Supporting Information
for DOI: 10.1055/s-0035-1562516
© Georg Thieme Verlag KG Stuttgart • New York 2016

Thieme

Construction of polycyclic fused pyrrolidines with three contiguous stereocentres via Michael addition of vinyl malononitriles with nitrostyrenes using L Proline derived thiourea

Manjunatha Vishwanath, Muthuraj Prakash, Poopathy Vinayagam, Venkitasamy Kesavan*

List of content

1. General remarks

2. General procedure for asymmetric vinylogous Michael addition of vinyl malononitriles to nitrostyrene
3. Characterization of new compounds
4. References.
5. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for new compounds
6. HPLC profile nucleophile screening (table 3)
7. HPLC profile for the substrates (table 4)
8. HPLC profile for the substrates (table 5)
9. HPLC profile for the substrates ($8 a$ and $8 b$)

I. General Remarks:

All reactions were carried out in an oven dried flask. Solvents used for reactions and column chromatography were commercial grade and distilled prior to use. Toluene and THF were dried over sodium/benzophenone, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and CHCl_{3} over CaH_{2}. Solvents for HPLC bought as analytical grade and used without further purification. TLC was performed on precoated Merck silica gel aluminium plates with $60_{\mathrm{F}} 254$ indicator, visualised by irradiation with UV light. Column chromatography was performed using silica gel Merck 60-100 mesh. ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR were recorded on a Bruker AV 500 MHz using $\mathrm{CD}_{3} \mathrm{OD}-\mathrm{d}_{4}$ and CDCl_{3} as solvent and multiplicity indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), dt (doublet of triplet) bs (broad singlet). Coupling constants J were reported in Hertz. High resolution mass spectra were obtained by ESI using Thermo scientific Orbitrap Elite mass spectrometer. IR spectra were recorded on a Perkin Elmer FT/IR-420 spectrometer and are reported in terms of frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. The enantiomeric excess is obtained by HPLC analysis using a chiral stationary phase column (CHIRALPAK ADH, CHIRALCELL OD-H and Phenomenex Amylose-2. All the physical and spectroscopic data of 3a-d, 3aa- ah, 3ba, 3bh and $\mathbf{7 a}$ were in complete agreement with the reported literature.

II. General procedure for asymmetric vinylogous Michael addition of vinyl malononitriles to nitrostyrene

To a stirred solution of $4(0.92 \mathrm{mg}, 0.002 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and vinyl malanonitriles $\mathbf{1}(0.1$ $\mathrm{mmol})$ in Toluene (1 mL), nitrostyrene $2(0.12 \mathrm{mmol})$ was added. The solution was stirred at ambient temperature for mentioned days. After the reaction was completed (monitored by TLC), the resulting mixture was concentrated under reduced pressure and the residue was purified through column chromatography on silica gel to give the product 3.

2-((S)-2-((R)-2-nitro-1-phenylethyl)-3,4-dihydronaphthalen-1(2H)-ylidene)malononitrile 3a:

General experimental procedure I was followed to prepare the Michael addtion product 3a. The desired product was obtained as white solid $28.5 \mathrm{mg}(0.083 \mathrm{mmol})$ with 83% yield; 91% ee determined by HPLC on AS column, 30\% 2-propanol/hexane, $1.0 \mathrm{ml} / \mathrm{min}$, UV 254 nm , $\mathrm{t}_{\text {minor }}=13.3$ $\mathrm{min}, \mathrm{t}_{\text {major }}=20.4 \mathrm{~min}$.

2-((S)-3-((R)-2-nitro-1-phenylethyl)chroman-4 ylidene)malononitrile 3b:

General experimental procedure I was followed to prepare the Michael addtion product 3b. The desired product was obtained as white solid $27.9 \mathrm{mg}(0.081 \mathrm{mmol})$ with 81% yield; 95% ee was determined by HPLC on AS column, 30% 2-propanol/hexane, $1.0 \mathrm{ml} / \mathrm{min}$, UV $254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=$ $15.14 \mathrm{~min}, \mathrm{t}_{\text {major }}=17.3 \mathrm{mmin} ;[\alpha]_{\mathrm{D}}{ }^{25}-172.3^{\circ}\left(c 0.15, \mathrm{CHCl}_{3}\right)$.

2-((S)-3-((R)-2-nitro-1-phenylethyl)thiochroman-4-ylidene)malononitrile 3c:

General experimental procedure I was followed to prepare the Michael addtion product 3a. The desired product was obtained as white solid $28.9 \mathrm{mg}(0.080 \mathrm{mmol})$ with 80% yield; 90% ee was determined by HPLC on AS column, $35 \% 2$-propanol/hexane, $1.0 \mathrm{ml} / \mathrm{min}, \mathrm{Uv} 254 \mathrm{~nm}, \mathrm{t}_{\mathrm{minor}}=$ $15.78 \mathrm{~min}, \mathrm{t}_{\text {major }}=31.04 \mathrm{~min}$.

2-((S)-2-((R)-2-nitro-1-phenylethyl)cyclohexylidene)malononitrile 3d:

General experimental procedure I was followed to prepare the Michael addtion product 3a. The desired product was obtained as white solid $16.5 \mathrm{mg}(0.056 \mathrm{mmol})$ with 56% yield; 28% ee was determined by HPLC on AS column, $30 \% 2$-propanol $/$ hexane, $1.0 \mathrm{ml} / \mathrm{min}$, Uv $254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=7.3$ $\min , \mathrm{t}_{\text {major }}=9.3 \mathrm{~min}$.

2-((S)-2-((R)-1-(2-fluorophenyl)-2-nitroethyl)-3,4-dihydronaphthalen-1(2H)ylidene)malononitrile 3aa:

General experimental procedure I was followed to prepare the Michael addtion product 3a. The desired product was obtained as white solid $28.9 \mathrm{mg}(0.080 \mathrm{mmol})$ with 80% yield; 85% ee was determined by HPLC on AS column, $35 \% 2$-propanol/hexane, $1.0 \mathrm{ml} / \mathrm{min}$, Uv $254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=$ $19.6 \mathrm{~min}, \mathrm{t}_{\text {major }}=23.3 \mathrm{~min}$.

2-((S)-2-((R)-1-(2-chlorophenyl)-2-nitroethyl)-3,4-dihydronaphthalen-1(2H)ylidene)malononitrile 3ab:

General experimental procedure I was followed to prepare the Michael addtion product 3a. The desired product was obtained as white solid 29.4 mg (0.078 mmol) with 78% yield; 90% ee was determined by HPLC on AS column, 35% 2-propanol/hexane, $1.0 \mathrm{ml} / \mathrm{min}, \mathrm{Uv} 254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=8.1$ $\min , \mathrm{t}_{\text {major }}=10.1 \mathrm{~min}$.
2-((S)-2-((R)-1-(2-bromophenyl)-2-nitroethyl)-3,4-dihydronaphthalen-1(2H)ylidene)malononitrile 3ac:

General experimental procedure I was followed to prepare the Michael addtion product 3a. The desired product was obtained as white solid $35 \mathrm{mg}(0.083 \mathrm{mmol})$ with 93% yield; 86% ee was determined by HPLC on AS column, $35 \% 2$-propanol/hexane, $1.0 \mathrm{ml} / \mathrm{min}$, Uv $254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=$ $19.0 \mathrm{~min}, \mathrm{t}_{\text {major }}=19.9 \mathrm{~min}$.

2-((S)-2-((R)-1-(3-chlorophenyl)-2-nitroethyl)-3,4-dihydronaphthalen-1(2H)ylidene)malononitrile 3ad:

General experimental procedure I was followed to prepare the Michael addtion product 3a. The desired product was obtained as white solid $30.5 \mathrm{mg}(0.081 \mathrm{mmol})$ with 81% yield; 88% ee was determined by HPLC on AS column, 35% 2-propanol/hexane, $1.0 \mathrm{ml} / \mathrm{min}$, $\mathrm{Uv} 254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=$ $10.3 \mathrm{~min}, \mathrm{t}_{\text {major }}=15.8 \mathrm{~min}$.

2-((S)-2-((R)-1-(3-methoxyphenyl)-2-nitroethyl)-3,4-dihydronaphthalen-1(2H)ylidene)malononitrile 3ae:

General experimental procedure I was followed to prepare the Michael addtion product 3a. The desired product was obtained as white solid $28.0 \mathrm{mg}(0.075 \mathrm{mmol})$ with 75% yield; 84% ee was determined by HPLC on AS column, 35% 2-propanol/hexane, $1.0 \mathrm{ml} / \mathrm{min}$, Uv $254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=$ $29.5 \mathrm{~min}, \mathrm{t}_{\text {major }}=27.11 \mathrm{~min}$.

2-((S)-2-((R)-1-(4-chlorophenyl)-2-nitroethyl)-3,4-dihydronaphthalen-1(2H)-

 ylidene)malononitrile 3af:General experimental procedure I was followed to prepare the Michael addtion product 3a. The desired product was obtained as white solid $27.1 \mathrm{mg}(0.072 \mathrm{mmol})$ with 72% yield; 88% ee was determined by HPLC on AS column, 30% 2-propanol/hexane, $1.0 \mathrm{ml} / \mathrm{min}$, UV $254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=13.5$ $\mathrm{min}, \mathrm{t}_{\text {major }}=18.6 \mathrm{~min}$.
2-((S)-2-((R)-1-(4-bromophenyl)-2-nitroethyl)-3,4-dihydronaphthalen-1(2H)ylidene)malononitrile 3ag:

General experimental procedure I was followed to prepare the Michael addtion product 3a. The desired product was obtained as white solid $30.4(0.072 \mathrm{mmol})$ with 72% yield; 92% ee was determined by HPLC on AS column, 30% 2-propanol/hexane, $1.0 \mathrm{ml} / \mathrm{min}$, UV 254 nm , $\mathrm{t}_{\text {minor }}=$ $14.0 \mathrm{~min}, \mathrm{t}_{\text {major }}=19.4 \mathrm{~min}$.

2-((S)-2-((R)-1-(4-fluorophenyl)-2-nitroethyl)-3,4-dihydronaphthalen-1(2H)-

 ylidene)malononitrile 3ah:General experimental procedure I was followed to prepare the Michael addtion product 3a. The desired product was obtained as white solid $29.2 \mathrm{mg}(0.081 \mathrm{mmol})$ with 81% yield; 87% ee was determined by HPLC on AS column, 30\% 2-propanol/hexane, $1.0 \mathrm{ml} / \mathrm{min}$, UV $254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=16.8$ $\mathrm{min}, \mathrm{t}_{\text {major }}=25.4 \mathrm{~min}$.

2-((S)-3-((R)-1-(4-methoxyphenyl)-2-nitroethyl)chroman-4-ylidene)malononitrile 3bh:

General experimental procedure I was followed to prepare the Michael addtion product 3a. The desired product was obtained as white solid $28.5 \mathrm{mg}(0.076 \mathrm{mmol})$ with 76% yield. 91% ee was determined by HPLC on AS column, 80% 2-propanol/hexane, $1.0 \mathrm{ml} / \mathrm{min}$, UV $254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=10.2$ $\mathrm{min}, \mathrm{t}_{\text {major }}=13.2 \mathrm{~min}$.

2-((S)-3-((R)-1-(2-fluorophenyl)-2-nitroethyl)chroman-4-ylidene)malononitrile

General experimental procedure II was followed to prepare the Michael/hemiketalization
 product 3bb. The desired product was obtained as white solid with 75%
 yield, mp: $183-185^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.27(\mathrm{dd}, J$ $=1.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{td}, J=1.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 1 \mathrm{H})$, 7.29-7.22 (m, 2H), 7.19-7.19 (m, 3H), $7.16(\mathrm{dd}, J=1.5,10 \mathrm{~Hz}, 1 \mathrm{H}), 5.02$ (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.57 (dd, $J=10.5,18.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16$ (dd, $J=3.5$, $12.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~d}, J=8.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$
$165.0,155.9,137.6,131.1,127.9,125.3,122.4,118.4,116.8,116.6,114.8,112.8,79.4,76.3$,
66.8, 59.5; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{FN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 386.0911$, found: 386.0922; IR (KBr): v 3457, 2928, 2230, 1560, 1542, 1487, 1447, 1378, 1082, 1014, 832, $760 \mathrm{~cm}^{-1} ; 86 \%$ ee was determined by HPLC on ADH column, 10/90\% 2-propanol/hexane, $1.0 \mathrm{~mL} / \mathrm{min}$, UV 254 nm , $t_{\text {minor }}=19.1 \mathrm{~min}, t_{\text {major }}=21.8 \mathrm{~min}$.

2-((S)-3-((R)-1-(3-chlorophenyl)-2-nitroethyl)chroman-4-ylidene)malononitrile:

General experimental procedure II was followed to prepare the Michael addition product 3bc. The desired product was obtained as white solid with 82% yield, $\mathrm{mp}: 187-189^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.28$ (dd, $J=1.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.65 (ddd, $J=1.4,7.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.44-$ 7.38 (m, 2 H), $7.36-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{dt}, J=$ $1.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=1.1,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{dd}, J=10.4,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=$ $5.2,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=2.4,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=1.7,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (dt, J $=5.2,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{td}, J=1.9,11.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=164.7$, $156.0,137.8,137.5,135.6,131.0,130.0,129.4,128.4,127.9,122.6,118.6,114.8,113.0,112.6$, 79.2, 77.1, 66.5, 43.2, 42.7. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{ClN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 380.0796$, found: 386.0809; IR (KBr): v 3470, 2225, 1572, 1556, 1497, 1363, 1094, 1010, 827, 784, 736; 88\% ee was determined by HPLC on ODH column, $10 / 90 \%$ 2-propanol/hexane, $1.0 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, t_{\text {minor }}=18.3 \mathrm{~min}, t_{\text {major }}=20.8 \mathrm{~min}$.

2-((S)-3-((R)-1-(4-chlorophenyl)-2-nitroethyl)chroman-4-ylidene)malononitrile:

General experimental procedure II was followed to prepare the Michael addtion product 3bd.
 The desired product was obtained as white solid with 80% yield, mp : $177-179{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.28(\mathrm{dd}, J=1.6,8.2 \mathrm{~Hz}$, 1 H), 7.64 (ddd, $J=1.4,7.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.41$ (m, 2 H), 7.29 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.21-7.15$ (m, 1 H), 7.09 (dd, $J=0.9,8.5 \mathrm{~Hz}, 1$ H), 4.84 (dd, $J=10.7,12.9 \mathrm{~Hz}, 1 \mathrm{H}$), $4.51(\mathrm{dd}, J=5.2,13.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.23-4.12 (m, 1 H), 4.12-4.03(m, 1H), $3.74(\mathrm{dt}, J=5.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{td}, J=1.9,11.4$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=164.8,156.0,137.8,135.2,135.1,133.9,129.9$, 129.5, 127.9, 122.6, 118.6, 114.8, 113.1, 112.7, 79.1, 77.2, 66.5, 43.0. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{ClN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 380.0796$, found: 386.0802 . IR (KBr): v 3468, 2235, 1580, 1560, 1499, $1365,1097,1015,829,784,735 \mathrm{~cm}^{-1} ; 93 \%$ ee was determined by HPLC on AS column, $15 / 85 \%$ 2 -propanol/hexane, $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV} 254 \mathrm{~nm}, t_{\mathrm{minor}}=29.5 \mathrm{~min}, t_{\text {major }}=32.3 \mathrm{~min}$.

2-((S)-3-((R)-1-(3-bromophenyl)-2-nitroethyl)chroman-4-ylidene)malononitrile:

General experimental procedure II was followed to prepare the Michael addition product 3be. The desired product was obtained as white solid with 79% yield, $\mathrm{mp}: 182-185{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.28$ (dd, $J=1.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.64 (ddd, $J=1.4,7.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.55 (qd, $J=1.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 1$ H), $7.30(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{ddd}, J=0.9,7.3,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=1.1,8.4 \mathrm{~Hz}, 1$ H), $4.84(\mathrm{dd}, J=10.6,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=5.0,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=2.4,12.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=1.7,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dt}, J=5.2,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{td}, J=2.0,11.4$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=164.7,156.0,137.8,137.8,132.4,131.3,131.2$, 127.9, 126.6, 123.7, 122.6, 118.6, 114.8, 113.0, 112.6, 79.2, 77.1, 66.5, 43.1, 42. HRMS (ESI)
calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{BrN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 446.0110$, found: 446.0121; IR (KBr): 3468, 2928, 2232, $1585,1561,1494,1437,1375,1094,1015,830,768,738,641 ; 87 \%$ ee was determined by HPLC on ODH column, 20/80\% 2-propanol/hexane, $1.0 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, t_{\text {minor }}=17.6 \mathrm{~min}$, $t_{\text {major }}=21.9 \mathrm{~min}$.

2-((S)-3-((R)-1-(4-bromophenyl)-2-nitroethyl)chroman-4-ylidene)malononitrile

General experimental procedure II was followed to prepare the Michael addition product $\mathbf{3 b f}$. The desired product was obtained as white solid with 83% yield, $\mathrm{mp}: 178-180{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.28$ (dd, $J=1.3,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.64 (ddd, $J=1.6,7.1,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-$ 7.56 (m, 2 H), 7.26-7.20 (m, 2 H$), 7.20-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.09$ (dd, $J=$ $0.9,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=10.7,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J=5.0,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J$ $=2.4,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{dt}, J=5.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{td}, J=2.0,11.4$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=164.8,156.0,137.8,134.4,132.9,129.7$, 127.9, 123.3, 122.6, 118.6, 114.8, 113.1, 112.7, 79.1, 77.2, 66.5, 43.0, 42.7. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{BrN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 446.0110$, found: 446.0121; IR (KBr): v 3466, 2929, 2234, 1587, 1564, 1497, 1439, 1379, 1095, 1017, 832, 770, 740, $641 \mathrm{~cm}^{-1} ; 86 \%$ ee was determined by HPLC on ODH column, $10 / 90 \%$ 2-propanol $/$ hexane, $1.0 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, t_{\text {minor }}=12.6 \mathrm{~min}, t_{\text {major }}=18.6$ min.

2-(2-(1-(4-Methylphenyl)-2-nitroethyl)-3,4-dihydronaphthalen-1(2H)-ylidene)malononitrile. General experimental procedure II was followed to prepare the
 Michael addition product 3bg. The desired product was obtained as white solid with 81% yield mp : $183-185^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, CDCl_{3}) $\delta(\mathrm{ppm}) 8.26(\mathrm{dd}, J=1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{td}, J=7.5$, $0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.17(\mathrm{td}, J=1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07$ (dd, $J=1.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=2.5,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{dd}$, $J=5.5,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{dt}, J=3,11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.30\left(\mathrm{dd}, J=2,13.5 \mathrm{~Hz}, 1 \mathrm{H} ;{ }^{13} \mathrm{C}\right.$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 174.4,166.0,156.1$, 139. 9, 137.7, 132.2, 131.7, 130.3, 127.9, 122.4, 114.9, 78.9, 77.3, 66.6, 43.3, 43.1, 21.1; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 360.1342$, found: 360.1331; IR (KBr): 3468, 2230, 1574, $1559,1515,1378,1260,1180,1037,828,775,751 \mathrm{~cm}-1 ; 90 \%$ ee was determined by HPLC on ADH column, $15 / 85 \%$ 2-propanol $/$ hexane, $1.0 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, t_{\text {minor }}=21.5 \mathrm{~min}, t_{\text {major }}=26.4$ min.

(R)-3-((R)-2-nitro-1-phenylethyl)chroman-4-one:

To a stirred solution of 3ba (1 equiv) in acetone and water as solvent, KMnO_{4} (2 equiv) was added. The solution was stirred at ambient temperature for 4 h . After the reaction was completed (monitored by TLC), the resulting mixture was concentrated under reduced pressure and the residue was purified through column chromatography on silica gel to give the product $\mathbf{7 b}$. The desired product 7b was obtained as white solid with 67% yield; mp : $155-$ $157^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.95(\mathrm{dd}, J=1.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ (ddd, $J=1.7,7.1$, $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 1$ H), $7.04-7.00(\mathrm{~m}, 1 \mathrm{H}), 4.96(\mathrm{dd}, J=5.0,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{dd}, J=10.6,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28$
$(\mathrm{dd}, J=3.5,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=5.2,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dt}, J=4.7,10.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.84-2.78 (m, 1 H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=192.8,161.4,136.7,136.3,129.4,128.5$, $128.0,127.7,122.0,120.0,117.9,78.5,68.7,48.6,41.2$; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}: 298.1074$, found: 298.1087; IR (KBr): 3467, 2228, 1779, 1575, 1560, 1525, 1381, $1265,1182,1034,820,770 \mathrm{~cm}^{-1}$;
(3R,3aS,9bR)-3-phenyl-2,3,3a,4,5,9b-hexahydro-1H-benzo[g]indole:
To a stirred solution of $7 \mathbf{7 a}$ (1 equiv) in acetic acid as solvent, Zn dust (10 equiv) was added. The
 solution was stirred at ambient temperature for 8 h . After the reaction was completed (monitored by TLC), the resulting mixture was concentrated under reduced pressure and the residue was purified through column chromatography on silica gel to give the product $\mathbf{8 a}$. The desired product was obtained as pasty solid with 61% yield; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.47(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.10(\mathrm{~m}, 4 \mathrm{H}), 4.45(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=6.8,10.6$ Hz, 1 H), 3.09-3.04 (m, 1 H), 3.04-2.98 (m, 1 H), 2.84-2.77 (m, 1 H), 2.64 (ddd, $J=4.1,9.1$, $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.45(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{dtd}, J=4.1,8.8,13.2 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=144.5,138.4,138.2,129.7,128.9,128.4,127.9,126.7,126.5$, $126.4,59.7,55.1,52.6,46.9,28.3,26.7$; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}[\mathrm{M}+\mathrm{Na}]^{+}: 298.1074$, found: 298.1087; IR (KBr): 3625, 3650, 2230, 1625, 1556, 1378, 1271, 1185, 1037, 838, 779 $\mathrm{cm}^{-1} ; 85 \%$ ee was determined by HPLC on phenomenex Amylose 2 column, 20/80\% 2propanol $/$ hexane, $1.0 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, t_{\text {minor }}=19.6 \mathrm{~min}, t_{\text {major }}=22.3 \mathrm{~min}$.

(3R,3aS,9bR)-3-phenyl-1,2,3,3a,4,9b-hexahydrochromeno[4,3-b]pyrrole:

To a stirred solution of $\mathbf{7 b}$ (1 equiv) in acetic acid as solvent, Zn dust (10 equiv) was added. The solution was stirred at ambient temperature for 8 h . After the reaction was completed (monitored by TLC), the resulting mixture was concentrated under reduced pressure and the residue was purified through column chromatography on silica gel to give the product $\mathbf{8 b}$. The desired product $\mathbf{8 b}$ was obtained as pasty solid with 64% yield; ${ }^{1} \mathrm{H}$ NMR (500MHz, DMSO-d $\left.{ }_{6}\right) \delta=7.40(\mathrm{dd}, J=1.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.20$ $(\mathrm{m}, 1 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{dt}, J=1.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=1.3,8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.23-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{dd}, J=9.8,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=7.9,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J$ $=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=8.7,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{tdd}, J=5.1,6.9,9.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta=155.1,144.4,131.1,129.0,128.3,128.0,126.7,125.1,121.2,116.9$, $66.0,56.3,55.3,48.3,45.8$; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 252.1383$, found: 252.1370; IR (KBr): 3628, 3655, 2235, 1628, 1558, 1374, 1275, 1182, 1039, 845, $740 \mathrm{~cm}^{-1}$; 75% ee was determined by HPLC on ODH column, $30 / 70 \%$ 2-propanol/hexane, $1.0 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, t_{\text {minor }}=49.6 \mathrm{~min}, t_{\text {major }}=59.0 \mathrm{~min}$.

References:

1) D. Xue, Y.-C. Chen, Q.-W. Wang, L.-F. Cun, J. Zhu, J.-G. Deng, Org. Lett. 2005, 7, 5293-5296;
2) T. B. Poulsen, M. Bell, K. A. Jorgensen, Org. Biomol. Chem. 2006, 4, 63-70.
3) Zhou, L.-H.; Wang, N.; Chen, G.-N.; Yang, Q.; Yang, S.-Y.; Zhang, W.; Zhang, Y.; Yu, X.-Q. Journal of Molecular Catalysis B: Enzymatic 2014, 109, 170-177
${ }^{1}$ H NMR of 2-(2-(1-(2-fluorophenyl)-2-nitroethyl)-3,4-dihydronaphthalen-1(2H)ylidene)malononitrile

${ }^{13}$ C NMR of 2-(2-(1-(4-fluorophenyl)-2-nitroethyl)-3,4-dihydronaphthalen-1(2H)ylidene)malononitrile

${ }^{1}$ H NMR of 2-(3-(1-(3-Chlorophenyl)-2-nitroethyl)chroman-4-ylidene)malononitrile.

${ }^{13}$ C NMR of 2-(3-(1-(3-Chlorophenyl)-2-nitroethyl)chroman-4-ylidene)malononitrile.

${ }^{1}$ H NMR of 2-(3-(1-(4-chlorophenyl)-2-nitroethyl)chroman-4-ylidene)malononitrile.

${ }^{13}$ C NMR of 2-(3-(1-(4-chlorophenyl)-2-nitroethyl)chroman-4-ylidene)malononitrile.

DM-19-133L[9CI]. Vishwanath,

80

${ }^{1}$ H NMR of 2-(3-(1-(3-bromophenyl)-2-nitroethyl)chroman-4-ylidene)malononitrile.

${ }^{13}$ C NMR of 2-(3-(1-(3-bromophenyl)-2-nitroethyl)chroman-4-ylidene)malononitrile.

${ }^{1} \mathrm{H}$ NMR of 2-(3-(1-(4-bromophenyl)-2-nitroethyl)chroman-4-ylidene)malononitrile.

${ }^{13}$ C NMR of 2-(3-(1-(4-bromophenyl)-2-nitroethyl)chroman-4-ylidene)malononitrile.
\qquad Vishwanath,

${ }^{1}$ H NMR of 2-(2-(1-(4-Methylphenyl)-2-nitroethyl)-3,4-dihydronaphthalen-1(2H)ylidene)malononitrile

${ }^{13}$ C NMR of 2-(2-(1-(4-Methylphenyl)-2-nitroethyl)-3,4-dihydronaphthalen-1(2H)ylidene)malononitrile

${ }^{1} H$ NMR of (R)-3-((R)-2-nitro-1-phenylethyl)chroman-4-one.

DM-25-159........... Vishwanatl

 $\begin{array}{lll}0 & 0 & \pi \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0\end{array}$
Bi
ô
${ }^{13}$ C NMR of (R)-3-((R)-2-nitro-1-phenylethyl)chroman-4-one

${ }^{1}$ H NMR of (3R,3aS,9bR)-3-phenyl-2,3,3a,4,5,9b-hexahydro-1H-benzo[g]indole.

DM-25-151.........Vishwanath,

${ }^{13}$ C NMR of (3R,3aS,9bR)-3-phenyl-2,3,3a,4,5,9b-hexahydro-1H-benzo[g]indole.

NOESY spectrum of (3R,3aS,9bR)-3-phenyl-2,3,3a,4,5,9b-hexahydro-1H-benzo[g]indole.

NOESY spectum shows no spatial interactions between Ha and Hc , which indicates those protons are in "anti" configuration in cycl ised product.
${ }^{1}$ H NMR of (3R.3aS.9bR)-3-phenvl-1.2.3.3a.4.9b-hexahvdrochromenol4.3-blbvrrole DM-25-161...........Vishwanath

${ }^{13}$ C NMR of (3R,3aS,9bR)-3-phenyl-1,2,3,3a,4,9b-hexahydrochromeno[4,3-b]pyrrole.

HPLC profile for table3, entry 1

PDA Ch1 254 nm 4 nm

PeakTable					
Peak	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	13.955	26947195	735911	49.599	70.545
2	25.135	27383159	307271	50.401	29.455
Total		54330354	1043181	100.000	100.000

A Multi $1 / 254 n m 4 n m$
PDA Ch1 254 nm 4 nm

Peak\#	Ret. TimeakTable				
1	13.675	Area	Height	Area $\%$	Height $\%$
2	2569671	75341	4.419	10.609	
Total.		55575036	634836	95.581	89.391

HPLC profile for table3, entry 2

)A Multi $1 / 220 \mathrm{~nm} 4 \mathrm{~nm}$
PDA Ch1 220 nm 4 nm

Peak	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	15.081	9015261	151860	49.881	46.087
2	17.564	9058285	177646	50.119	53.913
Total		18073545	329505	100.000	100.000

A Multi $1 / 220 \mathrm{~nm} 4 \mathrm{~nm}$
PDA. Ch1 220 nm 4 nm

PeakTable					
Peak $\#$	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	15.141	2168839	36067	2.366	1.938
2	17.587	89482351	1824522	97.634	98.062
Totai.		91651190	1860589	100.000	100.000

HPLC profile for table3, entry 3

3 t .A Ch1/310nm
Petector A Ch1 310nm
De|r|r|r|

Peak\#	Ret. Time	Area	Height	Area \%
1	11.574	1261592	49068	50.309
2	20.659	1246085	22342	49.691
Total		2507677	71411	100.000

Height \%
68.713
31.287
100.000

Detector A Ch1 310nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	11.502	3806054	149489	4.875	11.178
2	19.914	74274536	1187841	95.125	88.822
Total		78080590	1337330	100.000	100.000

HPLC profile for table3, entry 4

HPLC profile for table 4, entry 1

HPLC profile for table 4, entry 2

Jet.A Ch1/254nm
Detector A Ch1 254 nm

	PeakTable				
Peak\#	Ret. Time	Area	Height	Area $\%$	Height \%
1	8.258	11288799	446150	49.533	53.127
2	10.260	11501444	393635	50.467	46.873
Total		22790243	839784	100.000	100.000

et.A Ch1/254nm
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	8.169	464727	21637	5.208	6.442
2	10.168	8458352	314233	94.792	93.558
3	14.933	0	0	0.000	0.000
Total		8923080	335871	100.000	100.000

HPLC profile for table 4, entry 3

Detector A Chi 254nm					
Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	19.536	294078	10079	49.235	51.411
2	20.468	303213	9526	50.765	48.589
Total		597291	19604	100.000	100.000

PeakTable

Detector A.Ch1 254nm					
$\|c\|$ Peak\# Ret. Time Area Height	Area \%	Height \%			
1	19.039	83939	3156	3.965	4.696
2	19.934	2033259	64049	96.035	95.304
Total		2117199	67205	100.000	100.000

HPLC profile for table 4, entry 4

t.A Ch1/254nm

PeakTable

Detector A Ch1 254 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	10.241	7678770	338919	49.292	68.827
2	15.809	7899399	153502	50.708	31.173
Totai.		15578168	492421	100.000	100.000

Detector A Ch1 254 nm

PeakTable					
Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	10.357	1097625	55457	5.789	12.821
2	15.816	17861565	377079	94.211	87.179
Totail		18959190	432537	100.000	100.000

HPLC profile for table 4, entry 5

et.A Ch1/254nm

PeakTable
Detector A. Ch1 254 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	27.118	5895994	91631	91.538	91.357
2	29.587	545072	8669	8.462	8.643
Total		6441065	100300	100.000	100.000

HPLC profile for table 4, entry 6

let.A Ch $1 / 254 \mathrm{~nm}$

PeakTable					
Detector A Ch1 254nm Peak\# Ret. Time Area Height Area $\%$ Height $\%$ 1 13.115 5624880 212978 50.629 65.124 2 18.162 5485166 114057 49.371 34.876 Total 11110045 327034 100.000 100.000					

Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height \%
1	13.497	769089	28600	5.796	11.091
2	18.569	12499451	229261	94.204	88.909
Totai		13268540	257861	100.000	100.000

HPLC profile for table 4, entry 7

2t.A Ch1/254nm

PeakTable
Detector A Ch1 254 nm

PeakTable					
Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	14.157	2371480	82770	50.399	64.002
2	19.751	2333973	46554	49.601	35.998
Total		4705453	129324	100.000	100.000

at.A Ch1/254nm
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	14.054	781132	28397	4.364	8.213
2	19.384	17117417	317366	95.636	91.787
Total.		17898550	345763	100.000	100.000

HPLC profile for table 4, entry 8

Detector A Ch1 254nm

PeakTable					
Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	14.157	2371480	82770	50.399	64.002
2	19.751	2333973	46554	49.601	35.998
Total		4705453	129324	100.000	100.000

st.A Ch1/254nm

		PeakTable			
Detector A Ch1 254 nm (PeakTable					
Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	14.054	781132	28397	4.364	8.213
2	19.384	17117417	317366	95.636	91.787
Total		17898550	345763	100.000	100.000

HPLC profile for table 5, entry 1

JA Multi $1 / 220 \mathrm{~nm} 4 \mathrm{~nm}$
PDA Ch1 220 nm 4 nm

Peak $\#$	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	15.081	9015261	151860	49.881	46.087
2	17.564	9058285	177646	50.119	53.913
Total		18073545	329505	100.000	100.000

A Multi $1 / 220 \mathrm{~nm} 4 \mathrm{~nm}$
PDA. Ch1 220 nm 4nm

PeakTable					
1	Ret. Time	Area	Height	Area $\%$	Height $\%$
2	15.141	2168839	36067	2.366	1.938
Totai	17.587	89482351	1824522	97.634	98.062

HPLC profile for table 5, entry 2

A Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
PDA Ch1 254 nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	18.361	3382550	100386	50.075	52.415
2	20.971	3372374	91134	49.925	47.585
Total		6754924	191519	100.000	100.000

PDA Ch1 254 nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	19.103	662258	15482	6.821	6.384
2	21.807	9046242	227034	93.179	93.616
Total		9708500	242516	100.000	100.000

HPLC profile for table 5, entry 3

IA Multi $1 / 220 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable
PDA. Ch1 220 nm 4 nm

Peak $=~$	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	18.368	3519944	69919	5.814	8.201
2	20.881	57027713	782674	94.186	91.799
Tota.		60547657	852593	100.000	100.000

HPLC profile for table 5, entry 4

Detector A Ch1 254nm

PeakTable					
Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	29.044	1893763	41025	50.683	51.835
2	31.797	1842691	38121	49.317	48.165
Total.		3736454	79146	100.000	100.000

Detector A Ch1 254 nm

PeakTable					
Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	29.566	475140	10639	3.767	4.294
2	32.348	12138613	237148	96.233	95.706
Total.		12613754	247787	100.000	100.000

HPLC profile for table 5, entry 5

Detector A Ch1 254 nm

Peak\# PeakTable					
1	Ret. Time	Area	Height	Area $\%$	Height $\%$
2	17.880	41183161	1334860	49.888	54.610
Total	22.301	41368840	1109496	50.112	45.390

HPLC profile for table 5, entry 6

|A Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$

PeakTable

PDA Chl 254 mm 4 mm

Peak	Ret. Time	Area	Height	Area \%	Height \%
1	12.523	2154083	73118	50.258	69.154
2	18.718	2131933	32614	49.742	30.846
Total		4286016	105732	100.000	100.000

DA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
PDA. Ch1 254 nm 4nm

Peak	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	12.615	774877	25984	7.263	15.334
2	18.640	9894663	143472	92.737	84.666
Totai		10669539	169455	100.000	100.000

HPLC profile for table 5, entry 7

DA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
PDA Ch1 254 nm 4nm

Peak	Ret. Time	Area	Height	Area $\%$
1	21.743	1146070	20286	49.465
2	26.713	1170878	17472	50.535
Total		2316948	37758	100.000

Height $\%$
53.727
46.273
100.000

DA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
PDA Ch1 254 nm 4 nm

PeakTable					
Peak	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	21.587	190903	3889	5.209	7.228
2	26.497	3473651	49914	94.791	92.772
Total		3664554	53803	100.000	100.000

HPLC profile for table 5, entry 8

JA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
PDA. Ch1 254 nm 4 nm

PeakTable					
Peak	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	10.558	1416199	39060	9.831	10.357
2	13.269	12988798	338071	90.169	89.643
Totai		14404997	377131	100.000	100.000

HPLC profile for Scheme 2, entry 8a

1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$

PDA Chil 254 nm 4 nm PeakTable					
Peak	Ret. Time	Area	Height	Area \%	Height \%
1	18.361	3382550	100386	50.075	52.415
2	20.971	3372374	91134	49.925	47.585
Total		6754924	191519	100.000	100.000

1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
PDACh1 254nm 4nm

Peakik	Ret. Time	Area	Heaght	Area \%	Height \%a
1	19.636	289704	7079	7.480	8.968
2	22.375	3583401	71856	92.520	91.032
Total		3873105	78936	100.000	100.000

HPLC profile for Scheme 2, entry 8b

mAU

1. PDA Multi $3 / 254 \mathrm{~nm} 4 \mathrm{~nm}$

			PeakTat		
PDACr3 254 mm 4 mm					
Pesker	Ret Time	Asea	Hegir	Asea\%	Hagro
1	40.651	20982936	230042	87.569	88691
2	\$8.058	2978791	29334	12.431	11.309
Toud		2861727	259376	10000	10000

