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Abstract

Various studies suggest that marmosets (Callithrix jacchus)
show behavior similar to that of humans in many aspects. An-
alyzing their calls would not only enable us to better under-
stand these species but would also give insights into the evolu-
tion of human languages and vocal tract. This paper describes
a technique to discover the patterns in marmoset vocalization
in an unsupervised fashion. The proposed unsupervised clus-
tering approach operates in two stages. Initially, voice activity
detection (VAD) is applied to remove silences and non-voiced
regions from the audio. This is followed by a group-delay based
segmentation on the voiced regions to obtain smaller segments.
In the second stage, a two-tier clustering is performed on the
segments obtained. Individual hidden Markov models (HMMs)
are built for each of the segments using a multiple frame size
and multiple frame rate. The HMMs are then clustered until
each cluster is made up of a large number of segments. Once all
the clusters get enough number of segments, one Gaussian mix-
ture model (GMM) is built for each of the clusters. These clus-
ters are then merged using Kullback-Leibler (KL) divergence.
The algorithm converges to the total number of distinct sounds
in the audio, as evidenced by listening tests.

Index Terms: clustering, group delay, segmentation, marmoset
vocalization.

1. Introduction

The common marmoset (Callithrix jacchus) is a species of mon-
keys found in the Northeastern coast of Brazil. Marmosets have
shown behavior close to that of humans in various aspects [1]
and are commonly used for different neuroscience-related re-
searches [2,3]. They have a large repertoire of vocal behaviors.
Also, the lifespan of this species is around 11.7 years, and they
have good reproducibility. All these factors make marmosets
an excellent model for studying vocal production and cogni-
tion [4].

A study showed that marmosets learn the language (calls)
as they grow-up [5]. This study also shows how the type of calls
change as marmosets grow up from infant to adult. In addition
to learning language, the authors in [6] observed that the mar-
moset turn-taking skill, while they communicate, is a vocal be-
havior learned under the guidance of their parents. Marmosets
use different kinds of calls to express anger, fear, aggressive-
ness, submissiveness and to alert other group members during
threats [7]. Analyzing the calls made by marmosets would not
only enable us to understand these species better but would also
give insights into how human vocal tract and languages have
evolved over time.

To understand their language the first step is to identify
and classify different calls made by them. There have been

Copyright © 2017 ISCA

2426

some attempts made to classify the type of calls made by mar-
mosets [4,7-9]. Most of the techniques use hand picked features
for representation and labeled data to train classifiers. Authors
in [7] have proposed a framework wherein features are chosen
automatically. And yet, for the classification task, they have
used different supervised classifiers like naive Bayes, support
vector machine (SVM), decision trees, etc. All the approaches
assume knowledge about the type of calls in the audio file.

Labeling the audio of marmosets vocalization requires skill
and is a time-consuming task. Also, the recorded audio is usu-
ally noisy due to background noise, cage rattling, marmoset
scratching the microphone collar, etc. Different marmosets pro-
duce different variants of the same sound. For example, the
spectrograms of the same call from an infant and an adult look
different [5]. Moreover, there are also some infant specific calls
such as cry, compound cry, and call strings or babbling. There
has been no attempt to segment and label the audio of mar-
moset vocalization automatically. Thus, in this work, apart from
classifying different calls, we attempt to identify all the dis-
tinct calls present in the audio file in an unsupervised fashion.
First, voice activity detection (VAD) is performed to remove
silences and non-voice regions. Group delay based segmenta-
tion [10] is then applied on the output to obtain syllable-like
segments. Individual hidden Markov models (HMMs) are built
for each of the segments using a multiple frame size and mul-
tiple frame rate. This idea is borrowed from [11] where the
objective was to discover the sounds of a language spoken by
the human. The HMMs are then merged iteratively into clus-
ters until each cluster is made up of a large number of seg-
ments. After the HMM-based clustering, one Gaussian Mixture
Model (GMM) is trained for each of the clusters. These clusters
are further merged using Kullback-Leibler (KL) divergence be-
tween GMMs. The algorithm converges to the total number of
distinct sounds in the audio, as evidenced by listening tests.

The rest of the paper is organized as follows: Section 2 dis-
cusses the data collection and pre-processing details. Section
3 describes the proposed approach. Section 4 presents experi-
mental results. Finally, Section 5 concludes the paper.

2. Data collection and pre-proccessing

Marmoset pairs in this study had lived together for at least six
months at the time of experimentation. Two pairs of marmoset,
namely, Enid and cricket, and Johnny and Baby Beans are used
for experimentation. Vocalizations were recorded using com-
mercially available, light weight voice recorders (Penictech,
available on Amazon) mounted on a neck collar or a backpack.
The voice recorder dimensions are 45x17x5 mm and the en-
tire assembly (with backpack or collar) weighs ~9 grams. The
voice recorders have an omnidirectional microphone and a sam-
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Figure 1: A sample illustrating the pre-processing and segmentation of audio. 1(a) Spectrogram of original audio while 1(b) Spectro-
gram after pre-processing the audio. 1(c) Labeled ground-truth for the audio. Figure 1(d) output obtained from GD based segmentation

algorithm.

pling rate of 48 kHz. The data is stored on-board memory with
an 8 GB capacity which allows for several hours of recording.
The data is downloaded after that via an USB interface. The
recordings were performed when the marmosets were habitu-
ated to wearing the collar/backpack. At the time of data collec-
tion, the recorders were placed on a selected pair, after gently
holding the animals and were given treats to minimize stress.
Following recording conditions were performed: both animals
together; one animal (male or female) alternately taken out of
the cage and placed in a transfer booth in the front of the home
cage, where both animals had visual access; finally, both ani-
mals were together. Each epoch or condition lasted for 5 min-
utes, and there was a rest period of 10 minutes between each
epoch. After completion of a recording session, the recorders
were taken off, and the animals were again rewarded with bits
of fruit/marshmallows or similar palatable treats. The .wav files
of voice data were downloaded for post-processing in Audacity
(http://www.audacityteam.org). The constant background noise
present in the signal is removed by using the noise profile in
the signal. Sounds are heavily clipped at some regions leading
to artifacts in the spectrum as shown in the ph region in Fig-
ure 1(a). These artifacts are removed by applying a low-pass
filter with a cut-off frequency of 15 kHz as shown in Figure
1(b). Spectrograms were aligned and were manually annotated
to extract call start, end and type by experts for later comparison
with automated classification and confirming the ground truth.
The spectrograms of the dominant calls used for experiments
are shown in Figure 3.
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Figure 2: Block diagram of complete clustering algorithm.

3. Proposed approach

The flow chart of the proposed approach is shown in Figure 2.
The input marmoset vocalization audio is first processed to ob-
tain the vocalized region using a VAD algorithm. The obtained
voiced segments are further segmented into finer segments us-
ing group delay based segmentation. These finer segments are
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Figure 3: Different calls made by Marmoset

merged in Tier-1 in an iterative manner by training and merg-
ing HMMs. This step yields clusters of finer segments. These
clusters are then further merged in Tier-2, again in an iterative
manner, to get larger clusters of distinct sounds. Group delay
based unsupervised segmentation and a two-tier clustering al-
gorithm are detailed in the subsequent subsections.

3.1. Unsupervised segmentation

As the task is to cluster similar sounds, first the sounds in the
audio file must be segmented appropriately. Segmentation of
sounds under noisy circumstances is a challenging task. Usu-
ally, marmoset vocalization is segmented based on intensity and
duration criteria [4,8,9]. Using a single static threshold may not
suffice to segment a long audio. Also, this type of thresholding
is not adequate for the unsupervised clustering approach that we
pursue in this paper.

To segment the audio, a bottom-up approach is followed
right from VAD to segmentation. First, each frame under con-
sideration is classified as either vocalized or non-vocalized us-
ing short-time energy (STE) and short-time zero crossing rate
(SZCR). Then a duration constraint is applied to combine con-
secutive frames to obtain one segment (VAD segment) which is
either vocalized or non-vocalized. Another duration constraint
is set on the length of the VAD segments. On the vocalized re-
gions (VAD segments), the finer segments to be clustered are
obtained. This segmentation is performed using a group de-
lay based processing on cepstrum obtained from the short-time
energy. This algorithm has been used for segmenting human



speech into syllable-like units [10]. The high-resolution prop-
erty of the group-delay helps in resolving the closely placed
poles in a signal [12]. The group delay segmentation algorithm
is as follows.

1. For the considered VAD segment, compute the STE
function.

2. The STE function is then symmetrized to look like an
arbitrary magnitude function.

3. Inverse Fourier transform of the assumed magnitude
function is obtained which is called as root cepstrum. It
has been shown that the causal portion of a root cepstrum
is a minimum phase signal.

4. Group-delay of the root cepstrum is computed with ap-
propriate window size.

5. The valleys in the obtained function correspond to the
segment boundaries.

The segmentation output is illustrated in Figure 1(d). The sound
tw gets segmented into a set of syllables. The obtained finer
segments are grouped based on the similarity. This is performed
by a two-tier unsupervised clustering.

3.2. Unsupervised clustering
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Figure 4: A two-tier clustering algorithm

Segments correspond to different sound units present in the
audio are obtained. The objective is to group similar sound units
into a cluster. For this, we propose a two-tier merging algo-
rithm. In both the stages, bottom-up agglomerative approaches
are used to cluster similar sounds. The clustering procedure is
illustrated in Figure 4. The example waveform shown in the
figure contains 7 segments. HMMs (M1 to M7) are trained for
each of the segments (S1 to S7). Here, each HMM is trained
using multiple training instances of a segment obtained by mul-
tiple frame rate and multiple frame size. The segments are
merged to form clusters C1 to C4. GMMs (M1 to M4) are
trained using the segments from the respective clusters. This
is performed by maximum a posteriori (MAP) adaptation of the
individual GMMs from a universal GMM trained using com-
plete data. The GMMs are again merged iteratively using KL
divergence score obtained between all pairs of GMMs (clusters)
to from a distinct set of clusters. The algorithm is as follows:
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1. Each segment obtained from GD segmentation is as-
sumed to be one cluster.

2. Train HMMs Hi, Hs, - - - , H,, for each of the clusters
using multiple frame rate and multiple frame size.

3. Calculate the log-likelihood for each segment with re-
spect to all the trained models.

4. Based on the log-likelihood scores, get the 2-best models
for each of the segments [13] [14].

5. Merge the clusters C, and C only if the 2-best mod-
els for any of the two segments are { Ho, Hp } and { Hp,
H,}, respectively. Before merging, the model pairs are
sorted in descending order based on the sum of log-
likelihood scores with respect to the segment of the 2-
best models.

6. If the merged cluster has more than 5 segments, it does
not participate in the merging process anymore.

7. Repeat steps 2 to 6 until no new cluster is obtained.
8. Train a universal GMM using complete data.

9. Train GMMs G, Ga, - - - , Gy, for each of the clusters
by MAP adaptation from the universal GMM

10.
11.

KL divergence is measured between all pairs of GMMs.

Let {r,s} be a pair with the least KL divergence. Let X
and Y be the set of points in the clusters  and s respec-
tively.

Let GG be the GMM to be merged using G, and Gs.
If |[P(X|Gr) = P(Y|Gs)| > |[P(X|G:) — P(Y|GY)l,
the clusters are merged else block the cluster pair from
merging in the subsequent iterations. Where, P(X|G)
is the average likelihood of the set of points X belonging
to the GMM G.

Repeat steps 10 to 12 until no new cluster is merged.

12.

13.

. The final clusters correspond to different sounds present
in the audio file.

4. Experiments and results

For training models, cepstral coefficients of 39 dimension (13
MFCC + 13 velocity + 13 acceleration) are used as features.
They are obtained by applying linear filterbank on the log mag-
nitude spectrum, followed by Discrete cosine transform (DCT).
While computing cepstral coefficients, an analysis window of
1ms with a shift of 0.5ms is used. As the frequency of mar-
moset calls are above 5 kHz, a window size of 1ms will ensure
that there are at least 10 cycles per frame. The window size
also ensures that there are enough number of feature vectors
available for each segment to estimate reliable models. Features
are extracted with 20 different configurations of frame size and
frame rate so that enough number of examples are there to train
HMMs for each of the segments. Frame sizes of 2ms to 10ms
with a step value of 0.4ms with corresponding frame shifts of
0.5ms to 2.5ms with a step value of 0.1 are used. VAD al-
gorithm gives a set of possible regions for which segmentation
is to be performed. Each frame of size 1ms is classified as
vocalized/non-vocalized frame. The thresholds for VAD, as ex-
plained in Section 3.1, are empirically chosen as 0.4 for STE
and 0.01 for SZCR. A VAD region should be at least 5ms long
to consider as vocalized/non-vocalized segment; else it is asso-
ciated with the previous segment. That is when a pair of voiced
regions are disconnected by an unvoiced region with a duration



Table 1: Cluster purity for different sounds on different files

call Cricket Enid Johnny Baby Beans
#seg  #clusters purity || #seg #clusters purity || #seg #clusters purity || #seg #clusters  purity
ph 52 6 0.75 80 5 1.00 16 0 - 11 0 -
ot 70 8 0.67 0 0 - 11 0 - 1 0 -
ek 29 3 0.85 16 2 0.75 0 0 - 4 0 -
tr 54 5 0.80 93 4 0.67 117 9 0.82 102 8 0.76
tw 36 4 0.52 23 3 0.91 150 8 0.83 63 7 0.78
chi 0 - - 0 - - 54 6 0.81 7 0 -
trph 0 - - 0 - - 16 1 1.00 0 0 -
others 14 0 - 0 0 - 0 - - 3 0 -
| Tot/Avg. ][ 255 26 072 [ 212 14 0.83 | 364 24 0.87 [ 191 15 0.77 ]

of bms; they correspond to two different voiced regions. Dif-
ferent calls as shown in Figure 3 of the marmoset are either a
concatenation of syllables (tw, ek) or a single call (¢r, ot and
ph). For the calls of the first kind, the segmentation algorithm
segments at the syllable level. For the second kind, the full
call is obtained as one segment. During the HMM clustering
process, clusters size is restricted to 5 segments to ensure that
the clusters are more or less pure. If an impure cluster is al-
lowed to grow, it tends to attract pure clusters. GMM merging
is used to merge the big clusters obtained from HMM cluster-
ing. By using KL divergence measure, GMMs can be directly
compared. While computing KLLD measure, to maintain the cor-
respondence between the mixture of the GMMs, the individual
GMMs are trained by adapting a universal GMM trained using
all the segments. Ideally, if the clusters are pure, at every it-
eration, the pair with least KLD should merge. The difference
in the average likelihoods before and after merging is used as a
criterion to ensure the merging of pure clusters, as explained in
section 3.2.

The overall clustering results and the quality of clusters for
the 4 files of different marmosets are shown in Table 1. Each
cluster is assigned to a call that has a maximum number of seg-
ments in the cluster. The purity is measured as a percentage
of the true calls across the clusters. One hundred percent (1.0)
purity implies that the clusters of a particular call contain seg-
ments from no other call. It can be seen from the results that
the average purity of the clusters is around 0.75 with the best
average cluster purity of 0.87 for Johnny. Purity is not defined
for calls that are not present in the file and also for the calls
that have no cluster. Not all the sounds are equally available in
one recording instance. For example, 85% of the calls by Baby
Beans are from ¢r and tw.

It can be seen from the table that the total number of final
clusters is more than the number of distinct sounds present in
the audio. Each call has more than one cluster. For instance, the
call ot for the file cricket has 8 clusters. Further investigation of
the clusters reveals that each of the segments in a cluster shares
common characteristics. This is illustrated using the spectro-
grams of 3 calls from the cricket file in Figure 5. Each row in
the figure corresponds to spectrograms of one call. In each row,
first two columns represent segments from one cluster and the
next two columns represent segments from a different cluster.
Thus, two clusters for 3 kinds of calls are shown. The first,
second and third row correspond to the calls o, tw and fr re-
spectively. For the call of, the segments of cluster 1 show one
band in the spectrogram whereas, that of the cluster 2 show two
bands. Similarly, for the call rw, the segments in cluster 2 has a
hook-like structure, which is not seen in cluster 1. For the call
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Figure 5: Spectrograms of calls from different clusters

tr, there are two bands in cluster 1 whereas there are three bands
in cluster 2. There are many such observations on other clusters
and other calls as well. These characteristics may reveal infor-
mation about the conversation or the mood of the marmoset.

5. Conclusions

The objective of this work is to discover the calls in a marmoset
conversation. The marmoset calls are also syllable-like, similar
to human calls. The syllable-like calls are first segmented using
group delay signal processing. Next, the segmented syllable-
like units are individually modeled using HMMs. The obtained
segments are merged using a two-tier agglomerative approach.
The clustered units are found to be similar. Names are asso-
ciated with the clustered units using experts’ information. The
specific characteristics observed among the clustered segments
may reveal some interesting information about the marmoset.
The discovered clusters can also be used to model the dialogue
between different marmosets.
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