. Activation function 

 

Activation Function Equation 

No-Op Activation 𝑦 = 𝑥 

Sigmoid 𝑦 =  11 + 𝑒−𝑥 

Tanh 𝑦 = 𝑡𝑎𝑛ℎ (𝑥) 

Rectified Linear Unit 𝑦 = max (0, 𝑥) 

 

 

A sensitivity analysis on the activation yielded sigmoid logistic function to have the lowest 

training error as shown in Figure 5. After a number of simulations, the BP network utilized 50 
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neurons in the hidden layer to provide optimum accuracy in the training and validation dataset as 

shown in Figure 6. To avoid overfitting, the general approach is to perform cross validation 

where the structure is tested on a different data set other than the data set upon which it was 

trained. In the current study, a K-fold cross validation technique is employed where the data is 

split in 5 folds. This process is repeated for all the five folds in a completely randomized process 

until all the data is used for training and validation. This is shown in Figure 7 where the accuracy 

of the prediction for the different folds is represented and upon iterations, it is observed that the 

coefficient of determination is consistent across the folds thereby ensuring generalization of the 

model. 
 

 

 
 

Figure 5. RMS error with activation functions 

 

 

 

      
 

Figure 6. Optimum neurons in the hidden layer 
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Figure 7. Comparison of model performance for different folds 

 

 

3.2 Multivariate Regression 
In order to compare the efficacy of the data model, two additional models namely multivariate 

regression and empirical models are taken into consideration. In the regression model, the 

outcome variable is rate of penetration (ROP) and the predictor variables are mentioned in Table 

2. The regression modelling by least square approach is performed using Microsoft Excel 

spreadsheet program. ROP is chosen as the Y-ordinate and the rest of variables are chosen as the 

X-ordinate in the data analysis package of spreadsheet. The analysis on Well A computes 

coefficients (𝑏0 𝑡𝑜 𝑏6) as mentioned in equation 3.2 and this coefficient is applied on Well B 

drilling parameters to predict the ROP on that well. 

 

ROP = 𝑏0 + 𝑏1𝑇𝑂𝑅𝑄𝑈𝐸 +  𝑏2𝑆𝑃𝑃 + 𝑏3𝑅𝑃𝑀 +  𝑏4𝑊𝑂𝐵 +  𝑏5𝐷𝐼𝐹𝐹𝑃𝑅𝐸𝑆𝑆 + 𝑏6𝐻𝐾𝐿𝐼            (3) 

 

3.3 Bourgyne Young Model 
The ROP can be empirically calculated by the Bourgoyne and Young Model with the parameters 

from Table 1 which includes the drilling effects and the corresponding constants. These constants 

are evaluated from drilling measurements obtained from Well A. By adopting similar regression 

procedure similar to the multivariate regression, eight coefficients are computed with one 

constant representing the formation strength as intercept. Due to the non-availability of complete 

data, effect of bit wear and bit weight is neglected in this evaluation. 

 

4. Results and Discussion 
In the prediction phase of machine learning process, the neural network model is applied on the 

drilling parameters of Well B which was drilled with the same drill string configuration to predict 

ROP and compared with the empirical and regression model. It must be noted that the same 

feature engineering techniques applied on the Well A drilling parameters is also applied on Well 

B drilling parameters before model is evaluated with the new data. The plot of actual ROP and 

the predicted ROP for the formation 2 which was under consideration, evaluated by the three 
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models is shown in Figure 8. It is seen that the neural network model predictions are better than 

the other two models as confirmed by the error metrics in Table 4. 

 

 
Table 4. Model performance comparison 

 

Model Root Mean Squared Error (ft/hr) 

Bourgyne Young Model 307.18 

Mutli-Variate Regression Model 251.59 

Neural Network Model 88.36 

 

 

 

    
 

Figure 8. ROP prediction by neural network, Bourgyne and Young model and multivariate regression 

 

 

 

The neural network was also compared with two other machine learning models namely  

a) Support vector regression (SVR), 

b) Random forest regression. 

 

The SVR is based on fitting the observation points as close to the hyperplane and the random 

forest regression is based on fitting the classifying decision trees on the sub-samples and 

averaging to improve the predictive accuracy. It is observed from Figure 9 that prediction from 

these two machine learning models follows the trend of actual ROP. However, the root mean 

squared error from these two machine learning models are high than the neural network model as 

shown in Table 5. This validates the deployment of neural network-based machine learning 

model for estimating ROP from the drilling parameters. 
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Figure 9. ROP prediction by support vector regressor and random forest regressor 

 

 

Table 5. Model performance comparison 
 

Model Root Mean Squared Error (ft/hr) 

Support Vector Regression 142,89 

Random Forest Regression 145.33 

Neural Network Model 88.36 

 

4.1 Optimization 

In this section, the drilling parameters are optimized to achieve the best ROP for a particular 

formation with the aid of neural network model and brute force algorithm. The traditional 

optimization methods tend to approach local maxima instead of the global maxima leading to 

sub-optimal solution. The brute force optimization evaluates every scenario on a sequential basis 

and this is because the variations in drilling parameters is step wise. Moreover, the computing 

facilities on the rig will be sufficient to support such iterative calculations. 

 

As an example, the optimization is achieved by splitting formation type 2 which spans for 600 ft 

into 12 divisions of 50 ft each. The minimum and the maximum of WOB, RPM and flow pumps 

for every division is determined and used as reference limits. The brute force algorithm evaluates 

all the possible combinations of WOB, RPM and flow pumps between the limits with the help of 

a computer program and evaluates the maximum possible ROP. Mathematically, maximum ROP 

can be achieved with maximum WOB, RPM or flow but due to the manufacturing, downhole and 

rig constraints, it may not be feasible. Figure 10 demonstrates the three feature optimization 

where RPM, WOB and flow pumps are optimized for increased ROP. It is seen that there is an 

increase in the ROP for most of the section in consideration and reduction in the surface 

parameters correspondingly as shown in Table 6. 

 

The increase in the ROP translates directly to reduction in the time required to drill the formation. 

Time saved to drill through the formation type 2 can be calculated by dividing the formation span 

by the optimized ROP and this is plotted in Figure 11. For this specific formation, the time save is 

approximately 45 minutes which in turn leads to a significant saving in the drilling cost. 

 

In the practical sense, it is hard to change the surface parameters in seconds or sub-seconds unless 

a computerized and sophisticated control system was used. In order to provide guidance to the 
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driller to change the control parameters to achieve the best ROP, the ROP optimization technique 

is generally recommended over a fixed interval say 50ft, as opposed to the conventional way 

where a fixed operating parameter were used over one type of formation/section. Depending on 

the drilling limitation and the flexibility in the surface handling unit, this interval can be changed. 

Moreover, the best results are achieved in pad wells where there will be consistency in the drill 

string configurations and formation sequence. By providing such options with the help of 

simulations and optimization of this machine learning model, the driller can choose the right 

drilling parameters depending on the practical feasibility at the rig, lithology type and the 

thickness of the formation. 
 

 

Table 6. Percentage decrease in operational parameters to achieve increased ROP 
 

Parameter 

Non-Optimized 

(Actual) Optimized % Change 

WOB 20.20 18.37 -9.02 

RPM 118.80 88.42 -25.57 

FLWPMPS 943.39 822.65 -12.80 

ROP 371.25 423.19 13.99 

 

 

    
 

  
 

Figure 10. Actual ROP and Predicted ROP when optimizing for WOB, RPM, flow (top-left). Change in 

RPM (top-right), flow (bottom-left), WOB (bottom-right) for increase in ROP 
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Figure 11. Time consumed to drill the section 

 

 

5. Conclusion 
This paper demonstrates the practical use of data model and learning methods in drilling 

engineering. Machine learning models are developed to predict ROP along the entire well taking 

into account the surface operational parameters namely RPM, WOB, Flow, Torque and stand pipe 

pressure. The feature engineering technique improved the prediction of the machine learning 

algorithm and accurately extracted the hidden patterns in the field data. This model was extended 

to perform three parameter (WOB, RPM, Flow) optimization to maximize the ROP over a 

specific formation type resulting in an increased ROP by 14 %. Since the implementation of such 

model is simple, this technique could be extended to real-time prediction and optimization at the 

surface of the rig without the need to rely on the downhole parameters. 
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