Organic & Biomolecular Chemistry

Check for updates

Cite this: Org. Biomol. Chem., 2018, **16**, 7346

Received 28th August 2018, Accepted 21st September 2018 DOI: 10.1039/c8ob02111b

rsc.li/obc

Cp*Co(III)-catalysed selective alkylation of C–H bonds of arenes and heteroarenes with α -diazocarbonyl compounds⁺

Jayanta Ghorai, Manthena Chaitanya and Pazhamalai Anbarasan 💿 *

Cp*Co(III)-catalysed selective alkylation of directed C-H bonds of arenes and heteroarenes has been accomplished employing donor-acceptor carbenes, derived from α -diazocarbonyl compounds. The developed method allows ready access to various substituted α -(hetero)aryl- α -arylacetic acid derivatives in good to excellent yields. Synthetic utility was also shown through the synthesis of a substituted indole derivative, an anticancer agent.

Transition metal catalysed cross coupling of diazo compounds has emerged as a powerful tool in contemporary organic synthesis for the synthesis of complex structural frameworks with excellent atom and step economy.¹ Particularly, functionalization of widely abundant C–H bonds with diazo compounds *via* C–H bond metalation, metal–carbene formation and migratory insertion attracted much attention in recent years,² due to the possible construction of various functionalized arenes and heteroarenes. In this context, precious rhodium based Cp*Rh(m) catalysts have been well-explored, which demonstrated excellent reactivity in the directed C–H bond functionalization with various carbene precursors (Scheme 1a).³ Recently these methods were replaced with highly abundant and less expensive cobalt based catalysts, Cp*Co(m) catalysts.

After the initial breakthrough by Matsunaga, Kanai and coworkers in 2013,⁴ various research groups across the globe have demonstrated Cp*Co(m) catalysts as highly efficient alternatives to the Cp*Rh(m) catalyst in C–H bond functionalization.⁵ Particularly, Glorius and co-workers demonstrated the first example of Cp*Co(m)-catalysed directed C–H coupling with both acceptor–acceptor and donor–acceptor carbenes derived from the corresponding diazo compounds for the synthesis of pyridoisoquinolinones⁶ and subsequently extended to the synthesis of isoquinolin-3-ones (Scheme 1b).⁷ On the other hand, the Cp*Co(III)-catalysed synthesis of 1-aminoisoquinoline through C-H/N-H bond functionalization of aryl amidines with diazo compounds was demonstrated by Ackermann and co-workers.⁸ In 2015, Wang and co-workers reported Cp*Co(III)-catalysed selective alkylation of C-H bonds of (hetero)arenes with 2-diazomalonates.9 Very recently, Shi and co-workers employed the Cp*Co(III)-catalyst for the alkylation of the $C(sp^3)$ -H bond of 8-methylquinoline with diazo compounds.10 However, most of these methods utilize the highly reactive acceptor-acceptor carbenes derived from 2-diazomalonates and their derivatives. Thus, the development of an efficient and general method for the Cp*Co(III)-catalysed directed C-H bond coupling with widely applied donor-acceptor carbenes¹¹ derived from α -diazocarbonyl compounds is highly desirable (Scheme 1c). Successful development of this method would offer ready access to α -(hetero)aryl- α -arylacetic acids, which are vital synthetic intermediates for the construction of various diarylmethine containing natural products and pharmaceuticals.¹² In continuation of our interest in C-H bond functionalization¹³ with the Cp*Co(III)-catalyst,¹⁴ we herein disclose an efficient Cp*Co(III)-catalysed selective alkylation of directed C-H bonds of arenes and heteroarenes for the synthesis of α -(hetero)aryl- α -arylacetic acid derivatives.

We started our investigation using 1-(pyridin-2-yl)-1*H*-indole **1a** and methyl 2-diazo-2-phenylacetate **2a** as model sub-

Scheme 1 Transition metal catalysed diazocoupling reactions.

View Article Online

Department of Chemistry, Indian Institute of Technology Madras, Chennai – 600036, India. E-mail: anbarasansp@iitm.ac.in; http://chem.iitm.ac.in/faculty/anbarasan/ profanbu/

[†]Electronic supplementary information (ESI) available. CCDC 1846504. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/ c8ob02111b

strates for Co(III)-catalysed C2-alkylation. The reaction of 1 equiv. of 1a with 1.2 equiv. of 2a in the presence of 5 mol% of [Cp*Co(MeCN)₃][SbF₆]₂ in toluene at room temperature did not afford the expected product. To our delight the expected product 3a was obtained in 77% yield after 12 h, when the temperature was raised to 60 °C (Table 1, entry 1). Further increasing the reaction temperature to 80 °C led to the formation of product 3a in 86% after 9 h (Table 1, entry 2). Interestingly, changing the mode of reaction with slow addition of diazo compound 2a also afforded 3a in comparable vield. However, a subsequent increase in the temperature to 90 °C gave the product in a slightly less yield (Table 1, entry 3). Next, various solvents such as trifluorotoluene, DCE, THF, chlorobenzene and acetonitrile were examined. Unfortunately, none of them gave better yield than the reaction with toluene (Table 1, entries 4-8). On the other hand, using related Co(III)catalysts such as Cp*CoI₂CO, [Cp*CoI₂]₂ and Co(acac)₃ resulted in the formation of the product in 61, 52 and 23% yield, respectively (Table 1, entries 9-11). Thus, 1 equiv. of 1 and 1.2 equiv. of 2 in the presence of 5 mol% of [Cp*Co $(MeCN)_3$ $[SbF_6]_2$ in toluene at 80 °C were chosen as optimized conditions.

Having the best-optimized conditions in hand, we next explored the generality of the method with various substituted diazoesters. Both methyl and ethyl 2-diazophenylacetate gave the corresponding C2-alkylated products **3a** and **3b** in 86 and 82% yield, under the optimized conditions (Scheme 2). Interestingly, an electron deficient diazoester derived from diethylmalonate showed similar reactivity to furnish the corresponding product **3c** in good yield. Additionally, 2-diazoarylacetate having various substitutions on the arene ring also provided the expected product in good yield. A *p-tert*-butyl substi-

Table 1 Co(\mathfrak{m})-Catalysed alkylation with diazo compounds: optimization

N.

		Ph CO ₂ Me 2a	solvent, 80 °C	3a N CO ₂ Me	
Entry	Co(III)-Cat.	Solvent	Time (h)	Conv. ^{<i>a</i>} (%)	Yield ^b (%)
1 ^{<i>c</i>}	[Cp*Co]	Toluene	12	93	77
2	[Cp*Co]	Toluene	9	100	$86(85)^d$
3^e	[Cp*Co]	Toluene	8	100	80
4	[Cp*Co]	PhCF ₃	9	95	84
5	[Cp*Co]	DCE	9	100	59
6	[Cp*Co]	THF	9	91	73
7	[Cp*Co]	PhCl	9	85	69
8	[Cp*Co]	MeCN	9	91	59
9	[Cp*CoI ₂ CO]	Toluene	12	79	61
10	[Cp*CoI ₂] ₂	Toluene	12	67	52
11	Co(acac)	Toluene	14	41	23

Reaction conditions: **1a** (0.25 mmol, 1 equiv.), **2a** (0.31 mmol, 1.2 equiv.), $[Cp*Co] = [Cp*Co(MeCN)_3][SbF_6]_2$ (5 mol%), solvent (1.5 mL), temp, time. ^{*a*} Based on the recovered starting material. ^{*b*} All are isolated yields. ^{*c*} 60 °C. ^{*d*} Diazoester was added slowly over a period of 30 minutes. ^{*e*} 90 °C.

Scheme 2 Cobalt catalysed selective C2-alkylation. Scope of diazo compounds.

tuted diazoester led to the formation of the product **3d** in 83% yield. The formation of readily amenable halo substituted derivatives **3e–3i** was achieved in excellent yields. Importantly, diazoesters having electron-withdrawing NO₂ groups at the *para* and *meta* position underwent a smooth reaction and resulted in the formation of products **3j** and **3k** in 89 and 87%, respectively. Similarly, OTs and CF₃ substituted diazoesters were also successfully converted to the C2-alkylated products **3l** and **3m** in ~82% yield. On the other hand, the *p*-methoxy substituted diazoester afforded the inseparable mixture of the C2-alkylated product and the C2,C3-cyclopropanated product in 76% yield with a 2.3 : 1 ratio. Most interestingly the pyridine based heterocyclic diazoester furnished the product **3n** in 83% yield.

Next, the influence of substitutions on the indole moiety and on the directing group was investigated (Scheme 3). Electron donating methoxy and phenyl substitution at the 5-position of indole afforded the corresponding alkylated products **30** and **3p** in 89 and 85% yield, respectively. The structure of **30** was unambiguously confirmed by single crystal

Scheme 3 Co-Catalysed selective C2-alkylation. Scope of indole derivatives.

X-ray analysis.¹⁵ Similarly, electron withdrawing substituents such as methoxycarbonyl and nitro at the 5-position of indole underwent a smooth reaction to give 3q and 3r in 85% and 79% yield, respectively. A substrate derived from 5-bromo indole also resulted in the formation of the corresponding alkylated product 3s in 88% yield. In addition to the screening of different substituted indole derivatives, the effect of substitution on the directing group was also examined. Electronically different methyl and nitro substituted pyridine containing indoles furnished the products 3t and 3u in 87 and 81% yield, respectively. Importantly, the indole derivative carrying a trifluoromethyl substituent on the pyridine ring also led to the product 3v in 69% yield. Instead of pyridine, pyrimidine was also found to be a highly efficient directing group, which was illustrated with the formation of product 3w in 80% yield under the present conditions. Subsequently, C2-selective alkylation of pyrrole derivatives was investigated and found that the pyrrole derivatives were also well acceptable under the optimized conditions. For instance, 2-(1H-pyrrol-1-yl)pyridine reacted smoothly with various diazoesters under the developed reaction conditions to furnish the products 3x, 3y, 3z and 3aa in 73, 73, 79 and 71% yield, respectively.

After successful demonstration of selective C2-alkylation of indole and pyrrole derivatives, extension of the method to the selective alkylation of C–H bonds of arenes was envisaged. To achieve the selective alkylation of C–H bonds of arenes, pyrazole was employed as the directing group. To our delight, the reaction of 1-phenyl-1*H*-pyrazole **4a** with methyl 2-diazo-2-(3nitrophenyl)acetate under the developed conditions afforded **5a** in 81% yield (Scheme 4).

Encouraged by the efficiency of the developed method, various 1-aryl-1*H*-pyrazoles were subjected to afford the corresponding alkylated products. For example, both electron rich (4-methoxyphenyl) and electron deficient (4-acetylphenyl and 4-nitrophenyl)arylpyrazoles underwent a smooth reaction with diazoesters in the presence of $Cp^*Co(m)$ and furnished the products **5b**, **5c** and **5d** in 82, 81 and 85% yield, respectively. A 4-bromophenyl substituted pyrazole derivative led to the

product **5e** in 86% yield. Consequently, substitution on the diazo compound was also tested. The chloro substituted diazoester resulted in the formation of product **5f** in 69% yield. Similarly, CF_3 and OTs substituted diazoesters also furnished the corresponding products **5g** and **5h** in 80 and 69% yield, respectively. Importantly, the heteroaryl substituted, pyridine based diazoester gave the product **5i** in 77% yield. Furthermore, the electron deficient diazoester derived from diethylmalonate was also found to be a suitable coupling partner to give the product **5j** in 86% yield.

Subsequently, the synthetic utility of the developed method was demonstrated through the conversion to vital synthetic intermediates. Removal of the directing group from the compound **3a** *via* the treatment of **3a** with MeOTf in DCM followed by the reaction with aqueous NaOH in methanol at 60 °C afforded methyl α -(indol-2-yl)- α -phenylacetate **6** in 84% yield (Scheme 5). Similarly, the formation of methyl 2-(5-methoxy-1*H*-indol-2-yl)-2-phenylacetate **7** was achieved through the deprotection of the pyridine group in **30**, which on further oxidative decarboxylation with ^tBuOK in THF under an oxygen atmosphere furnished the 2-aroylindole derivative **8**, which was a potent anticancer agent, ¹⁶ in 47% overall yield.

In order to understand the insight of the reaction mechanism, a control experiment with a non-directing protecting group and a deuterium exchange experiment were performed. Thus, the reaction of *N*-methyl and *N*-phenylindole under the optimized conditions gave the selective C3-alkylated products **9a** and **9b** in 69 and 63% yield and no C2-alkylation product was observed. On the other hand, *N*-tosylindole did not afford any alkylated product. Next, the reaction was carried out in the presence of one equivalent of CD_3OD under the standard reaction conditions and the reaction mixture was analysed after 2.5 h. From the reaction mixture 45% of the starting material **1a** was recovered along with 42% of product **3j** (Scheme 6).

Interestingly, a significant amount of D incorporation at α to ester moiety was observed in the product 3j as well as at the C2-position of recovered 1a. These observations indicate

Scheme 4 Co-Catalysed selective alkylation of arenes.

Scheme 5 Synthetic applications of the developed method.

Scheme 6 Preliminary mechanistic investigation.

Scheme 7 Plausible mechanism.

that (1) the developed reaction involves initial Co–C bond formation at the C2-position of indole through directed C–H bond cleavage, which is reversible, (2) the incorporation of carbene occurs after Co–C bond formation and (3) alkylation at the C2-position of indole does not occur *via* a concerted manner.

Based on this preliminary investigation and earlier reports on the Cp*Co(m)-catalysed C-H bond functionalization, a plausible mechanism for the developed reaction was proposed (Scheme 7). At first, active cobalt catalyst **A** coordinates with the substrate **1** followed by C-H bond cleavage generating the cobaltacycle intermediate **B**. The reaction of diazoester **2** with cobaltacycle **B** would form metal carbene intermediate **C** *via* extrusion of nitrogen. Subsequent **1**,**1**-migratory insertion of carbene to the Co-C bond would give the 6-membered cobaltacycle, which on protodemetalation would afford the expected alkylated product **3** and regenerate the active metal species **A** to continue the catalytic cycle.

In conclusion, we have successfully developed Cp*Co(m)catalysed directed selective C2-alkylation of arenes and heteroarenes with donor-acceptor carbenes derived from diazocarbonyl compounds. The developed method is quite simple and showed excellent compatibility to various functional groups as well as directing groups and allowed the synthesis of α -(hetero) aryl- α -arylacetic acid derivatives in excellent yield. Ready removal of the directing group and synthesis of indole based anticancer agents were demonstrated to show the synthetic utility of the developed method. Furthermore, a plausible mechanism was also proposed based on the preliminary mechanistic investigation.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We thank the Indian Institute of Technology Madras (Project No. CHY/16-17/840/RFIR/ANBA) for financial support. J. G.

View Article Online Communication

thanks IIT Madras and M. C. thanks the CSIR, New Delhi for fellowship.

Notes and references

- (a) H. M. L. Davies and S. J. Hedley, Chem. Soc. Rev., 2007, 36, 1109–1119; (b) M. P. Doyle, R. Duffy, M. Ratnikov and L. Zhou, Chem. Rev., 2010, 110, 704–724; (c) X. Guo and W. Hu, Acc. Chem. Res., 2013, 46, 2427–2440; (d) Y. Xia, Y. Zhang and J. Wang, ACS Catal., 2013, 3, 2586–2598; (e) X. Xu and M. P. Doyle, Acc. Chem. Res., 2014, 47, 1396– 1405; (f) A. Ford, H. Miel, A. Ring, C. N. Slattery, A. R. Maguire and M. A. McKervey, Chem. Rev., 2015, 115, 9981–10080.
- 2 (a) Y. Xia, D. Qiu and J. Wang, *Chem. Rev.*, 2017, **117**, 13810–13889; (b) F. Hu, Y. Xia, C. Ma, Y. Zhang and J. Wang, *Chem. Commun.*, 2015, **51**, 7986–7995.
- 3 (a) Y. Zhang, J. Zheng and S. Cui, J. Org. Chem., 2014, 79, 6490-6500; (b) L. Wang, Z. Li, X. Qu, W.-M. Peng, S.-Q. Hu and H.-B. Wang, Tetrahedron Lett., 2015, 56, 6214-6218; (c) K. Wan, Z. Li, X. Qu, F. Wang and L. Wang, Catalysts, 2016, 6, 89; (d) G. Mengying, Y. Yaxi, C. Hua and Z. Bing, Adv. Synth. Catal., 2018, 360, 100-105; (e) W.-W. Chan, S.-F. Lo, Z. Zhou and W.-Y. Yu, J. Am. Chem. Soc., 2012, 134, 13565-13568; (f) J. Jeong, P. Patel, H. Hwang and S. Chang, Org. Lett., 2014, 16, 4598-4601; (g) W. Hou, Y. Yang, Y. Wu, H. Feng, Y. Li and B. Zhou, Chem. Commun., 2016, 52, 9672-9675; (h) X. Yu, S. Yu, J. Xiao, B. Wan and X. Li, J. Org. Chem., 2013, 78, 5444-5452; (i) Z. Tang, S. Mai, Y. Zhou and Q. Song, Org. Chem. Front., 2018, 5, 2583-2587; (j) J. Zhou, J. Shi, X. Liu, J. Jia, H. Song, H. E. Xu and W. Yi, Chem. Commun., 2015, 51, 5868-5871; (k) C. Song, C. Yang, H. Zeng, W. Zhang, S. Guo and J. Zhu, Org. Lett., 2018, 20, 3819-3823; (1) S. Sharma, S. H. Han, S. Han, W. Ji, J. Oh, S.-Y. Lee, J. S. Oh, Y. H. Jung and I. S. Kim, Org. Lett., 2015, 17, 2852-2855; (m) D. Das, A. Biswas, U. Karmakar, S. Chand and R. Samanta, J. Org. Chem., 2016, 81, 842-848; (n) M. Ravi, S. Allu and K. C. K. Swamy, J. Org. Chem., 2017, 82, 2355-2363.
- 4 T. Yoshino, H. Ikemoto, S. Matsunaga and M. Kanai, Angew. Chem., Int. Ed., 2013, 52, 2207-2211.
- 5 (a) T. K. Hyster, Catal. Lett., 2015, 145, 458-467;
 (b) Y. Naohiko, ChemCatChem, 2015, 7, 732-734;
 (c) W. Donghui, Z. Xinju, N. Jun-Long and S. Mao-Ping, ChemCatChem, 2016, 8, 1242-1263; (d) M. Moselage, J. Li and L. Ackermann, ACS Catal., 2016, 6, 498-525;
 (e) P. G. Chirila and C. J. Whiteoak, Dalton Trans., 2017, 46, 9721-9739; (f) Y. Tatsuhiko and M. Shigeki, Adv. Synth. Catal., 2017, 359, 1245-1262; (g) M. Usman, Z.-H. Ren, Y.-Y. Wang and Z.-H. Guan, Synthesis, 2017, 49, 1419-1443; (h) S. Wang, S.-Y. Chen and X.-Q. Yu, Chem. Commun., 2017, 53, 3165-3180; (i) P. Sekar, K. Ramajayam and C. Chien-Hong, ChemCatChem, 2018, 10, 683-705.

- 6 D. Zhao, J. H. Kim, L. Stegemann, C. A. Strassert and F. Glorius, Angew. Chem., Int. Ed., 2015, 54, 4508–4511.
- 7 J. H. Kim, S. Greßies and F. Glorius, *Angew. Chem., Int. Ed.*, 2016, 55, 5577–5581.
- 8 J. Li, M. Tang, L. Zang, X. Zhang, Z. Zhang and L. Ackermann, *Org. Lett.*, 2016, **18**, 2742–2745.
- 9 X.-G. Liu, S.-S. Zhang, J.-Q. Wu, Q. Li and H. Wang, *Tetrahedron Lett.*, 2015, **56**, 4093-4095.
- 10 S.-Y. Yan, P.-X. Ling and B.-F. Shi, *Adv. Synth. Catal.*, 2017, **359**, 2912–2917.
- 11 (a) H. M. L. Davies and R. E. Beckwith, *Chem. Rev.*, 2003, 103, 2861–2904; (b) H. M. L. Davies and Ø. Loe, *Synthesis*, 2004, 2595–2608.
- 12 (a) M. Shamma and J. L. Moniot, *Isoquinoline Alkaloids Research* 1972–1977, Plenum Press, New York, 1978;
 (b) H. Xu, M. Lv and X. Tian, *Curr. Med. Chem.*, 2009, 16,

327–349; (c) J. N. Jacob, D. E. Nichols, J. D. Kohli and D. Glock, J. Med. Chem., 1981, 24, 1013–1015.

- 13 (a) M. Chaitanya, D. Yadagiri and P. Anbarasan, Org. Lett., 2013, 15, 4960–4963; (b) P. Saravanan and P. Anbarasan, Org. Lett., 2014, 16, 848–851; (c) D. Yadagiri and P. Anbarasan, Org. Lett., 2014, 16, 2510–2513; (d) M. Chaitanya and P. Anbarasan, J. Org. Chem., 2015, 80, 3695–3700; (e) M. Chaitanya and P. Anbarasan, Org. Lett., 2015, 17, 3766–3769; (f) A. Kesavan, M. Chaitanya and P. Anbarasan, Eur. J. Org. Chem., 2018, 3276–3279.
- 14 (a) J. Ghorai, A. C. S. Reddy and P. Anbarasan, *Chem. Eur. J.*, 2016, 22, 16042–16046; (b) K. Ramachandran and P. Anbarasan, *Eur. J. Org. Chem.*, 2017, 3965–3968.
- 15 CCDC 1846504.†
- 16 N. Kaushik, N. Kaushik, P. Attri, N. Kumar, C. Kim, A. Verma and E. Choi, *Molecules*, 2013, **18**, 6620.