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Abstract: A regional conjunctive use model is developed for a near-real deltaic aquifer system, irrigated from a diversion system, with

some reference to hydrogeoclimatic conditions prevalent in the east coastal deltas of India. Water resources are sufficiently available i
these regions under average monsoon rainfall conditions, but their distribution in space and time has been ever challenging to wate
managers. Surface-water availability shows temporal fluctuations in terms of floods and droughts, and groundwater availability show:s
mainly spatial variability in terms of quality and quantity due to the hydrogeologic setting, boundary conditions, and aquifer properties.

The combined simulation-optimization model proposed in this study is solved as a nonlinear, nonconvex combinatorial problem using &
simulated annealing algorithm and an existing sharp interface model. The computational burden is managed within practical time frame
by replacing the flow simulator with artificial neural networks and using efficient algorithmic guidance.
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Introduction is a gradual change in density. The disperse interface approach
explicitly represents the presence of this zone. Although disperse
density dependent flow and transport modétkiyakorn et al.
1987; Das and Datta 199%re presently available, their use in
management models has been somewhat limited because of high
computational burden. The second approach to the analysis of
seawater intrusion problems is based on the simplifying assump-
Ition that the transition zone can be represented by a sharp inter-
1Iace(Bear and Dagan 1964; Polo and Ramis 1983; Essaid 1990;
Bakker 2003.

Conjunctive use has been defined in more ways than one, but in
general it is defined as the allocation of surface water and ground-
water in terms of quantity and/or quality so as to achieve one or
more objectives while satisfying certain constraints. Cb@90
defined conjunctive use with reference to stream diverg@mn
run-of-the-rivej systems as the management of groundwater/
surface water in a coordinated operation to the end that the tota
yield of such a system over a period of years exceeds the sum o

yields of the separate components of the system resulting from an Combined simulation-optimization model&orelick 1983

uncoordinated operation. have been widely used to address the management issues. Willis
Management of water resources in coastal and deltaic regions y 9 :

irrigated by run-of-the-river schemes involves primarily two is- and Finney(1988, Emch and Yen(1998, and Das and Datta
sues: First, availability of water resources in space and time, and(lggg’ among others, hav_e proposed a number_ of groundwater
second, seawater intrusion. Improper management arising out olmanagement mpdels applicable for coastal aquifers. Although a
excessive irrigation or increased groundwater exploitation often number of studies h_ave l_)een reported on management ISSues re-
leads to waterlogging or seawater intrusion problems, respec_Iated to coastal aquifers in general, not much attention has been

tively. Any conjunctive use model must address these two issuespaigj o the issues unique to groundwater management in deltaic
for application to coastal and deltaic regions. regions.

Two general approaches have been used to simulate seawater Also,. as .stated by Emch anq Yéh998, the objectives and
constraints in a coastal or deltaic aquifer management model are

intrusion in coastal aquifers. The freshwater and saltwater zones_ "~ . . .

within an aquifer are separated by a transition zone in which theretyplca"y. nonlinear, .an.d therefore use .Of gradlent.-basgao! mgthods
for solving the optimization problem is beset with difficulties.
Gradient-based methods for these problems are liable to get
trapped in a local minimum. During the last 10 to 15 years, heu-
2professor, Dept. of Civil Engineering, Indian Institute of Technology, ristic or nonexact methods have been developed for the purpose

Chennai. India of correcting this problem. Among these, simulated annealing
3professor, Dept. of Civil Engineering, Indian Institute of Technology, (SA) (Dougherty and Marryott 1991and genetic algorithniGA)
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Chennai, India. are the two most popular methods. More recently, Wang and
“Professor, Water Resources Development and Training Centre, IndianZheng (1998 and Cunh&a1999 have demonstrated the applica-
Institute of Technology, Roorkee, India. tion of SA to hypothetical groundwater management problems in
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ment Vol. 130, No. 3, May 1, 2004. ©ASCE, ISSN 0733-9496/2004/3- Several coastal deltas of east India evolved during the Quaternary
255-267/$18.00. period with the deposition of sediment from large river basins
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over geologic time. The deltas are highly productive aquifers with
intense agricultural activity. Traditionally, the land use has been
mostly rice cultivation during the two main seasons, each of 6
months’ duration, that is, the monsoharif crop) and nonmon-

soon (Rabi crop seasons. The Rabi crop is fully dependent on
irrigation from diversion schemes or from groundwater sources. A
third crop is also grown in some areas but is not very common.

Main River

River branches

@ Diversion Structure
® Demand Centers

The silty-clayey alluvial aquifers are mostly unconfined, with a Sea
shallow water table that exhibits flat gradients. The spatial vari- . o )
ability of fresh groundwater in deltas depends mainly upon hy- Fig. 1. Definition sketch of deltaic system

drogeologic setting, proximity to the sea, and the presence of
paleochannels. The hydrology of deltas is largely influenced by
erratic monsoon rainfall that affects groundwater recharge during
the monsoon season and surface-water availability during both
seasons. This poses challenges to optimal utilization of water re-
sources in the deltaic areas.

In the present study, an operational planning model is devel-
oped on a regional basignacro level for conjunctive use of
surface water and groundwater in a coastal and deltaic environ-
ment under existing irrigation from a diversion system. In this lanni dh | inout rather th tes. How-
study, conjunctive use is defined as the allocation of surface waterP'anning and hence uses voiumes as input rather than rates. How
and groundwater such that groundwater storage is induced at suit-e\{_'e'g’RtFt]e vglulmes arr]e converteld_lnto rates while running the
able locations during surplusnainly monsoon seaspsurface- S Th model over the sdea}sofnallq_tlme s_;ep. invol
water flows and depleted during both periods. Single- and dual- _e_management model of t IS aqul er_system INVOIVES two
objective management models are formulated as combinatorialconﬂ'cnng objectives and cqnstraln'ts pertalnlng to 'deC|S|on and
optimization problems. The two objectives are minimization of state variables. The model is required to conjunctively allocate

the operational cost of supplying and providing surface water and groundwatexdecision vangbl)eand surface Wate.r at each O.f the .
groundwater at the demand centers, and maximizatiooonser- demand centers representing a response zone in the deltaic region

vation ofgroundatr storage i space and tme oo T ot Vo s oo
One of the main focuses of this study is to address the fluc- 9 J

tuation in the availability of surface-water and groundwater re- 2;;23;:2 ic:f tshzcﬂaggén%r:gn%%rg a?:ur?g\t:/zft{ara %lr\:]er; S:; Zfre
sources in space and time through conjunctive use. Flow simula- P ) 9 humpag

tion is accomplished using the SHARP interface mod&said ?nged to tla[(e_ negative, zero, orhposmve galues within a specll(-
1990, which is suitable for a coastal environment on a regional \ed range. tis |.m'porFant to noﬁet at groundwater pumpages take
basis. The computational time burden associated with a heuristic"]egz"‘tIve valueginjection _o_nly_lf surplus surf_ace water is avail-
search method is reduced by replacing the SHARP simulator with ap:]e. F“.”h‘?“ at a specific time and .Ic;)caﬂm‘emand cente{ |
a trained artificial neural networfANN) at points of interest and S't er m:ectlon or pumpage can oceur; both cannot oceur simul-
through efficient algorithmic guidance. Although the study area aneously. . .
has some reference to the hydrogeoclimatic conditions prevalent Surface-water allocation takes_ only p05|t_|ve values S0 as _to_
in the east coastal deltas of India, only hypothetical or idealized meet the balance_ O.f demand and is ?'SO subject to a c_ertam mini-
examples are used to illustrate the application of the concept andmym ﬂf)W' The minimum-flow constraint reflects operational con- .
methodology. sm_ie_ratlons _that the _canal_car_mot be operated u_nless a certain
minimum discharge is maintained. The state variables include
freshwater heads, saltwater heads, and interface elevations. The
Model Formulation objectives and constraints of the problem are formulated either
. ) ] directly as functions of decision variables, indirectly as a function
The model is formulated as an operational planning model, and of state variables, or both. The problem has a nonlinear objective
the infrastructure is assumed already in place. The managemenf nction and nonlinear constraints. Since two conflicting objec-
model is formulated to meet the consumptive demands throughtjyes have to be optimized, the final choice has to be made from a

optimal allocation of surface water and groundwater in space andiadeoff curve. Mathematically, the two objectives are formulated
time. The irrigation requirements are met from a diversion struc- 55 follows:

ture (surface waterand groundwater sources in the delta system.
The water table is assumed to be below the root zone, such thatCost Objective

deltaic aquifer systenfFig. 1) are used. The aquifer system is
assumed to be unconfined, with fresh water and saltwater sepa-
rated by a sharp interface. The SHARP model, as discussed later,
simulates the unconfined aquifer flow system as a single layer in
an isotropic, homogeneous system. The river branches and sea are
assumed to be constant head boundaries. Average rainfall re-
charge, surface-water availability, and demand during each time
period(monsoon or nonmonsoon seasare inputs to the model,
which uses time steps of 6 months for macro level operational

groundwater is available only by pumping. The surface-water N T K K

availability shows temporal fluctuations in terms of floods and Min Z.= C. D, .— n C

drought conditions. The fresh groundwater availability shows spa- ! ngl kzl s {Bin = Qg o} kgl oK Qg-ton

tial variability due to the hydrogeologic setting, aquifer proper- Q)

ties, and boundary conditions. These spatial and temporal varia-

tions in the surface water and groupdwatgr common to deltaic lprawdown Volume (Surrogate) Objective

systems are embedded as constraints within the managemen

model. The water-quality constraint is met indirectly by ensuring L

that well screens are above the freshwater-saltwater interface. MinZ,= >, > [(Lij—he,, JA] (2)
In the course of developing and testing the proposed method- ==t -

ology, hypothetical data sets representing a simplified unconfinedsubject to:
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Fig. 2. Coastal aquifer system as represented in SHARP model

Surface-water minimum-flow constraint at each demand lo-

cation and time period

stn_Dkn ngn Qmm V k and n (3)

Surface-water availability constraint for each time period

K
k; (Dkn—Qgin)=<Q, ¥ n (4)

Drawdown elevatiorthead constraint at each node

Pt jm=Hmingj Vi, J, andn 5)
Waterlogging constraint at each node

hf<iyj'n)sHma>(iyj> Vi, j, andn (6)
Interface elevation constraint at coastal nodes

Zi i SZmingj Y i, J, andn (7)

Hydraulic response equatiofeontinuity) of the simulator in
which, Cs=cost of providing unit surface wateG,=cost of
providing unit supply from ground water source;
D,=demand at centdr [L3]; L ,j=ground elevation at node
i,j[L]; by =fresh water head at node,j [L%];

%—volume of water supplied from ground water source
[L°]; Qs=volume of water supplied from surface source

[L®]; N=number of the time periodseasonaj | =number
of rows; J=number of columnsiK=number of demand cen-
ters; Q,,=surface-water availability fomth time period;
A=area of the grid nodgL?]; Q,,,=minimum flow in the
canal [L®]; H ming,jy=Prescribed minimum head at node
i, [L]; Hpaxgjy=Prescribed maximum head at nodg[L ];

z ; n=interface elevation at nodej and the end of period

n [L]; and zqa=prescribed interface elevation at node

i,j[L].

involves both surface-water transport and injection under
pressure. A high unit cost of injected water is assumed in this
study, independent of location and depth.

Solution Methodology

The methodology adapted in this study uses a combined
simulation-optimization approactGorelick 1983. A code was
developed by interfacing the SA algorithaptimizen with the
SHARP model as a subroutine. The SHARP simulator is subse-
quently replaced with the ANN model to reduce computational
burden. The simulatofSHARP mode), the optimizer(SA algo-
rithm), and the ANN are briefly discussed below.

Flow Model—SHARP as Simulator

SHARP(Essaid 199§ the multilayered, two-fluid sharp interface
model used in this study, is a quasi-3D finite-difference model. It
simultaneously solves the freshwater and saltwater flow equations
coupled by the boundary condition at the interface such that the
pressures are equal on either siff@. 2). The coupled, nonlinear
partial differential equations given below must be solved at each
node:

dhy - o
[SiBi+n(a+d)]—=—n(1+8) —=

P ahe| @ ah;
= x| B |+ nyKfyay +Qr (8

ay
ahy
[SsBs +n(l+8)]—— 5—
d dhg J dhg
:6_X Bsszan ]+ BsstyW +Qs (9)
z=(1+38)hs—3dh; (10)

As all facilities are assumed to be in existence, no capital in which, n=effective porosity =1 for an unconfined aquifer, 0
costs are considered and all unit costs pertain only to energy,for confined aquiferhy,hs=fresh and saltwater hydraulic heads
operation, and maintenance. The cost function is linear for [L]; Sy,Ss=fresh and saltwater specific storageL'];
surface-water supplies but nonlinear for groundwater pump- Ki,Ks, Kty Ksy=fresh and saltwater hydraulic conductivity sxn

ages, as it is a function of both dischargmit volume and

andy directions[L T™1]; B;,B,=fresh and saltwater saturated

head(or depth. The unit cost of groundwater is assumed to thickness[L]; Q;,Qs=fresh and saltwater source/sink terms
be cheaper than surface water at some midpoint in the delta.(pumpage, rechargéL T~ ']; z=interface elevation[L]; &
The unit costs at other locations are computed relatively. The =+v¢/(vys—y¢); and ¢, ys=fresh water and saltwater specific
unit cost of injected water is much more expensive as it weights[ML~2T72].

JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT © ASCE / MAY/JUNE 2004 / 257



Simulated Annealing Algorithm Read aquifer and annealing
data

In this study a simulated annealif§A) algorithm is used so that *

a near-optimal solution can be obtained for the management prob-
lem. The SA algorithm with the perturbation procedure is suitable
for discrete values of decision variables. Therefore, although
groundwater pumpages and surface-water allocations are typi-

Generate Initial Random Configuration

o
h |

cally continuous variables, they are treated as discrete variables in iﬁ?ﬁérp‘cﬁsxﬂ’:ﬂ No Perturbation for New
this study. Also, these variables could be considered as discrete Satisfied Conii:::go:xégetr)‘m
variables from practical and operational considerations. First, for l Yes
an allocation model using seasonal time steps, the primary objec- — |
tive is only to arrive at a broad macro-level operational planning Braluate Objective g
schedule; second, pumps have discrete capacities and canals must A
be operated for certain minimum flows. ¢ —1=

It may also be noted here that the inaccuracies arising out of Is it the First Yes Solm};eazraf;fm
the above treatment can be further reduced by implementing the Configuration? Solution A
SA algorithm along with the bracketing procedufi@ougherty No
and Marryott 1991 Therefore, in the present study groundwater A 4 ¢N°
pumpages are considered discrete variables and the model is ‘mifo"l‘l’:i‘z‘:g“" No . Me“"";l:,f”‘e“"‘
solved as a combinatorial problem. In the proposed conjunctive ‘ '
use model, since groundwater pumpages/injections assume dis- Yes LY“
crete values, the surface watetthough not a decision variable — - No Make Current
also assumes discrete values because it must meet the balance of ‘ Equiibrium Achieved? | Constution a5 >
the demandthrough constrainjsat any point in space and time. v e a:e oo
It is assumed that the pump capacities and canal capacities are e
consistent within the range of decision variables used for | Temperature reduction? | LY
pumping/injection and delivery of surface water from the diver- ¢ No
sion point to the demand center. Stopping criterion met? R

SA is a heuristic algorithm to find near-optimum solutions No
(Kirkpatrick et al. 1983. In this method, each decision variable is Yes

restricted to a set of possible discrete values. Each combination of
decision variables, that is, the decision vector, is called a configu-
ration. For example if there are five decision variables and each is
allowed to take a value from a set of 10 possible discrete values, Fig. 3. Scheme of solution procedure using simulated annealing
then there would be fOconfigurations. The set of all possible

combinations constitutes the configuration space. The basic idea

of the method is to generate a random configurattaal point)
iteratively through perturbation and evaluate the objective func-
tion and the constraints after determining the state variables by
using the simulator.

If the trial point results in infeasibility, that is, if the constraints
are violated, it is rejected and a new point is generated. If the trial
point is feasible and the objective functions value is smaller than
the current best valugor a minimization problery) then the point
is accepted and the record for the best value is updated. If the trial
point results in feasibility but the objective function is higher than Algorithmic Guidance

the current best value, then the trial point is either accepted or ¢ algorithmic representation of the SA along with the SHARP
rejected using the Metropolis criterigiMetropolis et al. 1958 simulation model is shown in Fig. 3. The SA code generates a
This is implemented by generating a random deviate, uniformly random configuration, modifies the SHARP input file, executes
distributed on the interva(0,1). If the random deviate thus gen-  the simulation model, and verifies the constraints during each
erated is smaller than the acceptance probability, then the uphilljterative step(referred to as a chainThus the optimize(SA)
move is accepted. calls the external simulatdSHARP repeatedly. The SA explores

In computing the probability for the acceptance of an uphill the objective function’s nonconvex surface randomly and tries to
move, a parameter called temperature is used. For the optimiza-gptimize the function while moving both uphill and downhill.
tion problem, this temperature can be a target value for the costOnce the termination criterion is met, the optimal solution corre-
function corresponding to a global minimum. Initially, a larger sponds to the minimum cost configuration. As the number of de-
temperature or target value is selected. As the trials progress, thisision variables and constraints increases or as the constraints get
value is progressively reduced using a cooling factor. The accep-tighter, the number of infeasible solutions also increases. There-
tance probability of uphill moves steadily decreases to zero as thefore, two procedures are adopted to reduce the computational
temperature is reduced. Thus, in the initial stages the method istime burden. First, an efficient algorithmic guidance is used to
likely to accept worse configurations, while in the final stages, the generate only feasible configurations. This includes a perturbation
worse designs are almost always rejected. procedure called excursion limiting for early convergence

The entire process is terminated after performing a fairly large
number of trials or chainéterations. The strategy avoids getting
trapped in a local minimum. The initial temperature, cooling fac-
tor, chain length, and termination criteria are referred to as an-
nealing parameters. These are difficult to deterni\Wang and
Zheng 1998 but certain guidelines have been defined by Dough-
erty and Marryot{1991), Cunha(1999, and others, for choosing
the values of these parameters.
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Fig. 4. Sketch of hypothetical deltaic system

(Dougherty and Marryott 1991Second, the simulator is replaced 1. Conjunctive use in space for the cost objectieae time

by a trained ANN to obtain the values of the state variables at period with several demand centers—Example 1
points of interest. 2. Conjunctive use in time for the drawdown volume objective
Algorithmic guidance ensures that only feasible configurations (one demand center with several time periods—Example 2

are generated before the simulator is called. This is made possible  and
by terminating trial configurations that are infeasible at the earli- 3. Conjunctive use in space and time for both cost and draw-
est stage, rather than verifying supply and demand constraints down volume objectivescombination of 1 and 2 above—

after generating the whole configuration. The perturbation proce- Example 3.
dure used in this studygenetic rearrangemenhas been dis- The conjunctive-use-in-space model with the cost objective
cussed in detail by Dougherty and Marry¢i991). primarily seeks to address the spatial variability in the availability

of surface-water and groundwater resources and their resulting
costs. The unit cost of surface water varies linearly in space and is
based on transport and losses that increase with distance of the
The optimization process involves calling the simulator several delivery point from the diversion point. The unit cost of ground-
thousands of times to verify the constraints. This involves a sig- water, however, does not vary with spa@xcept depth The
nificant amount of computational time. The computational burden conjunctive-use-in-time model seeks to address the temporal fluc-
is generally high in all combined simulation-optimization models tuations in monsoon rainfall input and consequent variations in
and more so with heuristic methods, and hence there is a need tgurface-water availability and groundwater recharge. This model
reduce this computational time. This is largely achieved in this stores or conserves groundwater in the subsurfacsaturateyl
study by replacing the SHARP model with trained neural net- zone through injection during surplus periods and pumps during

Artificial Neural Network as Simulator

works. o _ N _ both periods to meet the demand in space and time. This is
ANN is discussed in detail in ASCE Task Committ&900, achieved by minimizing the drawdown volume objective. The
Aly and Peraltg1999, and the ANN toolbox oMATLAB(2000. conjunctive-use-in-space-and-time model seeks to combine both

In this study a feedforward, error back-propagation network is objectives that must be commonly addressed in any real system.
used wherein the goal of ANN is to establish a relation of the

form
Conjunctive Use in Space

(Y™ =£(X") (11)
where X"=n-dimensional input vector consisting of
X1,X2,....X,; Y™=m-dimensional output or target vector consist-
ing of resulting variables of interesg,,y,,...,y,; and f(.)
=commonly used sigmoidal transfer function given by

In Example 1, the simplified deltaic system shown in Fig. 1 is

considered for one time period with three demand centers at A, B,
and C. The availability and extent of fresh groundwater in deltaic
systems may be limited from various considerations, depending
on boundary conditions such as proximity to the sea, depth of

f(t)=111+exp(—1)] 12) interface, depth of drawdowibased on sustainable recharged
The network is trained to determine the weights and biases so@duifer properties. In this example the interface depth constraint
as to minimize the error function given by applies only to wells closer to the coast.
The idealized unconfined aquifer system was discretized in the
E= 2 E (yi— )2 (13) form of a delta(triangle), as shown in Fig. 4. The delta is assumed
P p to be sloping toward the sea in a stepped manner, with ground

elevations at A, B, and C being 10, 7, and 5 m, respectively, with
respect to mean sea level. The boundary conditions encountered
in near-real conditions are considered, as shown in Fig. 5. The
river branches were assigned constant head boundary conditions,
with head ranging from 7 to O m, decreasing linearly toward the
The conjunctive use allocation model is discussed in three stagesea. The sea boundary was similarly represented as a constant
with the help of simple illustrative examples. The purpose here is head boundary with zero elevation. Table 1 shows the aquifer
to obtain a clear understanding of concept and methodology. Theproperties used as input for the SHARP model. The initial
three stages are groundwater levels were set at steady-state conditions.

wherey;=ANN output; t;=desired outputp=number of output
nodes; and®=number of training patterns or data sets.

Results and Discussions
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Fig. 5. Finite-difference grid for SHARP model

In this example, only three demand centers are considered,selection of annealing parameters is not of much significance for
which implies three decision variables. Each decision variable the small problem considered here, but for problems involving

was allowed to take 10 possible valu@sble 2, resulting in 18 many decision variables, they need to be chosen judiciously, as
configurations. The supply and demand at the three points for onediscussed in later sections.
seasorn(183 days$ in terms of volume are shown in Figs(a6-0. The global optimal minimum cost solution obtained using SA

The surface-water supply was restricted to 4.5 units (1 unit and SHARP and also from enumeration was 20.5 monetary units
=10° m3); the demand at A, B, and C was assumed as 3.5, 2.5,(MU) and is shown in Fig. @)). At A the model tries to allocate
and 2 units, respectively; and the depth of each well was assumednaximum surface water, since it is nearest to the surface-water
as 50 m(that is, location of scregrirom ground level. The inter- source, where the relative cost of surface water is lower than
face depth was constrained at an elevation—@&0 m for the groundwater. However, it restricts surface water to only 2 units
coastal noddthat is, Z,, at location @, and the drawdown el-  and groundwater to 1.5 units, since groundwater availability is
evations H,,) at A, B, and C were restricted to 3, 2, and 1 m, restricted by drawdown elevation constraint at B and C. At B the
respectively. Similarly, the upper bounds, thatHks,,, from wa- relative cost of surface water and groundwater enables the model
terlogging considerations, were set at 9, 6, and 4 m, respectively.to choose 1.5 units of surface water and 1 unit of groundwater at
A minimum flow of 0.5 unit of surface water at each location was B. At location C the drawdown constraint forces the model to
also imposed. The unit cosf® some monetary unitof surface allocate one unit each for surface water and groundwater. The
water and groundwater are listed in Table 3. negative pumpagesnjection), however, do not enter the optimal
The conjunctive-use-in-space model was implemented for the solution as they involve high cost. The negative pumpages and
cost objective using the SA procedure presented in Fig. 3. As thewaterlogging constraint become relevant for the conjunctive-use-
problem is of small sizéthree decision variablgsthe optimal in-time model, where cost is not a consideration, as discussed in
solution obtained by the proposed model could be verified di- the next section.
rectly by enumeration. The annealing parameters corresponding The groundwater levels at A, B, and C at the beginning of
to initial temperature, reduction factor, chain length, and termina- simulation(that is, at the steady-state conditiomere 5.02, 2.82,
tion criterion were set at 5, 0.2, 300, and 4, respectively. The and 1.7 m, respectively, and the interface elevation at C for the
steady-state condition was68.1 m. The simulated water levels
] ) at the end of the time period, corresponding to the optimal
Table 1. Aquifer Properties Used as Input to SHARP Flow Model groundwater pumpages, were 4.11, 2.36, and 1.20 m at A, B, and

(Example 1 C, respectively, and also the interface depth at C w&g.6 m. It
Parameter Value is important to note that at the coastal node C, while the ground-
water level fell from 1.7 to 1.2 nidrawdown elevation constraint
1. Area 120 krA .
. - set at 1.0 my the interface moved upward from68.1 to —67.6
2. Hydraulic conductivity 2.05E04m/s . . . .
3. Specific storage of fresh/saltwater 105 /m m (interface elevation constraint set-a60.0 m for the optimal
4' Pp " 9 o 3‘ configuration. If, however, the drawdown elevation constraint is
- rorosity ) : relaxed from 1.0 to 0.75 m, an improved optimal solution
5. Areal recharg€10% of mean rainfall 5.7E-09 m/$
6. Grid spacing Ax) 1,000 m
7. Grid spacing Ay except last two rows being 500)rf,000 m Table 2. Discrete Values of Groundwater (4% Decision
8. Time step (A\t=one season 6 months) 183 days Variables(Extraction/Injection in Volumg
9. Spet.:lflc grawty of seawater 1.025 Starting value Step Ending value Number of values
10. Aquifer thickness 100 m
-2.0 0.5 2.5 10

a/aries with mean rainfall for examples 2 and 3.
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Fig. 6. Conjunctive use in space for hypothetical delta

(19.4 MU) was obtained with an increase in groundwater pump- fall is not dependable and often results in surgfimod) or deficit
ing at C(that is, 1.5 units instead of 1.0 unifor this solution the (droughi conditions. The conjunctive-use-in-time model is pri-
drawdown elevation and interface elevation at C were computedmarily intended to address this temporal fluctuation in rainfall
as 0.8 and-67.3 m, respectively. Thus the optimal solutions in input and the resulting surface-water flows and groundwater re-
the present case are limited by the drawdown elevation constraintcharge. A uniform rainfall recharge was assuntisePs of rainfal)
rather than the interface elevation constraint. In general, interfaceover the study area during the monsoon season. It is assumed that
responses are slow, relative to head. no rainfall occurs during the nonmonsoon season and hence there
is no recharge; however, surface water is available due to base
flow.
In Fig. 7, the diversion structure feeds the delta region with
In Example 2, the simplified deltaic aquifer system discussed in surface-water sources. The region is assumed to have one demand
the previous section is considered with one demand center. Undekcenter located at some point B within the delta, and the ground-
conditions typical of the Indian subcontinent, the monsoon rain- water is assumed to be injected/discharged from the well located
at B. While a number of scenarios could be possibly imagined, a
typical case of two normal years followed by a flood year and a
Table 3. Unit Costs of Surface Water and GroundwaiarMonetary drought year is considered. The surface-water availability, rain-
Units) fall, and constant demand at B in terms of volume for each season
Location Unit cost Depth rangen) are shown in Figs. (&—9. Each season was assumed to be of 6
months duration, consistent with the two cropping seasons
(Kharif and Rabi seasophgracticed during monsoon and non-

Conjunctive Use in Time

Surface water

A 10 - monsoon seasons, respectively, in the coastal deltas. The planning
(B: ;(5) - horizon was assumed to be of 4 years duration with a time step of

6 months(that is, eight time periodsFrom Fig. 7, it is clear that
Groundwatet surface water alone cannot meet the demand, especially during

— 1.10 2-3 the nonmonsoon season. Groundwater must supplement the de-
— 115 3-4 mand. Further, during the fourth yeédrought period with low

— 1.20 4-5 rainfall and low recharge when surface water cannot meet the
— 1.25 5-6 demand, there is a possibility that even groundwater may not be
— 1.30 6-7

able to meet the demand without being depleted beyond sustain-
depth able levels.

o

aUnit cost of injection: 5.Qindependent of location an
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Fig. 7. Conjunctive use in time for hypothetical delta

The groundwater was allowed to take 10 discrete values, implemented. The annealing parameters were set based on guide-
as in the previous exampléTable 2. The drawdown, water lines suggested by Dougherty and Marry@®91), Press et al.
logging, and interface depths were constrained at elevations(1996, and Cunh&1999. The initial temperature (£) was set
of 1.75, 7, and—60 m with respect to mean sea level, such that more than 80% of the configurations were accepted. It
respectively. A minimum flow of 1 unit of surface water was was assumed that equilibrium was achieved when no improve-
imposed during each time period. The conjunctive-use-in-time ment in solution was found over 80Q00 times the number of
model involves eight decision variable®ight variables of decision variablesterations(or chaing at any given temperature.
groundwater at demand point) Bor the eight time periods, and  The temperature was reduced with a cooling ratio equal to 0.10. It
hence there are a total of &@onfigurations. The objective was assumed that the termination criterion was met if four suc-
function here is to minimize drawdown volume alone. This prob- cessive temperature reductions did not yield any improvement in
lem cannot be solved by enumeration. Therefore, the SA algo-the solution. The solution took nearly 90 min of CPU time on a
rithm that embeds the SHARP model as shown in Fig. 3 was microcomputer.
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Example 2 was designed such that the optimal solution was
obvious and could be determined intuitively, and therefore the
performance of the proposed SA-based optimization model could Py .
be evaluated. The optimal solution could be obtained in this case v
by inspecting the input data of Fig. 7 and Table 2. The trial solu- P, . v \v 5 1
tion is found by fully utilizing available surface water during each b,
time period and maximizing injection while ensuring that supply-
demand constraints are satisfied for each time period. The con-
straints pertaining to state variables for the trial configuration
were verified separately by executing SHARP model indepen- . 54 Z
dently and computing the drawdown volume. The resulting intui- nputiaver
tive optimal solution is shown in Fig.(&. However, the solution

Output Layer =2

X X i . ) X X P =input layer vector;
obtained using the SA algorithriFig. 3), as discussed in the Hidden layer = 6 W, = input weights matrix;
. . . . . W, = hidden layer matrix;
previous paragraph, was suboptimal with respect to the intuitive by = bias vector for hidden layer;
: : : N : b, =bias vector for output layer; and
optimal solution. The annealing parameters were modified by trial Y= f(P'W, +b).W,+b, Y = output ayer vector
and error, with limited success. The only option left was to in-

Where f is given by Equation 12

crease the chain length and termination criteria. However, this
substantially increases the computational burden. Therefore, therjg g Architecture of three-layer feed-forward network of an
SHARP model was replaced with an ANN to facilitate longer gapificial neural network

chain lengths for obtaining improved solutions.

A feed-forward, three-layer network was trained using SHARP
input/output data sets. The feed-forward network with the back- are prone to all types of errotsuch as instrumental errors, mea-
propagation algorithm consisted of three layérgut, hidden, surement errors, ej¢.the output responses to be modeled by the
and output, as implemented iMATLAB (2000. The network ANN here are generated by a physically based simulation model.
utilizes a sigmoidal transfer function and a pure linear function. As such, any number of data sets could be generated. In view of
The input (decision variablgsincluded pumpagef/injection for  the above, the ANN mimics the SHARP model very well. This is
each time period at the demand center B, and the output includedevident from the goodness of fit for calibratigh,500 setsand
the corresponding SHARP responses in terms of freshwater headsalidation(500 sety as shown in Fig. 9. The ANN takes less than
and interface depth at B and the sum of drawdown volumes for 15 min of time(on a micro P for each of the 8 training sets and
the delta at the end of the eighilast time period. The drawdown  in most cases converges in less than 25 epochs.
volume was computed for each grid cell as the volume of cell ~ With the ANN as the simulator, the computational time of
above freshwater head up to ground level. For this purpose,simulation was very small and improved solutions were obtained
ground level for all cells was assumed to be 10.0 m for the entire when compared to those using the SHARP simulator. The optimal
delta. solution was also consistent with the intuitive solution discussed

For training, nearly 2,000 feasible input/output data $pés- previously and shown in Fig.(@. The optimal solution with the
terng were randomly generated using SA/SHARP cdBigy. 3 ANN as simulator with very long chain lengtf&00 times the
for each time period under relaxed constraints pertaining to the number of decision variables, that is, 1,6G8kes only a few
state variables. The relaxation was to ensure that ANN was minutes on a microcomputer compared to 90 min with the
trained over a wide range of inputs/outputs. Random integers SHARP simulator. The evolution of the model solution for the SA
from 1 to 10 were generated using a library function. This integer procedure with the ANN as simulatéthe same annealing param-
was linked to the index level of discrete variables listed in Table eter values were used as discussed eaiteshown in Figs. 10
2 to assign pumping/injection at the demand center B for eachand 11.
time period. Of the 2,000 data sets, 1,500 were used for calibra- The results of the conjunctive-use-in-time model help in com-
tion and 500 for validation. The data sets were normalized and paring two scenarios. The first scenario is the one mostly in prac-
trained with a back-propagation algorithm as implemented in tice today, wherein surface water is utilized to its maximum ex-
MATLAR tent, while groundwater is used only when the demand is not met

A typical architecturdsupervised trainingof network training from surface-water sources. Although this practice is also con-
for the fourth time period is shown in Fig. 8. The network has
four inputs (corresponding to injections/pumpages at the end of
the fourth time period at Bin the first layer, six neurons in the 5 s — -
second hidden layer, and two outpésrresponding to head and | Cafibration  R’=089 Validaton R0
interface depth and at demand centeiiiBthe third output layer.

The goal was to minimize the sum-of-square errors as discussed
before. Thus, ANN weights and biases for eight training sets for
the eight time periods were obtained. A small subroutine was
coded to replace the SHARP model using the ANN weights and
biases. The subroutine involves only matrix multiplication to

ANN Simulated Heads (m}
ANN Simulated Heads {m)

compute SHARP responses at B and hence requires very little 1 - —————
computational time. 1 2 3 . 5 1 2 3 4 5
The number of data sets or patterns required for training is SHARP computed Heads (m) SHARP computed Heads (m)

generally important for ANN modeling and must be kept to a
minimum. The goodness of fitR?) must be high and time con-
sumed for training should be minimal. Unlike observed data that

Fig. 9. Goodness of fit for typical data set using an artificial neural
network (ANN) simulator
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8.84x10° way. In other words the planning horizon for conjunctive use in
i time must be consistent with aquifer properties.

8.83x10°—{

8.82x10° | . . . .
_ Conjunctive Use in Space and Time

8.81x10° -

] In Example 3, the real problems invariably come under the do-

Objective Function {Drawdown Volume in m’ )

8.80x10° main of conjunctive use in space and time. The space-time model
R . ‘ has two objectives: To mi_nimize the cost as well as to obtain th_e
T T T e T ewe drawdown volume objective. In this case, as the number of vari-
Number of evaluations ables and constraints is much more, resulting in a phenomenal

increase in computational time. Thus the SA algorithm using the

Fig. 10. Evolution of model solution SHARP simulator is not practical unless the equilibrium and ter-

mination criterion are kept very small, which may lead to subop-
timal solutions. The input data set is a combination of the previ-

junctive use of surface water and groundwater, it involves wasting ©US tWo examples and is shown in Figs(d20. The range of
of surface water during surplus periods. The second scenario isdiScréte variables also remains the same as in Table 2. The de-
the optimal solution obtained from the present model, which takes Mand center locations, constraints, and cost coefficients of Ex-
advantage of groundwater storage during surplus flows throughamF"e 1, and the temporal variations in rainfall and the resulting
injection and conjunctively allocates surface water and groundwa- Surface flows during eight time periods and groundwater re-
ter. The two solutions are shown in Fig¢d7and @ for the pur- charge, as in Example 2, were adopted. Thus, for |.IIustr§1t|on of.
pose of comparison. the space-time model, three demand centers and eight time peri-
The two scenarios of conjunctive use with and without ©dS were consideretcombination of examples 1 and.2The
groundwater storage as shown in Figf) Tnust be viewed in the demand was varied in space but was kept constant with respect to
context of sustainability. The groundwater levels at demand cen-time, while a minimum surface-water flow of 0.5 units was en-
ter B for conjunctive use without groundwater storage fall below Suréd at each location and time step. .
permissible levels of sustainable rechar@ebitrarily assumed ~ Considering the computational burden involved, the SHARP
here as 2.0 inby the end of the planning horizon and normally mputs/outpqts_ for ngarly 5,000 feasible c_onﬁgyratlons. were used
should not be acceptable. In other words, no feasible solution isfor ANN training usingMATLAB for the eight time periods, on
possible without depleting groundwater storage below acceptable!'nes similar to thosg _dlsgussed in the previous section. The input
levels. On the other hand, groundwater levels for conjunctive use iNcluded pumpage/injection for each time period. The output in-
with groundwater storage as proposed in the present model ensur&luded SHARP responses in terms of heaalslocations A, B,
that all constraints are met in space and time on a sustainable2nd O, interface deptHat location @, and drawdown volume for
basis[Fig. 7(f)]. the delta_ at the end _of the eighth tlm_e period. Thus e_|ght set§ of
The model results are sensitive to the aquifer parameters ANN weights and biases were obtained corresponding to eight
Modification of the aquifer parameters affects head and interface ime periods. The ANN S|mzulat|ons stood justified with high cor-
depth(state variablesand hence the feasible domain. Numerical relations(0.98-0.99 and R (0.96-0.98 values for calibration
experimentation has shown that the drawdown volume objective for all €ight data sets. _
decreases with an increase in porosity and with a decrease in "€ SA algorithm incorporated an ANN as the simulator to
hydraulic conductivity. Therefore the proposed methodology is d€términe the optimal configurations, and the annealing param-
suitable to coastal deltas of east India that exhibit silty-clayey €t€rs were set as in the previous section. Since the space-time
soils (with high porosity and low conductivitysuch that ground- ~ Model involves two objectives, one of them was imposed as an
water is conserved during surplus periods and utilized later during @dditional constraint such that the results could be interpreted
drought periods. Further, the methodology could be formulated from the tradeoff curve. Several optimal solutions were obtained
with shorter time stepéfor example, 4 monthsto raise a third DY minimizing the drawdown volume objective while imposing
crop during the year. This, however, could be more meaningful _the cost opject|ve as a constraint. Arriving at a tradepff curve
for sandy soils where storing water underground becomes moremvolves stringent constraints. The tradeoff curve for this case is

difficult because stored groundwater may drain into the sea any-Presented in Fig. 1®). The midpoint of the tradeoff curve is most
difficult to optimize and takes 2.5 h of CPU time on the micro-
computer with a chain length set at 1,200 iterati¢tisat is, 50
times the number of decision variablesd termination criteria at
100 . 4. The end points take only a few minutes, even with longer chain
{ T lengths of 2,400, since only one objective is optimized. The other
7 points take intermediate computational time.
60 Point X on the tradeoff curvgFig. 124f)] corresponds to the
w0 | minimum drawdown volume objective, unconstrained by the cost
4 objective. The optimal configuration for surface and groundwater
® allocations corresponding to poiktare shown in Figs. 1@ and
0 e). Similarly, pointY was optimized for the cost objective, uncon-
L L LA UL S L LA A LA strained by the drawdown objective. For each time period the
1* o’ o o 1o 0 ° optimal allocation of surface and groundwater for poixtand Y
Temperature are also listed in Table 4.
The explanation for poinX in Fig. 12f) and Table 4 is as
ows. The surface-water allocatidfrig. 12d)] during the first

Percentage of acceptance

Fig. 11. Evolution of percentage of acceptance with temperature foll
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Fig. 12. Conjunctive use in space and time for hypothetical delta

time period(or seasonat A, B, and C locations is 0.5, 2.0, and time periods. In other words, the model & maximizes
1.0 unit, respectively. For the same time period the groundwater groundwater reserves as in Example (@njunctive use in
extraction(or injection shown with a negative sigis 0.5, —1.0, time) but results in high cost involving groundwater injection.
and —0.5 units, respectiveljfFig. 12e)]. Thus the demand, sup- On the other hand, point (as evident from Table)4corresponds
ply, and minimum flow constraints at the three locations are sat-to the minimum cost solution, as emphasized in Example 1
isfied during the period. Similarly the constraints are satisfied for (conjunctive use in spagebut involves wastage of available
the remaining time periods. The SHARP constraints pertaining to surplus surface water during the 1st, 3rd, and 5th time periods.
state variables were also verified independently in space and timeThe relative cost of surface and groundwater fixes the optimal
for the optimal configuration. cost configuration with little or no room for injection involving
At X, the management model tries to fully utilize surface high cost. Table 4 shows the minimum cost configuration
water during all time periods and inject surplus surface (for pointY) with no injection to the groundwater reservoir. Thus
water to the groundwater reservoir that could be used at laterthe tradeoff curve enables the decision maker to prioritize be-
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Table 4. Optimal Allocation of Surface and Groundwater in VoluiiMillion Cubic Meterg—Conjunctive-Use-in-Space-and-Time Model

Time periods(seasons

2.0 3.0 2.0 4.5 2.0 15 15

35

Surface water availability

Location

Minimum drawdown volume objectivécorresponding to poinX on trade off curve

10 05 10 10 O05 10 10 05 10 10 05 10 10 O5 10 10 05 10 10 O5 10 10 OS5

1.0

Demand

1.00 050 050 050 050 050 050 oO.

050 200 1.00 050 050 050 050 200 050 050 1.00 050 050 250 150 0.50

Surface water

0.50 0.00 0.00 050 0.50 0.00 050 0.50 0.0

0.00 050 0.00 0.00 0.50

0.50 050 0.00 0.50

1.00 0.50 —

0.50

Groundwater extraction

1.50 1.00

Groundwater injection

Minimum cost objectivgcorresponding to poinY on trade-off curve

100 050 050 050 050 050 050 050 oO.

1.00 0.50 0.50

1.00 050 100 050 050 050 050 050 050 0.50 0.50

0.50

Surface water

0.50 0.00 0.00 0.00 050 0.00 050 050 0.00 050 050 0.00 000 050 0.00 000 050 0.00 050 050 0.00 050 050 O

Groundwater extraction

tween cost and conservation of groundwdtiawdown volumeg
for the simple case of three demand centers and eight time peri-
ods.

Computational Time Reduction

Although enumeration or brute-force methods guarantee global
optimal solutions for nonconvex combinatorial problems, this is
not practically possible with presently available computing
power. The SA procedure with SHARP as the simulator intro-
duces a computational time burden that has two distinct compo-
nents. The first component is due to the time consumed by the
simulator(function call3. This can be reduced to near zero with
the ANN as simulator. The second component is the average time
consumed for generating a feasible configuration until equilib-
rium and termination criteria are met. This is significantly reduced
through efficient algorithmic guidance in two stagély:A proce-
dure for generating a configuration that is always feasible;(and

a perturbation procedure called genetic rearrangeroergxcur-
sion limiting). At the initial temperature the number of iterations
is large, mainly due to infeasible solutions, while at the final
temperature the uphill moves are too many. The sum of the first
two components put together and multiplied by the total number
of iterations(or chaing determines the total CPU time. The total
number of iterations depends on the problem tackled and on the
annealing parameters. Therefore, the CPU time is known only
after the actual model run.

It is clear that the ANN can only reduce the computational
burden arising from the first component but can do little in respect
of the second, besides thermal equilibrium and termination crite-
ria inherent to the SA procedure. Therefore, the proposed meth-
odology has no limitation in terms of the areal extent of deltas,
since the ANN virtually reduces the time taken by the simulator to
near zero. However, the restriction is imposed in terms of the
number of decision variables and constraints implied in all large
delta systems.

The writers’ experience in the course of developing the model
showed that a shorter chain length of about 20 to 30 times the
number of decision variables was generally adequate. The im-
provement in the solution thereafter was mostly marginal; Dough-
erty and Marryot{1991) also mentioned this in their paper. How-
ever, for the third exampléconjunctive use in space and tiine
chain lengths of 100 times the number of decision variables were
adopted in arriving at near-optimal solutions in the present study,
except for the midpoint of the tradeoff curve where the chain
length was limited to 50 times the number of decision variables
(due to stringent constraintsThe role of the perturbation proce-
dure in most cases was found to be relatively small in terms of
computational time and marginal in terms of objective function
improvement.

While the ANN reduces the computational burden in terms of
time and facilitates longer chain lengths and tighter constraints, it
reduces the overall efficiendyith respect to global optimuyof
the model. This is a result of the fact that the ANN mimics the
SHARP model imperfectly, which in turn also mimics the real
physical system. Although the simulations by the ANN are very
good, the reproduction cannot be exactly the same, resulting in a
slightly altered feasible domain that may or may not contain the
optimal solution obtained with SHARP as the simulator. Johnson
and Rogerg2000 have, however, concluded that the ANN virtu-
ally replaces the full model. This is indeed true only within the
range of input values for which the ANN is trained, but not oth-
erwise as an extrapolatGASCE 2000. In general, there will be
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