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Low fidelity model assisted design optimization of turbomachines has reduced the total computational and experimental costs.
These models are called surrogate models which mimic the actual experiments or simulations. The surrogate models can generate
thousands of approximate results from a few samples, making it easy to locate the optimal solution. Ample articles reported
surrogate assisted design optimization of centrifugal pumps. In this article, the authors try to give a brief overview of the surrogate
based optimization technique along with its historical applications and trend of the recent use. The various key design parameters
which affect the performance of the centrifugal pumphave also beendiscussed.The effectiveness of the surrogate based optimization
technique and corresponding performance metrics have been discussed.

1. Introduction

A centrifugal pump is a type of rotodynamic pump, which
has two basic components, i.e., impeller, a rotary part, and
a volute casing, which is a stationary part (Figure 1). The
impeller adds kinetic energy to pumping fluid and the volute
casing converts kinetic energy into pressure energy. The
complexity of the internal flow in the pump is due to the
sudden entrainment of fluid at the eye of the impeller, flow
separation, reverse flow, and cavitation formation. Some-
times, strong swirl and adverse pressure gradient at the
suction and pressure side of the impeller blade causes inlet
recirculation and flow separation in the flow passage. This
phenomenon is severe at off-design working condition of a
centrifugal pump [1–7]. The flow physics inside the blade
passage can be analyzed by simulating the complex pump
domain either experimentally or computationally which help
to understand the performance of the impeller at both design
and off-design conditions [8–16].

The optimization of the centrifugal pump has been
carried out since 1940s with the help of experimental tech-
niques [17, 18]. Advancement in computational facilities has

further improved the optimization techniques. Now, in recent
decade, the use of surrogate base optimization techniques has
emerged as a new technique with has capability of handling
large design parameters for the optimization (Table 1). The
centrifugal pump design optimization with objectives to
improve head and efficiency is influenced by several design
parameters such as the number of the blades, inlet and exit
blade angles, wrap angles, blade profile curves, which has
been discussed later in this paper. So, a proper understanding
of design parameter and handling a larger number of design
parameters can give better optimized designs.

In this paper, a review is made to understand surrogate
assisted optimization techniques for centrifugal pump. The
robustness and ease of using surrogatemodels with computa-
tional simulations are discussed alone with the major design
parameters which affect the pump performance.

2. A Brief of Surrogate Models

The surrogate models such as response surface approxima-
tion (RSA), radial basis neural network (RBNN), kriging
(KRG), and support vector machine (SVM) are low fidelity
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Figure 1: Basic components of centrifugal pump.

regression models constructed using data drawn from high-
fidelity models. It provides fast approximations of objectives
and constraints at newdesign pointsmaking the optimization
studies easy and feasible. This technique has already been
used in the area of aerospace systems, medical science,
business management, and transportations but using it in the
area of engineering design has recently been adopted [19–27].
The various types of surrogate models are described below.

2.1. Response Surface Using RSAModel. The response surface
approximation method (RSA) is a statistical method to
explore the relationship between variables and objectives.
This method was invented by Box and Wilson [28], later
a procedure for tracing polynomial function for discrete
responses given by Myers and Montgomery [29]. This poly-
nomial function represents the relationship of the objective
function with the design variables. Suppose an objective
function (𝑦) which can be expressed as

𝑦 = 𝐹 (𝑥1, 𝑥2) + 𝑒 (1)

If we need to express the response surface in terms
of linear equation using statistical method i.e., first-order
model, then (1) can be written as

𝑦 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑒 (2)

And if there is a curvature in the response surface, then
the second-order model of higher order polynomial can be
used such as

𝑦 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎11𝑥211 + 𝑎22𝑥222 + 𝑎12𝑥1𝑥2 + 𝑒 (3)

This can also be represented as second-order polynomial, i.e.,
as the response function,

𝑦 = 𝑎0 +
𝑛∑
𝑗=1

𝑎𝑗𝑥𝑗 +
𝑛∑
𝑗=1

𝑎𝑗𝑗𝑥2𝑗 +∑
𝑛∑
𝑖 ̸=1

𝑎𝑖𝑗𝑥𝑖𝑦𝑗 + 𝑒 (4)

where 𝑛 is the number of design variables and 𝑥 and 𝑎
are the regression coefficients which can be calculated as
(n+1)×(n+2)/2.
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Figure 2: Pareto optimal front (Siddique et al. 2017).

The RSA was used by Wahba and Tourlidakis [30] to
design the design of blade profiles for centrifugal pump.
Kim et al. [31] optimized the centrifugal pump impeller
by generating response surface using design of experiment
(DOE), i.e., to improve the total efficiency at design flowrate
by changing incidence angle and exit blade angles. Table 2
shows their results i.e., comparison of optimized design with
the base design.

2.2. Kriging Model (KRG). The KRGmodel [32] is one of the
surrogate models which are being frequently used to apply
in optimization problems either for single or multiobjective
optimizations. The kriging (KRG) model in a geostatistics
based approximation function which works on the weighted
superposition of basic functions (Gaussian function). The
KRG can be expressed as an unknown function 𝐹(x) given
by

𝐹 (x) = 𝑦 (x) + 𝑚 (x) (5)

where 𝐹(x) is an unknown to be estimated and 𝑦(x) is known
a global function usually a polynomial representing the trend
over the design space and 𝑚(x) represents a local deviation
from the global model. The details can be found in Martin
and Simpson [32].

The kriging model base optimization performed by Sid-
dique et al. [33] shows improvement in total head rise by
varying inlet blade angles, exit blade angles, and controlling
the shape of a centrifugal pump impeller. Figure 2 is showing
the Pareto optimal front obtained fromKRG surrogatemodel
with cluster points, andTable 3 showsCFDvalidation of those
cluster points.

2.3. Radial Basis Neural Network (RBNN). The RBNN is
a two-layered network (Chen et al. 1991) consisting of a
hidden layer of radial basis neurons and an output layer
of linear neurons. Such a network is characterized by a set
of inputs and a set of outputs. The radial basis functions
act as processing units between the input and output. The
hidden layer performs a nonlinear transformation of the
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Table 1: The optimization techniques and design parameters for centrifugal pump optimization presented by previous researchers.

Paper Year Optimization technique Design parameters
Fischer K 1946 Experimental Exit blade angles
Acosta and Bowerman 1956 Experimental Exit and inlet blade angles
Varley F.A 1961 Experimental Number of blades, exit blade and inlet blade angles of the impeller
Khlopenkov 1982 Experimental Splitter blades, outlet blade angles of the impeller
Wahba and Tourlidakis 2001 Genetic algorithm assisted CFD Bezier curves used to control impeller blade flow passage
Goto et al. 2002 Numerical and experimental meridional shape of the impeller
Golcu et al. 2006 Experimental Splitter length, number of blade
Luo et al. 2008 Numerical computation Inlet blade angles
Ardizzon and Pavesi 2005 Numerical computation Inlet blade angles, number of blades of the impeller
Kim et al. 2009 Surrogate assisted CFD Sweep angle of hub, sweep angle of shroud, inlet and exit blade angles.
Savar et al. 2009 Experimental Impeller trimming
Bonaiuti and Zangeneh 2009 Surrogate assisted CFD Sweep angle, blade profile shape and axial length of the impeller
Liu et al. 2010 Numerical and experimental Number of blades of the impeller
Westra et al. 2010 Experimental and CFD Shape of inlet blade profile

Safikhani et al. 2011 Surrogate assisted CFD Leading edge angle, trailing edge angle and stagger angle of the
impeller

Li, W.G 2011 Numerical computation Exit blade angle of the impeller

Kim and Kim 2012 Surrogate assisted CFD
vane length ratio, diffusion area ratio, angle at the diffuser van tip, and

distance ratio between the impeller blade trailing edge and the
diffuser vane leading edge

Shojaeefard et al. 2012 Numerical computation Exit blade anlge and width of the impeller
Zhou et al. 2012 Experimental and CFD Different shapes of the diffuser
Sanda and Daniela 2012 Numerical computation Number of blades, inlet and outlet blade angles of the impeller

Derakhshan et al. 2013 Surrogate and artificial bee
colony algorithm assisted CFD

Hub diameter, suction diameter, impeller diameter, impeller width,
inlet and outlet blade angles

Tan et al. 2014 Numerical computation Wrap angle of the impeller

Zhang et al. 2014 Surrogate assisted CFD and
experimental Blade profile shape of the impeller

Yang et al. 2014 Numerical computation Gap between impeller tip and volute tongue
Cavazzini et al. 2014 Numerical and experimental splitter blade length
Zhang et al. 2015 Surrogate assisted CFD Blade profile shape of the impeller

Pei et al. 2016 Surrogate assisted CFD Shroud arc radius, hub arc radius, shroud angle and hub angles of the
impeller

Wang et al. 2016 Surrogate assisted CFD Inlet, wrap and exit blade angles of the impeller
Siddique et al. 2016 Surrogate assisted CFD Inlet blade angles and blade passage profile

Xu et al. 2016 Surrogate assisted CFD Blade wrap angle, blade angles at impeller inlet and outlet, blade
leading edge position, and blade trailing edge lean

Bellary and Samad 2017 Surrogate assisted CFD Inlet and exit blade angles of the impeller

Wang et al. 2015 Surrogate assisted CFD Diffuser inlet diameter, inlet blade width, diffuser inlet angle and
wrap angle

Guleren 2018 Genetic algorithm assisted CFD Relative diffuser vane angle, number of diffuser vanes, number of
impeller blades, and the impeller wrap angle
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Table 2: Comparison of optimized design results with base design
[31].

𝛽1h 𝛽1s 𝛽2 Efficiency
Optimization model(CFD) 11 4.5 29 97.98
RSA estimated value 11 4.5 29 98.07
Base design model (CFD) 3 3 22 97.72
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Figure 3: A radial basis neural network.

input space to an intermediate space using a set of radial
basis units, the output layer, and then implements a linear
combiner to produce the desired targets. Figure 3 shows
a radial basis neural network design. Mathematically, the
function approximation using radial basis neurons can be
expressed as

ℎ (𝑥) = 𝑁∑
𝑗=1

𝑤𝑗𝜑𝑗 (6)

where ℎ(𝑥) is the target function,𝜑 is basis function, and𝑁 is
the number of radial basis neurons. Generally, a bias term “𝑏”
is added to the weights in the linear layer. The basis function
𝜑 can be expressed as

𝜑 = exp(−(𝑥 − 𝑐)2𝑟2 ) (7)

where 𝑐 is the center of the radial basis neuron and 𝑟 is some
parameter of the Gaussian function. The value predicted
in the network is stored in the weights, obtained through
training patterns.The network training is performed by using
some suitable error estimation procedure. For example, the
MATLAB function newrb depends on two parameters to
design a RBNN network, the spread constant (Sc), and error
goal (EG).Thenetwork training is performed by adjusting the
cross-validation error by changing the spread constant (Sc).
Usually, the error goal (EG) is set to default value (equal to 0).
The main advantage of using the radial basis approach is the
ability to reduce the computational cost owing to the linear
nature of radial basis functions.
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Figure 4: Convergence of surrogate model (RBNN) compared with
CFD (Derakhshan et al. 2015).

The fast converging of surrogate based approximation
depends on evenly distributed samples in the entire design
space. Figure 4 shows the convergence of an approximate
design solution predicted by surrogatemodel RBNNwith the
CFD results.

2.4. Support Vector Machine (SVM). The SVM surrogate
model is a supervised machine learning algorithm used for
both classification as well regression. It was first introduced
by Vapnik [38] and further extended by several researchers
[39–42]. The SVM is primarily an informal method that
performs classification tasks by constructing hyperplanes in
a multidimensional space separated by different classes. This
makes the SVM robust while handling sparse and noisy data.

2.5. Weighted-Average Surrogate (WAS). A large number of
design variables need a large number of sample designs,
which increases the total optimization time. So, a surrogate
base technique has been adopted by several researchers to
mimic the high-fidelitymodel and give a reliable approximate
optimum solution in a short period time [44–46]. Further,
the reliability and robustness can be improved by using
multiple surrogates as surrogates are problems dependent.
Goel et al. [46] introduced a multiple surrogate techniques
for handling problem from a different discipline which has
improved the robustness and reliability of the surrogate
approximation. Averaging the surrogate models can generate
a new type of approximation model called weighted-average
surrogate (WAS) model, which can reduce the effect caused
due to bad surrogate predictions.There are different methods
to findweights (𝑤) for a surrogate [46]. One of the commonly
used weights method is based on global data selection by
considering the magnitude of the errors. This weighting
scheme can be expressed as

𝑤𝑖 = ∑
𝑚
𝑗=1,𝑗 ̸=𝑖 𝑒𝑗

(𝑁 − 1)∑𝑚𝑗=1 𝑒𝑗 (8)

where 𝑒𝑗 is the global database error measured at the jth
surrogate model. The best fitted surrogate models among the
mth models will give least error, i.e., 𝑒 close to zero give weight
to that surrogate close to 1.

3. Optimization Procedure

Design optimization is a method to solve design problems
to obtain a superior design. The decision making for an
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Table 3: Validation of surrogate predicted points (Siddique et al. 2017).

Model C.P 𝜂surr 𝐻surr 𝜂CFD HCFD 𝜂CFD-𝜂POD HCFD-HPOD RMSE

KRG

A 64.83 5.74 64.81 5.75 -0.02 0.01 0.01
B 64.76 5.76 64.84 5.74 0.08 -0.02 0.06
C 64.72 5.76 64.93 5.74 0.21 -0.02 0.15
D 64.71 5.77 64.40 5.64 -0.31 -0.13 0.24
E 64.55 5.78 64.43 5.64 -0.12 -0.15 0.13

Problem definition

CAD modeling and meshing

Numerical simulation and its experimental
validation

Design of Experiments
(DOE)

Numerical simulation at sample
points and data base building

Data regression using Surrogates

Generating POF through NSGA-II,
creating cluster points

Validation of Cluster points
using CFD

Optimal
POF

Is RMS
error

minimized?

Yes

No

Figure 5: Flowchart of multiobjective optimization.

alternative design is based on engineering and economic
feasibility. The procedure followed during surrogate based
design optimization is shown through a flowchart in Figure 5.
The first step is to define the problem statement which
includes formulations of the problem, deciding the number
of design variables, objective functions, and constraints if any.
The design variables and their design space are created in
design of experiment (DOE) step through literature survey
and performing simulation at extreme design points. Later,
sampling of designs and simulations to build data base
are followed by CAD modeling, meshing, and numerical
simulation validation. The database built from the responses
of the sample design is used to train surrogates and a region
of feasible solutions is obtained.These feasible solutions form
a Pareto optimal front (POF), again validated at clustered

points. If the approximate POF points converge with the CFD
results, then we get the final optimal POF or else, DOE step
is repeated.

3.1. Design of Experiment (DOE). The design of experiments
(DOE) is the most important step in a surrogate based
optimization method. The DOE helps to create a system-
atic method of determining the relationship between the
objectives and variables. Sample designs are created within
a design space to find responses of design variable to build
response surface. Further, the response surface plots are used
to obtain the optimum design point. There are different
sampling techniques available in DOE such as random
sampling, full factorial sampling, Latin hypercube sampling,
and orthogonal sampling. Table 4 is showing design space and
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Table 4: Design space and range selection for design variables [43].

Design variable From(o) To(o) Selected values for modeling
𝛾 110 190 110, 130, 150, 170, 190
𝛽1h 60 89 60, 74.5, 89
𝛽1s 46 75 46, 60.5, 75
𝛽2 59 72 59, 65.5, 72

Table 5: Samples created using LHS [44].

S.No 𝛽2𝑜 Δ𝛽o 𝛾𝑜
1 20.0 9.0 146
2 20.2 5.8 126
3 20.5 7.9 150
4 20.8 6.3 128
5 21.1 5.5 120
6 21.3 6.6 132
7 21.6 5.2 134
8 21.8 5.0 144
9 22.1 6.8 136
10 22.4 7.1 142
11 22.6 8.7 124
12 22.9 8.4 130
13 23.2 7.6 138
14 23.4 7.4 140
15 23.7 6.1 148

design levels for four different variables such as thewrap angle
(𝛾), Inlet blade angle at hub (𝛽1h) at shroud (𝛽1s) and at exit
(𝛽2). Further improvement inDOE is creating sample designs
using Latin hypercube sampling method (LHS) which is
a statistical method for generating random sample design
frommultidimensional distribution.The initial sampling size
affects the distribution on surrogate construction using LHS
sampling method [47, 48]. Table 5 shows random distributed
sample designs for three variables such as exit blade angle
(𝛽2), average inlet blade angle (Δ𝛽), and wrap angle (𝛾).
3.2. Multiobjective Optimization. The multiobjective opti-
mization (MOO) problems deal with more than one objec-
tive function of which all may be simultaneously either
minimized or maximized or one minimized and the other
maximized. These types of problems often conflict with each
other because improving one can degrade another.Therefore,
for this type of problem, no single optimal solution can be the
best for other objectives [30, 43]. For solving these types of
problemswheremany solutions exist within the design space,
a set of nondominated solutions known as Pareto optimal
solutions is generated and the curve joining these solutions
is known as Pareto optimal front (POF) [49].

The nondominated genetic algorithm (NSGA) was first
used by Srinivas and Deb [50] for an MOO to search the
feasible solution. The NSGA is an evolutionary search algo-
rithm inspired by the biological evolution such as inheritance,
mutation, selection, and crossover. The NSGA differs from

simple GA by the ways of selection operator works; the
other operators such as crossover andmutation remain same.
The limitations of using NSGA were its high computational
complexity of nondominated sorting, lack of elitism, and the
need for specifying the sharing parameter which increases
further complexity. Later, the upgraded version NSGA-II
is proposed by Deb et al. [51] which improves in finding
the diverse set of solutions and converges quickly. NSGA-
II replaces sharing function approach with a crowded com-
parison approach that eliminates the limitations of NSGA.
The crowded comparison operator is defined after defining
the density-estimation metric which is calculated by an
average distance of two points on either side of the objective
functions. The crowded comparison operator assists the
selection process in every stage of the algorithm toward a
uniformly spread out POF. NAGA-II also works better for
the constrained based multiobjective optimization in view of
solving practical problems.

4. Application of Surrogate in Centrifugal
Pump Optimization

A set of papers contributed to design optimization of cen-
trifugal pump to enhance their performances via surrogate
models. Centrifugal pump impeller shape optimization by
modifying inlet blade, exit blade, and wrap angles has shown
improvement in the performance of pump.The performance
improvement can be observed by both extending the blade
leading edge and applying much larger blades angle. The
larger inlet blade angle also improves the cavitation per-
formance of the pump as shown in Figure 6 [34]. An
investigation done by Bellary and Samad [52] shows that
exit blade angle together with surface roughness influences
the head, shaft power, and efficiency of the impeller while
pumping different liquids. The wrap angle is also a sensitive
parameter toward an objective function to maximize head
when splitter blade is introduced in the flow passage [53].
By manipulating blade camber line using cubic Bezier curve
changes blade loading coefficient and a smooth camber
line guarantees improvement in the hydraulic performance
of pump as shown in Figure 7 [35]. An investigation by
Zhou et al. [54] shows the effects of different splitter blades
on velocity distributions and pressure distributions along
the flow channels and hydraulic performance of centrifugal
pumps. Their result shows that a properly placed splitter
blades by choosing suitable design factors can improve the
flow in the pump and enhance its hydraulic performance.

Surrogate models used to optimize the shape of diffuser
of a centrifugal pump were presented by [55–57]. Kim et al.
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Figure 6: (a) Meridional configuration of test impellers; (b) and (c) cavitation performance for the test pump [34].
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Figure 7: (a) Pressure (b) loading coefficient on blade surface of the original and redesigned impellers in mid-span [35].

[55] selected vane plane development as design parameters to
improve the performance of pump using CFD and response
surface methods. Kim and Kim [58] analyzed and optimized
vaned diffuser in a mixed flow pump. The optimization
process was based on radial basis neural network to enhance
the performance of pump at high flow regions. The radial
diffusers can improve the flowuniformity in pumps and affect
the performance of centrifugal pump directly [57].

The pump performance is greatly affected by viscosity
of the fluid pumped. In recent decades, the effect of surface
roughness on the performance of centrifugal pump has been
studied experimentally as well as numerically by several
authors [5, 59–62]. Bellary and Samad [61] study on pumping
crude oil using centrifugal pump shows that combined effect
of an increase in exit blade angles and surface roughness
can increase head with negligible increase in efficiency. The
correlations developed using a polynomial regression (PR)
model by Mrinal et al. [63] helped to predict the head
and efficiency of centrifugal pump while pumping non-
Newtonian slurries.

The surrogate based optimization has greatly improved
the performance of low specific speed pumps such as axial,

centrifugal pumps for pumping blood [64–67]. A CFD and
surrogate models based blood damage models for shear
induced hemolysis where generated describing thrombosis
potential and also helped design improvement [64]. Frazier
et al. [66] study shows that the optimization using response
surface has changed the pressure gradient at pump flowrates
and improves normal flow imbalances between the pul-
monary and systemic circulations. There is a great potential
to improve the pump design used in cardiovascular systems
using flow simulations assisted with surrogate models.

The several types of surrogate models used by previous
authors have been summarized in Table 6. A series of
researcheswas carried out using single andmultiple surrogate
models to improve the performance of the centrifugal pump.

5. Key Design Parameters

Previous researches show that there are several design param-
eters which can be used to optimize the performance of
the centrifugal pump (Table 1). These parameters are either
dependent or independent of each other and affect the
pump performance. Also, there are few parameters which are
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Table 6: Previous papers on application of surrogate for optimization of centrifugal pump.

Paper Year Contributions

Kim et al. 2009 Optimization of centrifugal pump impeller using response surface method and improved pump
performance.

Safikhani et
al. 2011 Optimized centrifugal pump using polynomial neural networks, multi-objective genetic algorithms.

Kim and Kim 2012 Optimized vaned diffuser design of a pump using radial basis neural network model.
Derakhshan
et al. 2013 Optimizated design of a centrifugal pump using artificial neural network and artificial bee colony

algorithm.

Zhang et al. 2014 Optimization of a centrifugal pump vibration by integrating Kriging surrogate model, FSI
simulation and experimental tests.

Pei et al. 2016 Optimized at three different flowrates using response surface function to improve performance of a
centrifugal pump impeller.

Siddique et
al. 2016 Optimized centrifugal pump using Kriging assisted computer based optimization to improve head

and efficiency of a centrifugal pump.
Wang et al. 2016 Compared different surrogate models to optimize the centrifugal pump.

Bellary et al. 2016 Optimized two centrifugal pumps with different specifications with the help of multiple surrogate
models.

Zhang et al. 2017 Optimization design of multiphase pump impeller based on combined gentic algorithm and
boundary vortex flux diagnosis.

Wang et al. 2017 Optimization of the diffuser in a centrifugal pump by combining response surface method with
multi-island genetic algorithm.

Shim et al. 2018 Kriging based approximation for optimizing three objective function to improve the performance of
a centrifugal pump.

Mrinal et al. 2018 Polynomial regression model developed to predict head and efficiency of a centrifugal pump while
pumping slurry.

highly sensitive to the objective function, while some are less
sensitive. Shape optimization of impeller results in optimized
shape with the highest efficiency without compromising
the head or total pressure rise [68–71]. The various shape
optimization parameters along with the objective functions
are shown in Figure 8.

The inlet blade angles are one of the sensitive parameters
which influence the performance of a pump Beveridge and
Morelli [72].The experimental investigation of the centrifugal
pump using hydrodynamic and photographic technique was
conducted by them to show the effect of inlet blade angles
on the performance of the pump. The performance drop due
to recirculation and shock losses at the eye of the impeller
was studied byAcosta (1952). Later optimization by fixing exit
blade angles and varying inlet blade angles was carried by
Acosta and Bowerman [18] through experiments. They also
presented performance drop due to the sudden entrance of
fluid which causes recirculation. Ardizzon and Pavesi [73]
presented an optimum incidence angle in centrifugal pumps
using the theoretical method. The action of the counter-
rotating vortex and of the blade camber was analyzed using
an algorithm to evaluate an optimum incidence angle. The
influence of Reynolds number is mild on the velocity profile
due to inlet blade shape [33, 74].

The exit blade angle is an important design parameter
which increases the peripheral velocity [17]. The work pre-
sented by ShojaeeFard and Boyaghchi [36] on the influence
of outlet blade angle handling viscous fluids shows that the
increase in exit blade angle improves performance centrifugal

pump handling viscous fluids (Figure 9). The impeller flow
passage with large exit blade angle shows low separation
near the blade which improves the performance of pumping
viscous fluids [5, 36, 75].

The wrap angle affects the performance of pump in a
similar way as the exit blade angle does. Modifying the shape
of impellers by varying the wrap angle shows improvement of
head and efficiency at higher wrap angles [15, 76].

The flow streamlines become uniform when a number
of blades increase [77]. An increase in a number of the
blades has both positive and negative effect [78, 79]. As the
number of the blades increases, solidity increases, reducing
efficiency due to the skin friction losses [80]. It also increases
clogging at the inlet of the pump causing head and efficiency
reduction [81]. Liu [79] study shows that, with the increase of
blade number, the head of the model pumps increases. The
cavitation characteristics are complicated and an optimum
value of blade was shown for different cases. Jafarzadeh et al.
[82] research shows that large number of blades improves the
total head of the pump.

The impeller blade shape optimization using Bezier curve
control point is a recently developed technique [83–89].
Bezier curve is parametric curve used to model smooth
curves by controlling point between the start and the end
of the curve. The angle of blade profile can be varied in
any random way but for smooth variation, Bezier curve
technique has been used which improved the performance
of centrifugal pump [85].
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Performance objective

1. Maximize hydraulic 
efficiency.
2. Maximize head
3. Minimize input power

Inlet blade angles

Exit blade angles
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Blade thickness Blade height
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and stagger angle

Centrifugal
pump

Other design 
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Figure 8: Centrifugal pump impeller design parameters and the objective functions.
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Figure 9: Influence of exit blade angles on performance of centrifugal pump handling (a) oil (] = 43 × 10−6 m2/s) and (b) oil (] = 62 × 10−6
m2/s) [36].

Miyamoto et al. [90] studied the effect of splitter blade
on the flow and characteristics in the centrifugal impeller.
In their study, both shrouded and unshrouded impeller was
used to measure the flow properties using pressure probes.
They observed that impeller with splitter blades has smaller
blade loading and the absolute circumferential velocities and
total pressures increased. Zangeneh et al. [91] presented a
method for 3D inverse design of compressor impeller with
splitters blades similar to the main blade at the mid-pitch

location. They observed that by controlling the circulation
distribution on the splitter blades as well as the full blades
allows a designer to optimize the geometry easily. Gölcü et
al. [37] studied pump characteristics experimentally using
a different number of blades with and without splitters on
a deep well centrifugal pump. Their results show that the
splitter blades cause negative effects on pump performance
in impellers with 6 and 7 number of main blades whereas
in the impeller having 5 main blades, the efficiency increases
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Figure 10: (a) Head versus flowrate, (b) energy consumption versus flowrate, and (c) efficiency versus flowrate of (z=5) [37].

with the increase of the splitter blade length to 50% of the
main blade length (Figure 10). A similar study was done
by Kergourlay et al. [92] to analyze the unsteady effect on
the flow when adding splitter blades to the impeller. They
observed that the impeller periphery velocities and pressures
become more homogeneous. Adding splitters has a positive
effect on the pressure fluctuations which decrease at the canal
duct [93].

The other design parameters like redial gap between
the impeller and the volute casing, diffuser inlet, and wrap
angle have huge influences on the performance of the pump
which has been investigated by several authors [89, 94–98].
Increasing the number of the diffuser vanes can significantly
decrease the impeller blade pressure fluctuations [94].

6. Conclusions and Future Challenges

In this paper, design optimization of a centrifugal pump
via surrogate models has been discussed. The surrogate
assisted design optimization technique has reduced the total
optimization time and cost which is evident from the research
work by previous authors. The validation of low fidelity
models through experiments and numerical simulations has
increased surrogate prediction accuracy and robustness.

The turbomachines geometries like a centrifugal pump is
a complex fluid domain where some design parameters are

sensitive, whereas others are insensitive toward a particular
objective function. The extensive study on various design
parameters which influences the performance of centrifugal
pump has also been discussed. The blade profile shape of
impeller, interaction of impeller, and casing geometry and
the profile of vanned diffuser have a huge effect on the
performance of pump. The combined effect of the above
design parameters has not been studied yet.The use of splitter
blades in the centrifugal pump for pumping viscous fluid has
been rarely studied.

There are still challenges to improve the surrogate assisted
design optimization technique and huge efforts are required.
Individual surrogate models can be made effective with
appropriate selection of design variable and design space.
Handling large design parameters are still under research; the
weighted-average surrogate use can improve the capability of
this technique. Further improvement in CFD as well as in the
surrogate models can improve the accuracy of searching the
optimum design.

Nomenclature

Notations

a: Linear constant
e: Error
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n: Number of design variables
p: Pressure
r: Radial distance
w: Width
x: Design variable
y: Objective function.

Greek Symbols

𝛼: Regression coefficient𝛽: Blade angles𝛾: Wrap angle𝜓: Head coefficient𝜎: Thoma’s cavitation number𝜏: Power coefficient.

Subscripts

𝑖, 𝑗: 1,2. . .𝑠: Shroud of impellerℎ: Hub of impeller.
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[78] M. Gölcü, N. Usta, and Y. Pancar, “Effects of Splitter Blades
on Deep Well Pump Performance,” Journal of Energy Resource
Technology, vol. 129, no. 3, p. 169, 2007.

[79] H. Liu, “Effects of BladeNumber onCharacteristics of Centrifu-
gal Pumps,” Chinese Journal of Mechanical Engineering, vol. 23,
no. 06, p. 742, 2010.

[80] W. Li, “Mechanism for Onset of Sudden-Rising Head Effect
in Centrifugal Pump When Handling Viscous Oils,” Journal of
Fluids Engineering, vol. 136, no. 7, p. 074501, 2014.

[81] G. Cavazzini, G. Pavesi, A. Santolin, G. Ardizzon, and R.
Lorenzi, “Using splitter blades to improve suction performance
of centrifugal impeller pumps,” Proceedings of the Institution of
Mechanical Engineers, Part A: Journal of Power and Energy, vol.
229, no. 3, pp. 309–323, 2015.

[82] B. Jafarzadeh, A.Hajari,M.M.Alishahi, andM.H.Akbari, “The
flow simulation of a low-specific-speed high-speed centrifugal
pump,” Applied Mathematical Modelling, vol. 35, no. 1, pp. 242–
249, 2011.

[83] W. Li, “Blade exit angle effects on performance of a stan-
dard industrial centrifugal oil pump,” Journal of Applied Fluid
Mechanics, vol. 4, pp. 105–119, 2011.

[84] H. Cai and G. Wang, “A new method in highway route design:
joining circular arcs by a single C-Bézier curve with shape
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