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Abstract The study of vibration behaviour of cracked system is an important area of research. In the present work we 
present a mathematical model to study the effect of inclination, location and size of the crack on the vibrational 
behavior of beam with different boundary conditions. The model is based on the assumption that the equivalent 
flexible rigidity of the cracked beam can be written in terms of the flexible rigidity of the uncracked beam, based on 
the energy approach as proposed by earlier researchers. In the present work the Differential Quadrature Method 
(DQM) is used to solve equation of motion derived by using Euler’s beam theory. The primary interest of the paper is 
to study the effect of inclined crack on natural frequency. We have also studied the beam vibration with and without 
vertical edge crack as a special case to validate the model. The DQM results for the natural frequencies of cracked 
beams agree well with other literature values and ANSYS solutions. 

1 Introduction 
The behavior of structures containing cracks is the 
interesting area of research in the light of potential 
developments in automatic monitoring of structure quality. 
The study of influence on eigen-frequencies and modes 
shapes of the structure due to crack is important in many 
aspects. A number of research has been reported their 
work in this area. A crack introduces a local flexibility in 
a system which is a function of crack depth. The 
dynamical behavior of the system and its stability 
characteristics changes due to the flexibility. Here, in this 
work, we have taken the beam structure, specifically the 
Bernoulli-Euler beam is of our interest with appropriate 
boundary conditions. In this paper, the assumption and 
formulation of the model has been discussed in Section 2. 
Section 3 deals with the methodology used to solve the 
governing equation. Case studies are reported in Section 4, 
and the concluding remarks are given in Section 5. 

2 Model 
The variation of the equivalent bending stiffness and 
depth (along the beam length) for a cracked beam are 
obtained using an energy-based model as proposed by 
Yang et.al. [1] to investigate the influence of cracks on 
structural dynamic characteristics during the vibration of 
a beam with open crack. transverse vibration are obtained 
for a rectangular beam containing cracks. Here, we have 
extended the model for inclined crack (Figure 1). 

2.1 Assumptions for the model 

� At the location of the crack the local stiffness got 
reduced due to crack. 

� The change in strain energy due to crack under 
constant load assumption is computed using energy 
balance approach. 

� The equivalent bending stiffness and equivalent depth 
of the beam is obtained by modeling strain energy 
variation along the beam length. 

� Crack is always open during vibration. 

 
Figure 1. Geometry of the inclined edge cracked beam. 
 

For an uncracked beam the strain energy is given by  
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Energy needed for a crack growth of length 'a' is 

given by 
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where, G is the strain energy release rate.  

2.1.1 Vertical edge crack  

For vertical edge crack G is given as, 
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where, K1 is the stress intensity factor of the first mode 
and is given by, 
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where, M is the bending moment of the beam, and 
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where, a/h < 0.6  

2.1.2 Inclined edge crack 

Let the kink angle is defined by α and crack is assumed to
be inclined on an angle β [2],   
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where, k1 and k2 are the local stress intensity factor at the 
tip of the kink and KI and KII are the stress intensity 
factors for the main tilted crack given by equation (2.8-
2.9), (figure(2))
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The coefficients Cij are defined by, 
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Further, if EIc is the bending stiffness of the cracked 
beam, strain energy in the cracked beam can be written as: 
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For the transverse vibration of the long beam, the 
crack is mainly subjected to the direct bending stresses 
and the shear stresses can be neglected; therefore, only 
the first mode crack exists. While the inclined crack 
includes both Mode I and Mode II (mixed type) crack. 
The model defined in section 2 can be defined for vertical 
edge crack by using the strain energy release rate as 
shown in equation (2.3). For inclined crack the equivalent 
stored energy G is the function of both KI and KII
(equation(2.6)). Equation 2.16-2.19 gives the model of 
equivalent approach for vertical edge crack. 

Figure 2. Effect of crack angle on strain energy [2]. 

A similar model has been used for the inclined edge 
crack with the modification in strain energy release rate 
as discussed above. 

2.2 Energy expression 

The stresses/strains are highly concentrated around the 
crack tip, and reach the nominal stress at a location far 
away from the crack. So it can be assumed that the 
increase of strain energy due to crack growth, under 
constant applied moment, is concentrated mainly around 
the crack region. The energy consumed for crack growth 
along the beam defined by [3-4], equation1, (figure (3)).
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for the continuity of the function let, 2)(/)( yaCxB �   
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on expanding the exponential series, and neglecting the 
O(h

2

) terms, we get the final energy function form as, 
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where, the terms A(a,c) and k(a) are determined over the 
beam length for which  
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where, c is location of the crack from one end of the beam. 
Now with the help of equations 2.2-2.5 and 2.14, we can 
obtain, 
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Figure 3. Variation of energy function with crack location for 
a=0.8. 

and by using 2.1, 2.10 and 2.14, together with the 
assumption that the final strain energy in the cracked 
beam is

cc
EUU �� , we get the following relations: 

Modified bending stiffness and height (figures 4and 5)
of the beam is given by: 
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Also, at the position when x=c, we have the following 
relation: 
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2.3 Equation of motion 

For an Euler beam the transverse vibration equation of 
cracked beam is given by, 
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where, � is density and A is the cross-sectional area of the 
beam. 

Figure 4. Equivalent bending stiffness for c/l=0.5, l=10, 
b=1,h=1. 

Figure 5. Equivalent height variation for  c/l=0.5 l=10, 
b=1,h=1. 

Let, w(x,t)=W(x)exp(iωt) , equation (2.21) becomes 
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where, ���  is given by (2.16). Equation (2.22) can be 
rewritten as, 
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3 Methodology (DQM) 
In this section a brief overview of DQM has been 
discussed [5]. It is assumed that a function W(x) is 
sufficiently smooth over the whole domain. The nth order 
derivative of the function W(x) with respect to x at m
number of grid points xi, is approximated by a linear sum 
of all the functional values in the whole domain, that is, 
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where, cij represent the weighting coefficients, and n is 
the number of grid points in the whole domain. Equation 
1 is called differential quadrature (DQ). It should be noted 
that the weighting coefficients cij are different at different 
locations of xi. The weighting coefficients required in DQ 
method as shown in equation(1) are defined recursively 
by equations(3.2-3.5).
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3.1 Grid point Distribution 

The selection of number and type of grid points has a 
significant effect on the accuracy of the DQM results. It is 
found that the optimal selection of the sampling points in 
the vibration problems is the normalized Chebyshev-
Gauss-Lobatto points [5]. 

4 Case Studies 

The Model discussed in this paper has been used for 
different cracks and boundary conditions. The governing 
equation of motion (equation(2.23)) has been transformed 
into a discrete eigen value problem with the help of DQM  
as given in equations 3.1-3.5. Also the ANSYS models 
has been used to compare the solution. Figure 6 shows an 
ansys model of actual vertical edge cracked beam, while 
figure 7 depicts the equivalent cracked model of the beam. 
The inclined edge cracked model of the beam is shown in 
Figure 8. Table 1-2 shows the numerical results obtained 
for uncracked beams by using our model as a special case. 
While in table 3 the effect of crack location on frequency 
has been shown. Tables 4 and 5 compares the effect of 
crack angle on frequency parameters for clamped and 
fixed boundary conditions. In table 6 the effect of 
orientation of crack has been shown for clamped beam.  

Figure 6. Vertical U-notch crack in beam ANSYS. 

Figure 7. Equivalent vertical edge cracked in beam ANSYS.

Figure 8. V-notch Inclined edge cracked in beam (45O) 
ANSYS. 

Table 1. Comparison of frequency parameter for uncracked 
simply-supported beam for E=2.16GPa, ρ=7650kg/m3

, l=0.4m, 

b=h=0.01m.

Frequen
cy (Hz)

Experime
ntal ANSYS DQM

Ref.[6]

20 
Node 
Brick 
Eleme

nt

Beam 
Eleme

nt
2D

Plane 
Stress 
with 

Thickn
ess

Plan
e

stres
s

with 
ʋ=0.

3

15
Grid 
Point

I 151.5 150.4
4

150.5
5 150.46 157.

69
150.5

93      

II 602.5 599.9
2

601.7
5 600.26 628.

69
602.3

73
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Table 2. Comparison of frequency parameter for uncracked 
cantilever beam for E=70GPa, ρ=2710kg/m3

, l=800mm, 

b=60mm, h=6mm 

Frequen
cy (Hz)

Exper
i-

menta
l

ANSYS DQM

Ref.[7
]

20 
Node 
Brick 
Eleme

nt

Beam 
Eleme

nt
2D

Plane 
Stress 
with 

Thickne
ss

Plane 
stress 
with 
ʋ=0.0

10
Grid 
Point

I
8.021

7 7.7486 7.6969 7.7003 7.696
6 7.6969

II
50.25

6 48.539 48.232 48.245 48.22
3

48.375
3

III
141.1

3 135.92 135.04 135.03 134.9
8

139.43
64

Table 3. Effect of crack location on vertically edge cracked 
simply-supported beam for E=2.16GPa, ρ=7650kg/m3

, l=0.4m, 

b=h=0.01m.

Frequency (Hz) a/h=0.1 Experimental 
Ref.[6] 

DQM
26 pts 

I
c/l=0.2 151.2 150.49 

II 599.8 597.42 

I
c/l=0.3

150.5 150.59 

II 604.2 601.03 

I
c/l=0.5

149.2 147.17 

II 599.8 599.21 

Table 4. Comparison of frequency parameter for inclined (30O)
edge cracked cantilever beam for E=70GPa, ρ=2710kg/m3

,

l=800mm, b=60mm h=6mm, c/l=0.40, a/h=0.20.

Mode ANSYS Experimental 
[7] FEA DQM

ʋ=0.0 ʋ=0.346
I 7.6799 7.6795 7.8200 7.6925 7.5137

II 47.282 47.061 49.5900 48.542 51.5731

III 128.25 126.87 138.41 135.68 136.371

Table 5. Effect of crack inclination on frequency parameter for 
fixed beam for E=2GPa, ρ=7850kg/m3

, l=10m, b=h=1m, c=5.0, 

a=0.4 ʋ=0.3.

An
g-
le

Actual Crack 
Model 

ANSYS

Equivalent Crack 
Model

ANSYS
DQM Model

I II III I II III I II III
30

o
7.8
140

42.
168

129
.60

8.0
250

47.
193

129
.89

7.9
591

43.4
381

122.
493

45
o

7.7
651

42.
004

120
.63

7.8
393

41.
862

119
.66

6.7
952

41.9
609

118.
747

60
o

7.7
110

41.
526

129
.28

8.1
002

48.
903

129
.91

7.3
828

45.8
426

129.
004

Table 6. Effect of crack orientation about the crack tip on 
frequency in fixed beam  for E=2GPa, ρ=2700kg/m3

, l=10m, 

b=h=1m, c/l=0.5, a/h=0.4 ʋ=0.3. 

Angle Left side inclination Right side inclination
I II III I II III

0o 4.1918 22.803 69.921 4.1918 22.803 69.921
15o 4.1895 22.761 69.909 4.1889 22.758 69.915
30o 4.1892 22.737 69.882 4.1873 22.736 69.898
45o 4.1870 22.649 69.822 4.1806 22.646 69.850
60o 4.1297 20.664 67.677 4.1578 22.391 69.710
75o 4.0963 22.525 67.156 4.0518 21.359 68.808

5 Conclusion 
The model discussed in this paper has been used to find 
the effect of inclined crack on beam vibrations. The 
governing equation of motion is solved by using 
Differential Quadrature Method using Chebyshev’s 

collocation points. It has been observed that the model 
gives optimum results for different types of boundary 
conditions. The applicability of the model has been 
obtained by the comparing the results with ANSYS actual 
crack model and ANSYS equivalent crack model for two 
types of crack (i) inclined crack and (ii) vertical crack. 
The results are also compared with the uncracked beam. 
The comparative study justify and validate the model.  
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