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Abstract: The use of skyhook damping for reduction of the vibration in the suspension
systems is well documented. The drawback is that it is not practically feasible to obtain the
equivalent of a reference point in the sky. The alternative method of using a damper between
the sprung mass (the vehicle hull) and the unsprung mass (the wheel assembly) leads to a
deterioration in the performance of the unsprung mass. In this paper a new method is proposed
that tries to overcome the limitation of the practical skyhook damping method by the use of
the model reference control (MRC) method, where the control input is utilized to achieve near-
ideal skyhook sprung mass performance in a practical skyhook damping set-up. The MRC
method is also applied to a quarter-car suspension model, where the control input is used to
achieve the response of a system with damping and stiffness values different from those of the
actual system. This allows for variation of the system constants as dictated by dynamic response
needs. The proposed methods are applied on a typical quarter-car suspension system and the
necessary time and frequency domain simulations are carried out to validate the theoretical
predictions.
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1 INTRODUCTION is designed to meet the specified design objectives by

supplying a suitable controller force. The key problem

in the implementation of the active suspensionThe use of suspension systems in vehicles is to
systems has been the design of an appropriate imple-provide rider comfort, ensure contact with the road
mentable controller algorithm that can satisfy theterrain and of course to carry the weight of the
conflicting requirements of achieving driver comfortchassis and the riders. Conventional suspension
as well as better vehicle handling performance. Somesystems normally used in vehicles consist of a
of the widely used controller algorithms are the PIDspring and damper system with fixed dynamic
controller, the full state feedback optimal controller,characteristics, i.e. passive in nature.
the semi-active controller, etc. [1–3].Over the years there has been a great increase

One of the most popular and implemented con-in the operational velocity of passenger vehicles
trollers in commercial applications is the skyhookand the demand for better ride comfort. This has led
damping concept [4–6]. In the skyhook dampingto the development of active suspension systems
process a damper is placed between the sprungwith an additional actuator or a variable damper
mass, i.e. the hull and the rider mass supported byelement along with the traditional spring and damper
the chassis, and an imaginary point in the sky. Thissystem. The actuator and the variable damper are
is equivalent to the negative feedback of the sprungcontrolled by an appropriate control algorithm, which
mass velocity with appropriate amplification such

that there is no force applied to the unsprung mass
* Corresponding author: Precision Engineering and Instrumen- (the wheel and tyre assembly). Such a scheme is
tation Lab, Department of Mechanical Engineering, Indian shown to be very effective in controlling the sprung
Institute of Technology, Madras, Chennai 600036, India. email: mass acceleration and is attractive because of its

inherent simplicity from a practical point of view.ygs@iitm.ac.in
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92 S S Parthasarathy and Y G Srinivasa

The key issue with the skyhook approach is that it the sprung as well as the unsprung masses. Thus the

dynamic response of the practical skyhook dampingis not practically implementable, because finding an

imaginary point in the sky for fixing the damper is system is considerably worse than that of the ideal

skyhook-based suspension system [4, 5].not possible. The practical implementation calls for

the use of an actuator between the sprung and the In this paper a new method is proposed that

improves the sprung mass performance comparedunsprung masses. However, this leads to deterioration

of the unsprung mass dynamic performance as the to the practical skyhook case by using a control force

input in the practical skyhook set-up. The requisitecontroller force input has to be applied on both

Fig. 1 Model reference control system

Fig. 2 Quarter-car with practical skyhook damping
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93Design of an active suspension system

controller force input to achieve this objective has response is concerned. In such cases it is possible

to adopt an active suspension based on the MRCbeen obtained by application of model reference

control (MRC) theory. The work has been carried out concept where the controller can force the system to

behave in an optimal manner. This possibility hasfor a quarter-car model of vehicles that can model

the vertical motion of the sprung mass alone. A also been explored in this paper, where a passive

suspension with a given damping coefficient iscomparison of the time and frequency domains of

the simulations for the different models proves forced to behave as a system with a lower damping

coefficient, leading to a better dynamic response.the superiority of the MRC-based system over the

passive as well as the practical skyhook-based system

responses.

The application of MRC theory is not limited to

that of the practical skyhook case in active suspen- 2 MODEL REFERENCE CONTROL

sion systems. There are many cases in active sus-

pension systems where the design and practical Model reference control (MRC) operates on the

basic principle of making a given system behave asconstraints force the designer to use springs and

dampers that are suboptimal as far as the dynamic a desired system by the application of a suitable

Fig. 3 Inputs to the system
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control force. The desired system is referred to as the The plant is considered to be characterized by the

following equationmodel reference system. The versatility of the MRC

method lies in the fact that the model reference
ẋ= f (x, u, t)=Ax+Bu+Dr (1)system does not need to be a practical system, but

can be any ideal mathematical model, and does not where
need to be practically feasible [5]. The output of

such a model is compared to that of the actual x=state vector of the plant

u=control vectorsystem response and the difference error signal is

used to generate the required controller input. A brief f=vector-valued function

A=n×n constant matrixtheoretical outline of the MRC method is given

below. Figure 1 shows the block diagram of the model B=n×r constant matrix

r=road disturbance inputreference control system.

Fig. 4 Sprung mass acceleration values
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95Design of an active suspension system

Fig. 5 Sprung mass velocity

Fig. 6 Sprung mass position
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It is assumed that the model reference system is It is assumed that the eigenvalues of A
d

in equation (2)

have negative real parts, ensuring an asymptoticallygiven by

stable equilibrium state. The error vector e is defined
ẋ
d
=A
d
x
d
+B∞
d
v=A

d
x
d
+B
d
u+D

d
r (2)

by

where

e=x
d
−x (3)x

d
=state vector of the model

A
d
=n×n constant matrix

B∞
d
=n×r constant matrix From equations (1) and (2)

r=road disturbance input

ė= ẋ
d
− ẋ=A

d
x
d
+B∞
d
v− f (x, u, t)and

=A
d
e+A

d
x− f (x, u, t)+B∞

d
v (4)

v is a vector=C
0

u

0

rD The aim of the controller is to ensure that at the

steady state x=x
d

and ẋ= ẋ
d

and e= ė=0. This can

Fig. 7 Unsprung mass acceleration
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97Design of an active suspension system

be achieved by ensuring the Lyapunov stability of where P is a positive-definite Hermitian or real

symmetric matrix and M
1

is given bythe error equation system. Consider the following

Lyapunov function V and its derivative as given in
M
1
=eTP[A

d
x− f (x, u, t)+B∞

d
v]=scalar (6)

the following equations
It can be seen that the expression for M results in a

scalar quantity.V (e)=eTPe

The Lyapunov stability criterion is satisfied if the

following conditions are satisfied: if AT
d

P+PA
d
=−QV̇ (e)= ėTPe+eTPė

is a negative definite matrix and if the control input

u in the expression for M
1

can be so chosen as to= [eTAT
d
+xTAT

d
− f T(x, u, t)+vTB∞T

d
]Pe

make the value of M
1

negative. This will ensure that

the equilibrium state around the point e=0 is+eTP[A
d
e+A

d
x−f (x, u, t)+B∞

d
v]

asymptotically stable. The controller input, which

would be a solution of an inequality, would force=eT(AT
d

P+PA
d
)e+2M

1
the plant to behave as the model system in the

dynamic state.(5)

Fig. 8 Unsprung mass velocity
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3 QUARTER-CAR VEHICLE MODEL The dynamic equations for the quarter-car system

(plant) can be written as follows

The active suspension design calls for choosing
ẋ
1
=x
2

(7)an appropriate model of the vehicle. For the purpose

of making a dynamic evaluation several vehicle
ẋ
2
=

1

M
[K(x
3
−x
1
)+C(x

4
−x
2
)+u] (8)models have been developed. Of these the quarter-

car model is the simplest and most amenable for

intuitive analysis [1, 7]. The quarter-car model of the ẋ
3
=x
4

(9)

suspension is a two degree of freedom (DOF) model,

which models the vertical or the heave motion of the ẋ
4
=

1

m
[K
ty

(r−x
3
)−K(x

3
−x
1
)−C(x

4
−x
2
)−u]

vehicle alone. As the design goal of most of the active

suspension is to reduce the vertical acceleration, the (10)
quarter-car model is sufficient from the controller

design point of view. Hence the quarter-car system In equations (7) to (10) x
1

refers to the sprung mass

position, x
2

represents the sprung mass velocity,has been chosen as the vehicle model in the present

study for the MRC design. x
3

represents the unsprung mass position, and x
4

Fig. 9 Suspension travel
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99Design of an active suspension system

represents the unsprung mass velocity. The road (equation (10)) would not be present. For the MRC-

based system the expression for the value of u isdisturbance input is given by r. The suspension

stiffness, damping constant, and tyre stiffness are obtained in the next section.

represented by the variables K, C, and K
ty

respectively;

u represents the force developed by the actuator

based on the controller algorithm. For the schematic
4 MRC PROBLEM FORMULATION – SKYHOOKshown in Fig. 2 the practical skyhook damping case

CASEis adopted. Hence the controller force is given by

The formulation of the MRC problem for the quarter-
u=−K

sky
x
2

(11) car case would be carried out within the framework

described in section 2. The equations (7) to (11)

where K
sky

refers to the amplification constant used. represent the plant dynamic equation as described

In the case of an ideal skyhook system the u term in in equation (1). The model system equations are

those of the ideal skyhook suspension system. Hencethe expression for the unsprung mass acceleration

Fig. 10 Wheel travel
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they are given as The expressions in equations (1) and (2) can be

rewritten as by separating the input vector v to its
ẋ
1d
=x
2d

(12)
control input and road disturbance input components

respectively
ẋ
2d
=

1

M
[K(x
3d
−x
1d

)+C(x
4d
−x
2d

)+u] (13)

ẋ=Ax+Bu+Dr (16a)
ẋ
3d
=x
4d

(14)

ẋ
d
=A
d
x
d
+B
d
u+D

d
r (16b)

ẋ
4d
=

1

m
[K
ty

(r−x
3d

)−K(x
3d
−x
1d

)−C(x
4d
−x
2d

)]

In equations (16) u represents the MRC control input

and r the road disturbance input; A
d

and B
d

, as(15)

Fig. 11 Force input

Fig. 12 Sprung mass acceleration
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101Design of an active suspension system

Fig. 12 (Continued)

Fig. 13 Sprung mass velocity
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described in equations (16), are given by equation is obtained

A ∑
4

i=1

e
i
p
2iBC

−1

M
(K
sky

x
2
+u)D+A ∑

4

i=1

e
i
p
4iB

1

m
u<01

(21)
A
d
=A

0 1 0 0

−K

M

−C

M

K

M

C

M

0 0 0 1

K

m

C

m

−(K+K
ty

)

m

−C

m
B (17)

In equation (21), e
i

and p
ji

refer to the ith element

and the ( j, i)th elements of the error matrix e and

the positive definite matrix P respectively. The

above inequality degenerates into a system of four

inequalities based on the sign of (W4
i=1

e
i
p

2i
) and

(W4
i=1

e
i
p

4i
), each giving an upper or lower range

of the value of u. Denoting (W4
i=1

e
i
p

2i
) as k

1
and

(W4
i=1

e
i
p

4i
) as k

2
, the following expressions for theB

d
=A

0

1

M

0

0
B D

d
=A

0

0

0

K
ty

m
B (18)

value of u are obtained

For k
1
>0, k

2
>0

Following the discussion in equations (5) and (6), the u>
−K
sky

x
2

M A
1

1/m−1/MB
Q and P can be chosen as any (4×4) positive definite

real symmetric matrix. Hence the expression for V̇ (e) For k
1
>0, k

2
<0

can be written as

u>
−K
sky

x
2

M A
1

1/m+1/MBV̇ (e)=−(q
11

e2
1
+q
22

e2
2
+q
33

e2
3
+q
44

e2
4
)+2M

1
(19)

where For k
1
<0, k

2
>0

M
1
= [e]

(1×4)
[P]
(4×4) u<

−K
sky

x
2

M A
1

1/m+1/MB× [A
d
x+B

d
u+D

d
r− f (x, u, t)]

(4×4)
<0 (20)

For k
1
<0, k

2
<0In equation (20), e represents the error vector for all

four-state variables as defined in equation (3). By
u<
−K
sky

x
2

M A
1

1/M−1/mBthe Lyapunov stability criteria the expression for M
1

must be negative by the choice of an appropriate u.

Upon simplifying the expression for M
1

the following (22)

Fig. 14 Sprung position
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103Design of an active suspension system

This expression for the value of u in the different 5 MRC–SKYHOOK CASE: SIMULATION RESULTS

ranges of k
1

and k
2

denotes the solution for the MRC

The theoretical formulation as presented in the pre-case that would force the response of a practical

vious section has been tested by the time domain andskyhook-based active suspension system to behave

frequency domain simulations of the passive, practicallike an ideal skyhook-based active suspension system.

skyhook, ideal skyhook, and the MRC-based con-As the expression for the control input is in terms of

troller. The time domain simulation is for the passageinequalities, suitable constant amplification factors

of the quarter-car suspension over a sinusoidalmay be chosen after evaluating the dynamic response.

bump of 5 cm radius and the frequency domainIt can be noted from the expression for the controller

input for the MRC case that it depends only on the simulation is for a band-limited white noise input;

these are shown in Figs 3(a) and 3(b) respectively. Thesprung mass velocity like in the skyhook case. Thus

the simplicity of the skyhook controller is preserved sprung mass (M) value is chosen to be 200 kg, the

unsprung mass (m) value to be 40 kg, the suspensionwhile ensuring better dynamic performance.

Fig. 15 Unsprung mass acceleration
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stiffness (K) value to be 16 000 N/m, the suspension From Figs 7(a), 8(a), 9(a), and 10(a) of the time

domain simulation and Figs 7(b), 8(b), 9(b), anddamping coefficient to be 980 N s/m, and the tyre

stiffness to be 160 000 N/m for the purpose of the 10(b) of the frequency domain simulation it can be

seen that the unsprung mass response is worse thansimulations. The results are filtered by a lowpass

filter to remove any high-frequency components. that of the practical skyhook case for the acceleration

and velocity case, while in the suspension travel andSome of the simulation results are shown below.

It can be seen from Figs 4(a), 5(a), and 6 obtained the wheel position cases the response is nearly the

same as that of the ideal and practical skyhookfrom the time domain simulation and Figs 4(b) and

5(b) from the frequency domain simulation that the cases in the time domain. This is expected due to

the unavoidable application of the reaction of thesprung mass response is considerably better for the

MRC case as compared to the passive suspension controller force input on the unsprung mass.

The controller force for the MRC case as comparedresponse. The MRC response is better than the

practical skyhook case, as expected, and tends to that to that of the skyhook case is given in Fig. 11 for the

domain case.of the ideal skyhook response.

Fig. 16 Unsprung velocity
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105Design of an active suspension system

6 MRC PROBLEM FORMULATION: VARIABLE where

DESIGN CONSTANTS CASE
M
1
= [e]

(1×4)
[P]
(4×4)

× [A
d
x+B

d
u+D

d
r− f (x, u, t)]

(4×4)
<0 (28)The MRC-based approach can also be used to make

a given suspension behave as a suspension with In equation (28), e represents the error vector for all
different design constants to achieve a better dynamic four state variables as defined in equation (3). By the
system response. This is important in the case where Lyapunov stability criteria the expression for M

1
must

practical constraints impose restrictions on the be negative by the choice of an appropriate u. Upon
designer to choose an appropriate damping constant simplifying the expression for M

1
the following

or spring stiffness. The dynamic equations for the inequality is obtained
quarter-car plant are the same as those described in

equations (8) to (11). For the model reference system −(W4
i=1

e
i
p
2i

)

M
[(C
d
−C )(x

2
−x
4
)+u]

the equations would be similar to the following

equations, with only the damping, stiffness values

being different from that of the plant +
(W4
i=1

e
i
p
4i

)

m
[(C
d
−C )(x

2
−x
4
)−u]<0 (29)

ẋ
1d
=x
2d

(23)
In equation (29), e

i
and p

ji
refer to the ith element

and the ( j, i)th elements of the error matrix e and
ẋ
2d
=

1

M
[K(x
3d
−x
1d

)+C
d
(x
4d
−x
2d

)] (24)
the positive definite matrix P respectively. The

above inequality degenerates into a system of four
ẋ
3d
=x
4d

(25)
inequalities based on the signs of the (W4

i=1
e

i
p

2i
) and

the (W4
i=1

e
i
p

4i
) terms, which upon solution give the

ẋ
4d
=

1

m
[K
ty

(r−x
3d

)−K(x
3d
−x
1d

)−C
d
(x
4d
−x
2d

)] expressions for the control force input. Denoting

(W4
i=1

e
i
p

21
) as k

1
and (W4

i=1
e

i
p

41
) as k

2
, the following

(26) expressions for the value of u are obtained

As a representative case only the damping coefficient For k
1
>0, k

2
>0

of the model system is chosen to be different from

that of the plant. Following the treatment given in u<A
N

M
−

N

mBA
1

1/m−1/MBsection 4 for the ideal–practical skyhook system the

expression for V̇ (e) is obtained as For k
1
>0, k

2
<0

V̇ (e)=−(q
11

e2
1
+q
22

e2
2
+q
33

e2
3
+q
44

e2
4
)+2M

1
u>−A

N

M
+

N

mBA
1

1/m+1/MB(27)

Fig. 17 Suspension travel
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For k
1
<0, k

2
<0 MRC case that would force the response of a given

suspension system with a damping constant C to

behave like a suspension system with a damping
u<A

N

m
−

N

MBA
1

1/M−1/mB constant of C
d

. As the expression for the control

input is in terms of inequalities suitable constant

amplification factors may be chosen after evaluatingFor k
1
<0, k

2
>0

the dynamic response. It can be seen from the

expression for the controller input that it depends
u<−A

N

M
+

N

mBA
1

1/m+1/MB only on the velocity variables of the sprung mass

as well as the unsprung mass as only the damping

value of the model system is different from that(30)

of the plant. This calls for a simpler controller than

that of the traditional full state feedback controller,In equation (30), N stands for (C
d
−C)(x

2
−x

4
).

which calls for the measurement of all the stateThis expression for the value of u in the different

ranges of k
1

and k
2

denotes the solution for the variables.

Fig. 18 Wheel travel
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107Design of an active suspension system

Fig. 19 Force input

7 MRC VARIABLE DAMPING CASE: SIMULATION for the measurement of the different dynamic vari-

RESULTS ables. This approach towards the design of active

suspensions can be further pursued for a practical
The theoretical formulation as presented in the pre- set-up that could validate the theoretical predictions
vious section has been tested by the time domain and the simulation results.
simulation of the passive, model suspension and the

MRC-based controller. The plant damping, mass,

and stiffness values are kept the same as those given

in section 5. The model suspension is assumed to

have a damping value C
d

of 4670 N s/m. Some of the
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r road disturbance input

u control vector (r-vector)
APPENDIX

V (e) Lyapunov function

x state vector of the plant (n-vector)
Notation

ẋ first-order differential of vector
A, A

d
n×n constant state matrix x=dx/dt

B, B
d

n×r constant state matrix x
d

state vector of the model (n-vector)
C damping constant (N s/m) ẋ

d
first-order differential of vector

e error vector x
d
=dx

d
/dt

e
i

and p
ji

ith element and the ( j, i)th elements x
1

sprung mass position (m)
of the error matrix e and the positive x

2
sprung mass velocity (m/s)

definite matrix P respectively x
3

unsprung mass position (m)

x
4

unsprung mass velocity (m/s)f vector-valued function
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