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Conjunctive Use of Surface and Groundwater for Coastal
and Deltaic Systems

S. V. N. Rao1; S. Murty Bhallamudi2; B. S. Thandaveswara3; and G. C. Mishra4

Abstract: A regional conjunctive use model is developed for a near-real deltaic aquifer system, irrigated from a diversion sys
some reference to hydrogeoclimatic conditions prevalent in the east coastal deltas of India. Water resources are sufficiently
these regions under average monsoon rainfall conditions, but their distribution in space and time has been ever challengin
managers. Surface-water availability shows temporal fluctuations in terms of floods and droughts, and groundwater availab
mainly spatial variability in terms of quality and quantity due to the hydrogeologic setting, boundary conditions, and aquifer p
The combined simulation-optimization model proposed in this study is solved as a nonlinear, nonconvex combinatorial proble
simulated annealing algorithm and an existing sharp interface model. The computational burden is managed within practical ti
by replacing the flow simulator with artificial neural networks and using efficient algorithmic guidance.

DOI: 10.1061/~ASCE!0733-9496~2004!130:3~255!

CE Database subject headings: Surface water; Ground water; India; Water use; Water resources management.
but in
und-
e or

ater/
total

um of
m an

gions
is-

, and
ut of
ften
pec-
sues

awate
ones

there

roach
perse
.
in
f high

sis of
ump-
inter-

1990;

Willis
ta
water
gh a
es re-
been
eltaic

d
el are
thods
es.
o get
heu-
rpose
aling

and
ca-
s in

rnary

te of

ogy,

ogy,

Indian

sions
te by
ging
pos-
his

e-
4/3-
Introduction

Conjunctive use has been defined in more ways than one,
general it is defined as the allocation of surface water and gro
water in terms of quantity and/or quality so as to achieve on
more objectives while satisfying certain constraints. Coe~1990!
defined conjunctive use with reference to stream diversion~or
run-of-the-river! systems as the management of groundw
surface water in a coordinated operation to the end that the
yield of such a system over a period of years exceeds the s
yields of the separate components of the system resulting fro
uncoordinated operation.

Management of water resources in coastal and deltaic re
irrigated by run-of-the-river schemes involves primarily two
sues: First, availability of water resources in space and time
second, seawater intrusion. Improper management arising o
excessive irrigation or increased groundwater exploitation o
leads to waterlogging or seawater intrusion problems, res
tively. Any conjunctive use model must address these two is
for application to coastal and deltaic regions.

Two general approaches have been used to simulate se
intrusion in coastal aquifers. The freshwater and saltwater z
within an aquifer are separated by a transition zone in which
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is a gradual change in density. The disperse interface app
explicitly represents the presence of this zone. Although dis
density dependent flow and transport models~Huyakorn et al
1987; Das and Datta 1999! are presently available, their use
management models has been somewhat limited because o
computational burden. The second approach to the analy
seawater intrusion problems is based on the simplifying ass
tion that the transition zone can be represented by a sharp
face ~Bear and Dagan 1964; Polo and Ramis 1983; Essaid
Bakker 2003!.

Combined simulation-optimization models~Gorelick 1983!
have been widely used to address the management issues.
and Finney~1988!, Emch and Yeh~1998!, and Das and Dat
~1999!, among others, have proposed a number of ground
management models applicable for coastal aquifers. Althou
number of studies have been reported on management issu
lated to coastal aquifers in general, not much attention has
paid to the issues unique to groundwater management in d
regions.

Also, as stated by Emch and Yeh~1998!, the objectives an
constraints in a coastal or deltaic aquifer management mod
typically nonlinear, and therefore use of gradient-based me
for solving the optimization problem is beset with difficulti
Gradient-based methods for these problems are liable t
trapped in a local minimum. During the last 10 to 15 years,
ristic or nonexact methods have been developed for the pu
of correcting this problem. Among these, simulated anne
~SA! ~Dougherty and Marryott 1991! and genetic algorithm~GA!
are the two most popular methods. More recently, Wang
Zheng~1998! and Cunha~1999! have demonstrated the appli
tion of SA to hypothetical groundwater management problem
noncoastal regions.

Description of Study

Several coastal deltas of east India evolved during the Quate

period with the deposition of sediment from large river basins
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over geologic time. The deltas are highly productive aquifers
intense agricultural activity. Traditionally, the land use has b
mostly rice cultivation during the two main seasons, each
months’ duration, that is, the monsoon~Kharif crop! and nonmon
soon ~Rabi crop! seasons. The Rabi crop is fully dependen
irrigation from diversion schemes or from groundwater source
third crop is also grown in some areas but is not very comm
The silty-clayey alluvial aquifers are mostly unconfined, wit
shallow water table that exhibits flat gradients. The spatial
ability of fresh groundwater in deltas depends mainly upon
drogeologic setting, proximity to the sea, and the presenc
paleochannels. The hydrology of deltas is largely influence
erratic monsoon rainfall that affects groundwater recharge d
the monsoon season and surface-water availability during
seasons. This poses challenges to optimal utilization of wat
sources in the deltaic areas.

In the present study, an operational planning model is d
oped on a regional basis~macro level! for conjunctive use o
surface water and groundwater in a coastal and deltaic env
ment under existing irrigation from a diversion system. In
study, conjunctive use is defined as the allocation of surface
and groundwater such that groundwater storage is induced a
able locations during surplus~mainly monsoon season! surface
water flows and depleted during both periods. Single- and
objective management models are formulated as combina
optimization problems. The two objectives are minimization
the operational cost of supplying and providing surface wate
groundwater at the demand centers, and maximization~or conser
vation! of groundwater storage in space and time.

One of the main focuses of this study is to address the
tuation in the availability of surface-water and groundwater
sources in space and time through conjunctive use. Flow sim
tion is accomplished using the SHARP interface model~Essaid
1990!, which is suitable for a coastal environment on a regi
basis. The computational time burden associated with a heu
search method is reduced by replacing the SHARP simulator
a trained artificial neural network~ANN! at points of interest an
through efficient algorithmic guidance. Although the study a
has some reference to the hydrogeoclimatic conditions prev
in the east coastal deltas of India, only hypothetical or idea
examples are used to illustrate the application of the concep
methodology.

Model Formulation

The model is formulated as an operational planning model
the infrastructure is assumed already in place. The manage
model is formulated to meet the consumptive demands thr
optimal allocation of surface water and groundwater in space
time. The irrigation requirements are met from a diversion s
ture ~surface water! and groundwater sources in the delta sys
The water table is assumed to be below the root zone, suc
groundwater is available only by pumping. The surface-w
availability shows temporal fluctuations in terms of floods
drought conditions. The fresh groundwater availability shows
tial variability due to the hydrogeologic setting, aquifer prop
ties, and boundary conditions. These spatial and temporal
tions in the surface water and groundwater common to de
systems are embedded as constraints within the manag
model. The water-quality constraint is met indirectly by ensu
that well screens are above the freshwater-saltwater interfac

In the course of developing and testing the proposed me

ology, hypothetical data sets representing a simplified unconfined

256 / JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT
t

t

deltaic aquifer system~Fig. 1! are used. The aquifer system
assumed to be unconfined, with fresh water and saltwater
rated by a sharp interface. The SHARP model, as discussed
simulates the unconfined aquifer flow system as a single lay
an isotropic, homogeneous system. The river branches and s
assumed to be constant head boundaries. Average rainfa
charge, surface-water availability, and demand during each
period~monsoon or nonmonsoon season! are inputs to the mode
which uses time steps of 6 months for macro level operat
planning and hence uses volumes as input rather than rates.
ever, the volumes are converted into rates while running
SHARP model over the seasonal time step.

The management model of this aquifer system involves
conflicting objectives and constraints pertaining to decision
state variables. The model is required to conjunctively allo
groundwater~decision variable! and surface water at each of
demand centers representing a response zone in the deltaic
so as to minimize operational costs, maximize groundwate
serves~or minimize drawdown volumes as a surrogate objec!
at the end of the planning horizon, and satisfy a given s
constraints in space and time. The groundwater pumpage
allowed to take negative, zero, or positive values within a s
fied range. It is important to note that groundwater pumpages
negative values~injection! only if surplus surface water is ava
able. Further, at a specific time and location~demand center!,
either injection or pumpage can occur; both cannot occur s
taneously.

Surface-water allocation takes only positive values so a
meet the balance of demand and is also subject to a certain
mum flow. The minimum-flow constraint reflects operational c
siderations that the canal cannot be operated unless a c
minimum discharge is maintained. The state variables inc
freshwater heads, saltwater heads, and interface elevation
objectives and constraints of the problem are formulated e
directly as functions of decision variables, indirectly as a func
of state variables, or both. The problem has a nonlinear obje
function and nonlinear constraints. Since two conflicting ob
tives have to be optimized, the final choice has to be made fr
tradeoff curve. Mathematically, the two objectives are formul
as follows:

Cost Objective

Min Z15 (
n51

N F (
k51

K

Cs•k$Dk,n2Qg•k,n%1(
k51

K

Cg•kuQg•k,nuG
(1)

Drawdown Volume (Surrogate) Objective

Min Z25(
i 51

I

(
j 51

J

@~Li , j2hf
• i , j ,N

!A# (2)

Fig. 1. Definition sketch of deltaic system
subject to:
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1. Surface-water minimum-flow constraint at each deman
cation and time period

Qs•k,n5Dk,n2Qg•k,n>Qmin ; k and n (3)

2. Surface-water availability constraint for each time perio

(
k51

K

~Dk,n2Qg•k,n!<Qn ; n (4)

3. Drawdown elevation~head! constraint at each node

hf ~ i , j ,n!>Hmin~i,j! ; i, j, and n (5)

4. Waterlogging constraint at each node

hf ~ i , j ,n!<Hmax~i,j! ; i, j, and n (6)

5. Interface elevation constraint at coastal nodes

z~ i , j ,n!<Zmin~i,j! ; i, j, and n (7)

6. Hydraulic response equations~continuity! of the simulator in
which, Cs5cost of providing unit surface water;Cg5cost of
providing unit supply from ground water sour
Dk5demand at centerk @L3#; Li , j5ground elevation at nod
i , j @L#; hf ( i , j )5fresh water head at nodei , j @L3#;
Qg5volume of water supplied from ground water sou
@L3#; Qs5volume of water supplied from surface sou
@L3#; N5number of the time periods~seasonal!; I 5number
of rows;J5number of columns;K5number of demand ce
ters; Qn5surface-water availability fornth time period
A5area of the grid node@L2#; Qmin5minimum flow in the
canal @L3#; Hmin(i , j )5prescribed minimum head at no
i , j @L#; Hmax(i,j)5prescribed maximum head at nodei , j @L#;
zi , j ,n5interface elevation at nodei , j and the end of perio
n @L#; and zmax(i,j)5prescribed interface elevation at no
i , j @L#.

7. As all facilities are assumed to be in existence, no ca
costs are considered and all unit costs pertain only to en
operation, and maintenance. The cost function is linea
surface-water supplies but nonlinear for groundwater pu
ages, as it is a function of both discharge~unit volume! and
head~or depth!. The unit cost of groundwater is assumed
be cheaper than surface water at some midpoint in the
The unit costs at other locations are computed relatively.

Fig. 2. Coastal aquifer sys
unit cost of injected water is much more expensive as it

JOURNAL OF WATER RESOURCE
involves both surface-water transport and injection u
pressure. A high unit cost of injected water is assumed in
study, independent of location and depth.

Solution Methodology

The methodology adapted in this study uses a comb
simulation-optimization approach~Gorelick 1983!. A code was
developed by interfacing the SA algorithm~optimizer! with the
SHARP model as a subroutine. The SHARP simulator is su
quently replaced with the ANN model to reduce computati
burden. The simulator~SHARP model!, the optimizer~SA algo-
rithm!, and the ANN are briefly discussed below.

Flow Model—SHARP as Simulator

SHARP~Essaid 1990!, the multilayered, two-fluid sharp interfa
model used in this study, is a quasi-3D finite-difference mod
simultaneously solves the freshwater and saltwater flow equa
coupled by the boundary condition at the interface such tha
pressures are equal on either side~Fig. 2!. The coupled, nonline
partial differential equations given below must be solved at
node:

@SfBf1n~a1d!#
]hf

]t
2n~11d!

]hs

]t

5
]

]x S Bf xK f x

]hf

]x D1
]

]y S Bf yK f y

]hf

]y D1Qf (8)

@SsBs1n~11d!#
]hs

]t
2nd

]hf

]t

5
]

]x S BsxKsx

]hs

]x D ] 1
]

]y S BsyKsy

]hs

]y D1Qs (9)

zi5~11d!hs2dhf (10)

in which,n5effective porosity;a51 for an unconfined aquifer,
for confined aquifer;hf ,hs5fresh and saltwater hydraulic hea
@L#; Sf ,Ss5fresh and saltwater specific storage@L21#;
K f x,Ksx,K f y,Ksy5fresh and saltwater hydraulic conductivity inx
and y directions @L T21#; Bf ,Bs5fresh and saltwater satura
thickness @L#; Qf ,Qs5fresh and saltwater source/sink ter
~pumpage, recharge@L T21#; zi5interface elevation@L#; d
5g f /(gs2g f); and g f ,gs5fresh water and saltwater spec

22 22

s represented in SHARP model
tem a
weights@M L T #.
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Simulated Annealing Algorithm

In this study a simulated annealing~SA! algorithm is used so th
a near-optimal solution can be obtained for the management
lem. The SA algorithm with the perturbation procedure is suit
for discrete values of decision variables. Therefore, altho
groundwater pumpages and surface-water allocations are
cally continuous variables, they are treated as discrete variab
this study. Also, these variables could be considered as dis
variables from practical and operational considerations. Firs
an allocation model using seasonal time steps, the primary o
tive is only to arrive at a broad macro-level operational plan
schedule; second, pumps have discrete capacities and cana
be operated for certain minimum flows.

It may also be noted here that the inaccuracies arising o
the above treatment can be further reduced by implementin
SA algorithm along with the bracketing procedure~Dougherty
and Marryott 1991!. Therefore, in the present study groundw
pumpages are considered discrete variables and the mo
solved as a combinatorial problem. In the proposed conjun
use model, since groundwater pumpages/injections assum
crete values, the surface water~although not a decision variab!
also assumes discrete values because it must meet the bala
the demand~through constraints! at any point in space and tim
It is assumed that the pump capacities and canal capacitie
consistent within the range of decision variables used
pumping/injection and delivery of surface water from the di
sion point to the demand center.

SA is a heuristic algorithm to find near-optimum soluti
~Kirkpatrick et al. 1983!. In this method, each decision variable
restricted to a set of possible discrete values. Each combinat
decision variables, that is, the decision vector, is called a con
ration. For example if there are five decision variables and ea
allowed to take a value from a set of 10 possible discrete va
then there would be 105 configurations. The set of all possib
combinations constitutes the configuration space. The basic
of the method is to generate a random configuration~trial point!
iteratively through perturbation and evaluate the objective f
tion and the constraints after determining the state variable
using the simulator.

If the trial point results in infeasibility, that is, if the constrai
are violated, it is rejected and a new point is generated. If the
point is feasible and the objective functions value is smaller
the current best value~for a minimization problem!, then the poin
is accepted and the record for the best value is updated. If th
point results in feasibility but the objective function is higher t
the current best value, then the trial point is either accepte
rejected using the Metropolis criterion~Metropolis et al. 1953!.
This is implemented by generating a random deviate, unifo
distributed on the interval~0,1!. If the random deviate thus ge
erated is smaller than the acceptance probability, then the
move is accepted.

In computing the probability for the acceptance of an up
move, a parameter called temperature is used. For the opti
tion problem, this temperature can be a target value for the
function corresponding to a global minimum. Initially, a lar
temperature or target value is selected. As the trials progres
value is progressively reduced using a cooling factor. The a
tance probability of uphill moves steadily decreases to zero a
temperature is reduced. Thus, in the initial stages the meth
likely to accept worse configurations, while in the final stages

worse designs are almost always rejected.
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The entire process is terminated after performing a fairly l
number of trials or chains~iterations!. The strategy avoids gettin
trapped in a local minimum. The initial temperature, cooling
tor, chain length, and termination criteria are referred to as
nealing parameters. These are difficult to determine~Wang and
Zheng 1998!, but certain guidelines have been defined by Do
erty and Marryott~1991!, Cunha~1999!, and others, for choosin
the values of these parameters.

Algorithmic Guidance

The algorithmic representation of the SA along with the SHA
simulation model is shown in Fig. 3. The SA code generat
random configuration, modifies the SHARP input file, exec
the simulation model, and verifies the constraints during
iterative step~referred to as a chain!. Thus the optimizer~SA!
calls the external simulator~SHARP! repeatedly. The SA explor
the objective function’s nonconvex surface randomly and trie
optimize the function while moving both uphill and downh
Once the termination criterion is met, the optimal solution co
sponds to the minimum cost configuration. As the number o
cision variables and constraints increases or as the constrain
tighter, the number of infeasible solutions also increases. T
fore, two procedures are adopted to reduce the computa
time burden. First, an efficient algorithmic guidance is use
generate only feasible configurations. This includes a perturb

Fig. 3. Scheme of solution procedure using simulated annea
procedure called excursion limiting for early convergence
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~Dougherty and Marryott 1991!. Second, the simulator is replac
by a trained ANN to obtain the values of the state variable
points of interest.

Algorithmic guidance ensures that only feasible configurat
are generated before the simulator is called. This is made po
by terminating trial configurations that are infeasible at the e
est stage, rather than verifying supply and demand const
after generating the whole configuration. The perturbation p
dure used in this study~genetic rearrangement! has been dis
cussed in detail by Dougherty and Marryott~1991!.

Artificial Neural Network as Simulator

The optimization process involves calling the simulator sev
thousands of times to verify the constraints. This involves a
nificant amount of computational time. The computational bu
is generally high in all combined simulation-optimization mod
and more so with heuristic methods, and hence there is a ne
reduce this computational time. This is largely achieved in
study by replacing the SHARP model with trained neural
works.

ANN is discussed in detail in ASCE Task Committee~2000!,
Aly and Peralta~1999!, and the ANN toolbox ofMATLAB~2000!.
In this study a feedforward, error back-propagation networ
used wherein the goal of ANN is to establish a relation of
form

~Ym!5 f ~Xn! (11)

where Xn5n-dimensional input vector consisting
x1 ,x2 ,...,xn ; Ym5m-dimensional output or target vector cons
ing of resulting variables of interesty1 ,y2 ,...,yn ; and f (.)
5commonly used sigmoidal transfer function given by

f ~ t !51/@11exp~2t !# (12)

The network is trained to determine the weights and bias
as to minimize the error function given by

E5(
P

(
p

~yi2t i !
2 (13)

whereyi5ANN output; t i5desired output;p5number of outpu
nodes; andP5number of training patterns or data sets.

Results and Discussions

The conjunctive use allocation model is discussed in three s
with the help of simple illustrative examples. The purpose he
to obtain a clear understanding of concept and methodology

Fig. 4. Sketch of h
three stages are

JOURNAL OF WATER RESOURCE
1. Conjunctive use in space for the cost objective~one time
period with several demand centers—Example 1!;

2. Conjunctive use in time for the drawdown volume objec
~one demand center with several time periods—Exampl!;
and

3. Conjunctive use in space and time for both cost and d
down volume objectives~combination of 1 and 2 above
Example 3!.

The conjunctive-use-in-space model with the cost obje
primarily seeks to address the spatial variability in the availab
of surface-water and groundwater resources and their res
costs. The unit cost of surface water varies linearly in space a
based on transport and losses that increase with distance
delivery point from the diversion point. The unit cost of grou
water, however, does not vary with space~except depth!. The
conjunctive-use-in-time model seeks to address the tempora
tuations in monsoon rainfall input and consequent variation
surface-water availability and groundwater recharge. This m
stores or conserves groundwater in the subsurface~or saturated!
zone through injection during surplus periods and pumps d
both periods to meet the demand in space and time. Th
achieved by minimizing the drawdown volume objective.
conjunctive-use-in-space-and-time model seeks to combine
objectives that must be commonly addressed in any real sy

Conjunctive Use in Space

In Example 1, the simplified deltaic system shown in Fig.
considered for one time period with three demand centers at
and C. The availability and extent of fresh groundwater in de
systems may be limited from various considerations, depen
on boundary conditions such as proximity to the sea, dep
interface, depth of drawdown~based on sustainable recharge!, and
aquifer properties. In this example the interface depth cons
applies only to wells closer to the coast.

The idealized unconfined aquifer system was discretized i
form of a delta~triangle!, as shown in Fig. 4. The delta is assum
to be sloping toward the sea in a stepped manner, with gr
elevations at A, B, and C being 10, 7, and 5 m, respectively,
respect to mean sea level. The boundary conditions encou
in near-real conditions are considered, as shown in Fig. 5
river branches were assigned constant head boundary cond
with head ranging from 7 to 0 m, decreasing linearly toward
sea. The sea boundary was similarly represented as a co
head boundary with zero elevation. Table 1 shows the aq
properties used as input for the SHARP model. The in

etical deltaic system
ypoth
groundwater levels were set at steady-state conditions.
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In this example, only three demand centers are consid
which implies three decision variables. Each decision var
was allowed to take 10 possible values~Table 2!, resulting in 103

configurations. The supply and demand at the three points fo
season~183 days! in terms of volume are shown in Figs. 6~a–c!.
The surface-water supply was restricted to 4.5 units (1
5106 m3); the demand at A, B, and C was assumed as 3.5
and 2 units, respectively; and the depth of each well was ass
as 50 m~that is, location of screen! from ground level. The inte
face depth was constrained at an elevation of260 m for the
coastal node~that is,Zmin at location C!, and the drawdown e
evations (Hmin) at A, B, and C were restricted to 3, 2, and 1
respectively. Similarly, the upper bounds, that is,Hmax from wa-
terlogging considerations, were set at 9, 6, and 4 m, respec
A minimum flow of 0.5 unit of surface water at each location w
also imposed. The unit costs~in some monetary units! of surface
water and groundwater are listed in Table 3.

The conjunctive-use-in-space model was implemented fo
cost objective using the SA procedure presented in Fig. 3. A
problem is of small size~three decision variables!, the optima
solution obtained by the proposed model could be verified
rectly by enumeration. The annealing parameters correspo
to initial temperature, reduction factor, chain length, and term
tion criterion were set at 5, 0.2, 300, and 4, respectively.

Fig. 5. Finite-differe

Table 1. Aquifer Properties Used as Input to SHARP Flow Mo
~Example 1!

Parameter Value

1. Area 120 km2

2. Hydraulic conductivity 2.05E204m/s
3. Specific storage of fresh/saltwater 1.0E207/m
4. Porosity 0.3
5. Areal recharge~10% of mean rainfall! 5.7E209 m/sa

6. Grid spacing (Dx) 1,000 m
7. Grid spacing (Dy except last two rows being 500 m! 1,000 m
8. Time step (Dt5one season56 months) 183 days

9. Specific gravity of seawater 1.025
10. Aquifer thickness 100 m
a
Varies with mean rainfall for examples 2 and 3.
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selection of annealing parameters is not of much significanc
the small problem considered here, but for problems invol
many decision variables, they need to be chosen judicious
discussed in later sections.

The global optimal minimum cost solution obtained using
and SHARP and also from enumeration was 20.5 monetary
~MU! and is shown in Fig. 6~d!. At A the model tries to alloca
maximum surface water, since it is nearest to the surface-
source, where the relative cost of surface water is lower
groundwater. However, it restricts surface water to only 2 u
and groundwater to 1.5 units, since groundwater availabili
restricted by drawdown elevation constraint at B and C. At B
relative cost of surface water and groundwater enables the m
to choose 1.5 units of surface water and 1 unit of groundwa
B. At location C the drawdown constraint forces the mode
allocate one unit each for surface water and groundwater
negative pumpages~injection!, however, do not enter the optim
solution as they involve high cost. The negative pumpages
waterlogging constraint become relevant for the conjunctive
in-time model, where cost is not a consideration, as discuss
the next section.

The groundwater levels at A, B, and C at the beginnin
simulation~that is, at the steady-state condition! were 5.02, 2.82
and 1.7 m, respectively, and the interface elevation at C fo
steady-state condition was268.1 m. The simulated water lev
at the end of the time period, corresponding to the opt
groundwater pumpages, were 4.11, 2.36, and 1.20 m at A, B
C, respectively, and also the interface depth at C was267.6 m. It
is important to note that at the coastal node C, while the gro
water level fell from 1.7 to 1.2 m~drawdown elevation constra
set at 1.0 m!, the interface moved upward from268.1 to267.6
m ~interface elevation constraint set at260.0 m! for the optima
configuration. If, however, the drawdown elevation constrai
relaxed from 1.0 to 0.75 m, an improved optimal solu

rid for SHARP model

Table 2. Discrete Values of Groundwater (106 m3) Decision
Variables~Extraction/Injection in Volume!

Starting value Step Ending value Number of value

22.0 0.5 2.5 10
nce g
© ASCE / MAY/JUNE 2004
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~19.4 MU! was obtained with an increase in groundwater pu
ing at C~that is, 1.5 units instead of 1.0 unit!. For this solution th
drawdown elevation and interface elevation at C were comp
as 0.8 and267.3 m, respectively. Thus the optimal solutions
the present case are limited by the drawdown elevation cons
rather than the interface elevation constraint. In general, inte
responses are slow, relative to head.

Conjunctive Use in Time

In Example 2, the simplified deltaic aquifer system discusse
the previous section is considered with one demand center. U
conditions typical of the Indian subcontinent, the monsoon

Fig. 6. Conjunctive use

Table 3. Unit Costs of Surface Water and Groundwater~in Monetary
Units!

Location Unit cost Depth range~m!

Surface water
A 1.0 —
B 1.5 —
C 2.0 —

Groundwatera

— 1.10 2–3
— 1.15 3–4
— 1.20 4–5
— 1.25 5–6
— 1.30 6–7

a
Unit cost of injection: 5.0~independent of location and depth!.

JOURNAL OF WATER RESOURCE
fall is not dependable and often results in surplus~flood! or deficit
~drought! conditions. The conjunctive-use-in-time model is
marily intended to address this temporal fluctuation in rai
input and the resulting surface-water flows and groundwate
charge. A uniform rainfall recharge was assumed~10% of rainfall!
over the study area during the monsoon season. It is assume
no rainfall occurs during the nonmonsoon season and hence
is no recharge; however, surface water is available due to
flow.

In Fig. 7, the diversion structure feeds the delta region
surface-water sources. The region is assumed to have one d
center located at some point B within the delta, and the gro
water is assumed to be injected/discharged from the well lo
at B. While a number of scenarios could be possibly imagin
typical case of two normal years followed by a flood year a
drought year is considered. The surface-water availability,
fall, and constant demand at B in terms of volume for each se
are shown in Figs. 7~a–c!. Each season was assumed to be
months duration, consistent with the two cropping sea
~Kharif and Rabi seasons! practiced during monsoon and no
monsoon seasons, respectively, in the coastal deltas. The pla
horizon was assumed to be of 4 years duration with a time st
6 months~that is, eight time periods!. From Fig. 7, it is clear tha
surface water alone cannot meet the demand, especially d
the nonmonsoon season. Groundwater must supplement t
mand. Further, during the fourth year~drought period with low
rainfall and low recharge!, when surface water cannot meet
demand, there is a possibility that even groundwater may n
able to meet the demand without being depleted beyond su

ace for hypothetical delta
in sp
able levels.
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The groundwater was allowed to take 10 discrete va
as in the previous example~Table 2!. The drawdown, wate
logging, and interface depths were constrained at eleva
of 1.75, 7, and 260 m with respect to mean sea lev
respectively. A minimum flow of 1 unit of surface water w
imposed during each time period. The conjunctive-use-in-
model involves eight decision variables~eight variables o
groundwater at demand point B! for the eight time periods, an
hence there are a total of 108 configurations. The objectiv
function here is to minimize drawdown volume alone. This p
lem cannot be solved by enumeration. Therefore, the SA

Fig. 7. Conjunctive us
rithm that embeds the SHARP model as shown in Fig. 3 was

262 / JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT
implemented. The annealing parameters were set based on
lines suggested by Dougherty and Marryott~1991!, Press et a
~1996!, and Cunha~1999!. The initial temperature (108) was se
such that more than 80% of the configurations were accept
was assumed that equilibrium was achieved when no imp
ment in solution was found over 800~100 times the number
decision variables! iterations~or chains! at any given temperatur
The temperature was reduced with a cooling ratio equal to 0.
was assumed that the termination criterion was met if four
cessive temperature reductions did not yield any improveme
the solution. The solution took nearly 90 min of CPU time o

me for hypothetical delta
e in ti
microcomputer.
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Example 2 was designed such that the optimal solution
obvious and could be determined intuitively, and therefore
performance of the proposed SA-based optimization model c
be evaluated. The optimal solution could be obtained in this
by inspecting the input data of Fig. 7 and Table 2. The trial s
tion is found by fully utilizing available surface water during e
time period and maximizing injection while ensuring that sup
demand constraints are satisfied for each time period. The
straints pertaining to state variables for the trial configura
were verified separately by executing SHARP model inde
dently and computing the drawdown volume. The resulting in
tive optimal solution is shown in Fig. 7~e!. However, the solutio
obtained using the SA algorithm~Fig. 3!, as discussed in th
previous paragraph, was suboptimal with respect to the intu
optimal solution. The annealing parameters were modified by
and error, with limited success. The only option left was to
crease the chain length and termination criteria. However,
substantially increases the computational burden. Therefor
SHARP model was replaced with an ANN to facilitate lon
chain lengths for obtaining improved solutions.

A feed-forward, three-layer network was trained using SHA
input/output data sets. The feed-forward network with the b
propagation algorithm consisted of three layers~input, hidden
and output!, as implemented inMATLAB ~2000!. The network
utilizes a sigmoidal transfer function and a pure linear func
The input ~decision variables! included pumpage/injection f
each time period at the demand center B, and the output inc
the corresponding SHARP responses in terms of freshwater
and interface depth at B and the sum of drawdown volume
the delta at the end of the eighth~last! time period. The drawdow
volume was computed for each grid cell as the volume of
above freshwater head up to ground level. For this purp
ground level for all cells was assumed to be 10.0 m for the e
delta.

For training, nearly 2,000 feasible input/output data sets~pat-
terns! were randomly generated using SA/SHARP code~Fig. 3!
for each time period under relaxed constraints pertaining to
state variables. The relaxation was to ensure that ANN
trained over a wide range of inputs/outputs. Random inte
from 1 to 10 were generated using a library function. This int
was linked to the index level of discrete variables listed in T
2 to assign pumping/injection at the demand center B for
time period. Of the 2,000 data sets, 1,500 were used for ca
tion and 500 for validation. The data sets were normalized
trained with a back-propagation algorithm as implemente
MATLAB.

A typical architecture~supervised training! of network training
for the fourth time period is shown in Fig. 8. The network
four inputs ~corresponding to injections/pumpages at the en
the fourth time period at B! in the first layer, six neurons in th
second hidden layer, and two outputs~corresponding to head a
interface depth and at demand center B! in the third output laye
The goal was to minimize the sum-of-square errors as disc
before. Thus, ANN weights and biases for eight training set
the eight time periods were obtained. A small subroutine
coded to replace the SHARP model using the ANN weights
biases. The subroutine involves only matrix multiplication
compute SHARP responses at B and hence requires very
computational time.

The number of data sets or patterns required for trainin
generally important for ANN modeling and must be kept t
minimum. The goodness of fit (R2) must be high and time co

sumed for training should be minimal. Unlike observed data that

JOURNAL OF WATER RESOURCE
are prone to all types of errors~such as instrumental errors, m
surement errors, etc.!, the output responses to be modeled by
ANN here are generated by a physically based simulation m
As such, any number of data sets could be generated. In vi
the above, the ANN mimics the SHARP model very well. Thi
evident from the goodness of fit for calibration~1,500 sets! and
validation~500 sets!, as shown in Fig. 9. The ANN takes less th
15 min of time~on a micro PC! for each of the 8 training sets a
in most cases converges in less than 25 epochs.

With the ANN as the simulator, the computational time
simulation was very small and improved solutions were obta
when compared to those using the SHARP simulator. The op
solution was also consistent with the intuitive solution discu
previously and shown in Fig. 7~e!. The optimal solution with th
ANN as simulator with very long chain lengths~200 times the
number of decision variables, that is, 1,600! takes only a few
minutes on a microcomputer compared to 90 min with
SHARP simulator. The evolution of the model solution for the
procedure with the ANN as simulator~the same annealing para
eter values were used as discussed earlier! is shown in Figs. 1
and 11.

The results of the conjunctive-use-in-time model help in c
paring two scenarios. The first scenario is the one mostly in
tice today, wherein surface water is utilized to its maximum
tent, while groundwater is used only when the demand is no
from surface-water sources. Although this practice is also

Fig. 8. Architecture of three-layer feed-forward network of
artificial neural network

Fig. 9. Goodness of fit for typical data set using an artificial ne
network ~ANN! simulator
S PLANNING AND MANAGEMENT © ASCE / MAY/JUNE 2004 / 263
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junctive use of surface water and groundwater, it involves wa
of surface water during surplus periods. The second scena
the optimal solution obtained from the present model, which t
advantage of groundwater storage during surplus flows thr
injection and conjunctively allocates surface water and groun
ter. The two solutions are shown in Figs. 7~d and e! for the pur-
pose of comparison.

The two scenarios of conjunctive use with and with
groundwater storage as shown in Fig. 7~f! must be viewed in th
context of sustainability. The groundwater levels at demand
ter B for conjunctive use without groundwater storage fall be
permissible levels of sustainable recharge~arbitrarily assume
here as 2.0 m! by the end of the planning horizon and norma
should not be acceptable. In other words, no feasible soluti
possible without depleting groundwater storage below accep
levels. On the other hand, groundwater levels for conjunctive
with groundwater storage as proposed in the present model e
that all constraints are met in space and time on a sustai
basis@Fig. 7~f!#.

The model results are sensitive to the aquifer parame
Modification of the aquifer parameters affects head and inte
depth~state variables! and hence the feasible domain. Numer
experimentation has shown that the drawdown volume obje
decreases with an increase in porosity and with a decrea
hydraulic conductivity. Therefore the proposed methodolog
suitable to coastal deltas of east India that exhibit silty-cla
soils ~with high porosity and low conductivity! such that ground
water is conserved during surplus periods and utilized later d
drought periods. Further, the methodology could be formu
with shorter time steps~for example, 4 months! to raise a third
crop during the year. This, however, could be more meanin
for sandy soils where storing water underground becomes
difficult because stored groundwater may drain into the sea

Fig. 10. Evolution of model solution

Fig. 11. Evolution of percentage of acceptance with temperat
264 / JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT
way. In other words the planning horizon for conjunctive us
time must be consistent with aquifer properties.

Conjunctive Use in Space and Time

In Example 3, the real problems invariably come under the
main of conjunctive use in space and time. The space-time m
has two objectives: To minimize the cost as well as to obtain
drawdown volume objective. In this case, as the number of
ables and constraints is much more, resulting in a phenom
increase in computational time. Thus the SA algorithm using
SHARP simulator is not practical unless the equilibrium and
mination criterion are kept very small, which may lead to sub
timal solutions. The input data set is a combination of the p
ous two examples and is shown in Figs. 12~a–c!. The range o
discrete variables also remains the same as in Table 2. Th
mand center locations, constraints, and cost coefficients o
ample 1, and the temporal variations in rainfall and the resu
surface flows during eight time periods and groundwate
charge, as in Example 2, were adopted. Thus, for illustratio
the space-time model, three demand centers and eight time
ods were considered~combination of examples 1 and 2!. The
demand was varied in space but was kept constant with resp
time, while a minimum surface-water flow of 0.5 units was
sured at each location and time step.

Considering the computational burden involved, the SH
inputs/outputs for nearly 5,000 feasible configurations were
for ANN training usingMATLAB for the eight time periods, o
lines similar to those discussed in the previous section. The
included pumpage/injection for each time period. The outpu
cluded SHARP responses in terms of heads~at locations A, B
and C!, interface depth~at location C!, and drawdown volume fo
the delta at the end of the eighth time period. Thus eight se
ANN weights and biases were obtained corresponding to
time periods. The ANN simulations stood justified with high c
relations~0.98–0.99! and R2 ~0.96–0.98! values for calibratio
for all eight data sets.

The SA algorithm incorporated an ANN as the simulato
determine the optimal configurations, and the annealing pa
eters were set as in the previous section. Since the spac
model involves two objectives, one of them was imposed a
additional constraint such that the results could be interp
from the tradeoff curve. Several optimal solutions were obta
by minimizing the drawdown volume objective while impos
the cost objective as a constraint. Arriving at a tradeoff c
involves stringent constraints. The tradeoff curve for this ca
presented in Fig. 12~f!. The midpoint of the tradeoff curve is mo
difficult to optimize and takes 2.5 h of CPU time on the mic
computer with a chain length set at 1,200 iterations~that is, 50
times the number of decision variables! and termination criteria
4. The end points take only a few minutes, even with longer c
lengths of 2,400, since only one objective is optimized. The o
points take intermediate computational time.

Point X on the tradeoff curve@Fig. 12~f!# corresponds to th
minimum drawdown volume objective, unconstrained by the
objective. The optimal configuration for surface and groundw
allocations corresponding to pointX are shown in Figs. 12~d and
e!. Similarly, pointY was optimized for the cost objective, unc
strained by the drawdown objective. For each time period
optimal allocation of surface and groundwater for pointsX andY
are also listed in Table 4.

The explanation for pointX in Fig. 12~f! and Table 4 is a

follows. The surface-water allocation@Fig. 12~d!# during the first
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time period~or season! at A, B, and C locations is 0.5, 2.0, a
1.0 unit, respectively. For the same time period the groundw
extraction~or injection shown with a negative sign! is 0.5,21.0,
and20.5 units, respectively@Fig. 12~e!#. Thus the demand, su
ply, and minimum flow constraints at the three locations are
isfied during the period. Similarly the constraints are satisfie
the remaining time periods. The SHARP constraints pertainin
state variables were also verified independently in space and
for the optimal configuration.

At X, the management model tries to fully utilize surf
water during all time periods and inject surplus surf

Fig. 12. Conjunctive use in
water to the groundwater reservoir that could be used at later

JOURNAL OF WATER RESOURCE
time periods. In other words, the model atX maximizes
groundwater reserves as in Example 2~conjunctive use i
time! but results in high cost involving groundwater injecti
On the other hand, pointY ~as evident from Table 4! correspond
to the minimum cost solution, as emphasized in Examp
~conjunctive use in space! but involves wastage of availab
surplus surface water during the 1st, 3rd, and 5th time per
The relative cost of surface and groundwater fixes the op
cost configuration with little or no room for injection involvi
high cost. Table 4 shows the minimum cost configura
~for point Y! with no injection to the groundwater reservoir. Th

and time for hypothetical delta
space
the tradeoff curve enables the decision maker to prioritize be-

S PLANNING AND MANAGEMENT © ASCE / MAY/JUNE 2004 / 265



peri-

lobal
is is
ting
tro-

mpo-
y the
ith
time
ilib-
ced

d

ns
nal
first
ber

tal
n the
only

nal
pect
crite-

eth-
ltas,
or to
f the
arge

odel
s the
e im-
ugh-
w-
e
were
tudy,
hain
bles
e-
s of
tion

s of
ts, it

the
eal
very
g in a

the
nson
tu-
the
th-

ab
le

4.
O

pt
im

al
A

llo
ca

tio
n

of
S

ur
fa

ce
an

d
G

ro
un

dw
at

er
in

Vo
lu

m
e

~M
ill

io
n

C
ub

ic
M

et
er

s!—
C

on
ju

nc
tiv

e-
U

se
-in

-S
pa

ce
-a

nd
-T

im
e

M
od

el

im
e

pe
rio

ds
~s

ea
so

ns!
1

2
3

4
5

6
7

8

ur
fa

ce
w

at
er

av
ai

la
bi

lit
y

3.
5

2.
0

3.
0

2.
0

4.
5

2.
0

1.
5

1.
5

oc
at

io
n

A
B

C
A

B
C

A
B

C
A

B
C

A
B

C
A

B
C

A
B

C
A

B
C

in
im

um
dr

aw
do

w
n

vo
lu

m
e

ob
je

ct
iv

e~c
or

re
sp

on
di

ng
to

po
in

tX
on

tr
ad

e
of

f
cu

rv
e!

D
em

an
d

1.
0

1.
0

0.
5

1.
0

1.
0

0.
5

1.
0

1.
0

0.
5

1.
0

1.
0

0.
5

1.
0

1.
0

0.
5

1.
0

1.
0

0.
5

1.
0

1.
0

0.
5

1.
0

1.
0

0.
5

S
ur

fa
ce

w
at

er
0.

50
2.

00
1.

00
0.

50
0.

50
0.

50
0.

50
2.

00
0.

50
0.

50
1.

00
0.

50
0.

50
2.

50
1.

50
0.

50
1.

00
0.

50
0.

50
0.

50
0.

50
0.

50
0.

50
0.

50
G

ro
un

dw
at

er
ex

tr
ac

tio
n

0.
50

—
—

0.
50

0.
50

0.
00

0.
50

—
0.

00
0.

50
0.

00
0.

00
0.

50
—

—
0.

50
0.

00
0.

00
0.

50
0.

50
0.

00
0.

50
0.

50
0.

00
G

ro
un

dw
at

er
in

je
ct

io
n

—
1.

00
0.

50
—

—
—

—
1.

00
—

—
—

—
—

1.
50

1.
00

—
—

—
—

—
—

—
—

—

in
im

um
co

st
ob

je
ct

iv
e~

co
rr

es
po

nd
in

g
to

po
in

tY
on

tr
ad

e-
of

f
cu

rv
e!

S
ur

fa
ce

w
at

er
0.

50
1.

00
0.

50
1.

00
0.

50
0.

50
0.

50
0.

50
0.

50
0.

50
0.

50
0.

50
1.

00
0.

50
0.

50
1.

00
0.

50
0.

50
0.

50
0.

50
0.

50
0.

50
0.

50
0.

50
G

ro
un

dw
at

er
ex

tr
ac

tio
n

0.
50

0.
00

0.
00

0.
00

0.
50

0.
00

0.
50

0.
50

0.
00

0.
50

0.
50

0.
00

0.
00

0.
50

0.
00

0.
00

0.
50

0.
00

0.
50

0.
50

0.
00

0.
50

0.
50

0.
00
tween cost and conservation of groundwater~drawdown volume!
for the simple case of three demand centers and eight time
ods.

Computational Time Reduction
Although enumeration or brute-force methods guarantee g
optimal solutions for nonconvex combinatorial problems, th
not practically possible with presently available compu
power. The SA procedure with SHARP as the simulator in
duces a computational time burden that has two distinct co
nents. The first component is due to the time consumed b
simulator~function calls!. This can be reduced to near zero w
the ANN as simulator. The second component is the average
consumed for generating a feasible configuration until equ
rium and termination criteria are met. This is significantly redu
through efficient algorithmic guidance in two stages:~1! A proce-
dure for generating a configuration that is always feasible; an~2!
a perturbation procedure called genetic rearrangement~or excur-
sion limiting!. At the initial temperature the number of iteratio
is large, mainly due to infeasible solutions, while at the fi
temperature the uphill moves are too many. The sum of the
two components put together and multiplied by the total num
of iterations~or chains! determines the total CPU time. The to
number of iterations depends on the problem tackled and o
annealing parameters. Therefore, the CPU time is known
after the actual model run.

It is clear that the ANN can only reduce the computatio
burden arising from the first component but can do little in res
of the second, besides thermal equilibrium and termination
ria inherent to the SA procedure. Therefore, the proposed m
odology has no limitation in terms of the areal extent of de
since the ANN virtually reduces the time taken by the simulat
near zero. However, the restriction is imposed in terms o
number of decision variables and constraints implied in all l
delta systems.

The writers’ experience in the course of developing the m
showed that a shorter chain length of about 20 to 30 time
number of decision variables was generally adequate. Th
provement in the solution thereafter was mostly marginal; Do
erty and Marryott~1991! also mentioned this in their paper. Ho
ever, for the third example~conjunctive use in space and tim!,
chain lengths of 100 times the number of decision variables
adopted in arriving at near-optimal solutions in the present s
except for the midpoint of the tradeoff curve where the c
length was limited to 50 times the number of decision varia
~due to stringent constraints!. The role of the perturbation proc
dure in most cases was found to be relatively small in term
computational time and marginal in terms of objective func
improvement.

While the ANN reduces the computational burden in term
time and facilitates longer chain lengths and tighter constrain
reduces the overall efficiency~with respect to global optimum! of
the model. This is a result of the fact that the ANN mimics
SHARP model imperfectly, which in turn also mimics the r
physical system. Although the simulations by the ANN are
good, the reproduction cannot be exactly the same, resultin
slightly altered feasible domain that may or may not contain
optimal solution obtained with SHARP as the simulator. Joh
and Rogers~2000! have, however, concluded that the ANN vir
ally replaces the full model. This is indeed true only within
range of input values for which the ANN is trained, but not o

erwise as an extrapolator~ASCE 2000!. In general, there will beT T S L M M
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a successive dilution in the optimal solution with respect to
true global optimum. This is due both to the SA procedure it
which provides only for near-optimal solutions, and to the AN
Nevertheless, the methodology is justified in the present stud
a macro level planning and operational model using seasona
steps.

Summary and Conclusions

A simple conceptual conjunctive use planning model for all
tion of surface water and groundwater to meet consumptive
mands in deltaic regions is presented. The model is intende
macro level planning of deltaic regions using seasonal time s
The model seeks to address spatial and temporal variability
availability of useful water resources. The allocation model is
as a combinatorial problem for a simplified, unconfined, hy
thetical deltaic aquifer system. The nonlinear, nonconvex pro
is solved using the SA algorithm. A sharp interface model suit
to a coastal and deltaic environment is used to simulate the
fer response. Although the framework of the proposed mod
general, the performance of the model is illustrated using id
ized examples with some reference to east coastal deltas of
Also, the methodology is demonstrated for a single-layer aq
system. However, it can be easily extended to multiaquifer
tems already included in the SHARP model.

The computational burden is managed within practical t
frames by replacing the flow simulator with an ANN and us
efficient algorithmic guidance. Since no method exists that g
antees global optimality, SA with an ANN should be useful
real problems of modest size~possibly 30 to 40 decision va
ables! in arriving at high-quality, practical, and near-optimal
lutions on a microcomputer. However, for problems of larger
involving hundreds of variables, faster parallel processors ma
required.
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