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A B S T R A C T

In this study, we computationally corroborate the flow of rock glaciers against borehole measurements, within
the context of a model previously developed (2020). The model is, here, tested against the simulation of the
sliding motion of the Murtel-Corvatsch alpine glacier, which is characterized in detail in the literature with
internal structure description and borehole deformations measurement.
The capability of the model to take into account the composition of the rock glacier, as a mixture of ice and
rock and sand grains with the local impact of pressure and heat transfer, results in the accurate detection of
the internal sliding.
With careful calibration of the model parameters, the computed numerical solution of the model reports a
relative error of 1.8% and of 0.3% in the reproduction of the measured shear zone velocity and of the ratio
of measured shear zone deformation over top surface deformation, respectively.
Furthermore a deeper understanding of the role of the model parameters involved in the simulation of such a
process is also gained and we discuss the same in detail.

1. Introduction of the model

In a previous paper [1] the authors developed a mathematical model
for the flow of a rock glacier which takes into consideration thermal
effects. Here we develop a computational scheme to solve the system
of governing equations and solve the same numerically. The solution
obtained is corroborated versus observed data on the evolution of the
Murtel-Corvatsch alpine rock glacier.

We start by briefly discussing the salient aspects of the development
of the governing equations that stem from the balance of mass, and
linear momentum. The balance of mass takes the form:
𝑑 𝜌

𝑑𝑡
+ 𝑑𝑖𝑣 (𝜌𝐯) = 0, (1)

while the balance of linear momentum is given by:

𝑑𝑖𝑣 𝐓
𝑇 + 𝜌𝐛 = 𝜌𝐯̇ (2)

where 𝜌 is the density of ice, 𝐯, the velocity field, 𝐓, the Cauchy stress
tensor and 𝐛, the specific body force. Also the dot denotes the material
time derivative.

Most existing works in the literature in computational glaciology
adopt Glen’s law [2], based on the representation of ice as a dense
viscous fluid with

𝐓 = −𝑝𝐈 + 𝜇𝐺𝐀1, (3)

∗ Corresponding author.
E-mail address: d.mansutti@iac.cnr.it (D. Mansutti).

where 𝑝 is the indeterminate part of the stress due to the constrain of

incompressibility, 𝐈 is the identity tensor, 𝐀1 is twice the symmetric

part of the velocity gradient, 𝐀1 = 𝐋 + (𝐋)𝑇 and 𝐋 = 𝑔𝑟𝑎𝑑(𝐯), and 𝜇𝐺 is

the generalized viscosity having this form:

𝜇𝐺 = 𝜇𝐺(𝜕𝑖𝑣𝑗 ) = 𝜇0[
1

2
𝑡𝑟(𝐀2

1
)]

𝑚

2 (4)

being 𝜕𝑖, the partial differential operator along the 𝑖th spacial direction,

𝑣𝑗 , the 𝑗th component of the velocity field (with 𝑖 and 𝑗 repeated from

1 to 3), 𝜇0, a scalar factor of phenomenological character, and 𝑚, a

scalar parameter. This model, including the strain rate effect onto ice

viscosity, represents successfully the secondary creep [3].

The formation of lateral moraines in relation to certain dynamical

conditions of the rock glaciers is partially traced back to a typical non-

newtonian behavior occurring in rectilinear shearing flow, which is

supported by non-zero normal stress differences and qualitatively sums

up to a thrust carrying debris along in each direction normal to the

shear direction.

As of mathematical modeling, normal stress differences are both

non identically zero for differential type fluid models of grade n, with

𝑛 > 1. The Newtonian (Navier–Stokes) fluid model is of differential
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type with 𝑛 = 1 [4] as well as the mentioned Glen’s law for ice, which,
consequently, cannot predict the whole process of moraine formation.

McTigue, Passman and Jones [3] modeled the creep of ice by using
a second order fluid model (SOFM) the simplest constitutive equation
capable of describing both primary and secondary creep, which also
includes normal stress differences arising in shearing flow. 1 Along this
line Man and Sun in [6] modified SOFM with a Glen-like functional
expression of the viscosity coefficient in order to regain the strain rate
effects as reflected in Glen’s law. The expression of the modified SOFM
(MSOFM) stress tensor is

𝐓 = −𝑝𝐈 + 𝜇𝐺𝐀1 + 𝛼1𝐀2 + 𝛼2𝐀
2
1
, (5)

where 𝛼1 and 𝛼2 are material scalar parameters to be fixed and 𝐀𝟐 is
the second Rivlin–Ericksen tensor, describing the frame-indifferent time
derivative of the velocity gradient tensor, that is

𝐀2 = 𝐀̇1 + 𝐀1𝐋 + 𝐋
𝑇
𝐀1

with 𝐀̇1, the material time derivative of tensor 𝐀1.
It is worth to mention that the MSOFM model has been extended

in order to include the effect of pressure as measured by Barrette
and Jordaan, who reported in [7] several experimental tests on the
mechanical response of ice under compressive load and in presence of
confinement pressures. Arcangioli et al. in [8] derived the upgraded
model basing on implicit theories of continuum mechanics and obtain-
ing an appropriate choice of the functional expression of the material
parameters by matching with the experimental creep curves.

However let us observe that the above listed models are essentially
for clean ice. In the case of rock or debris-laden glaciers, the impact
of pressure, and also temperature on the viscosity coefficient must be
included in relation to the concentration of debris and particle size.
Actually, here, within the flow of the glacier, ice melting temperature
undergoes local changes due to (non-hydrostatic) pressure increase
caused by the interaction of ice with included rock fragments, and
subsequent local phase transition events lead to release of water influ-
encing ice–debris mixture viscosity [9]. This behavior has been recently
reviewed by Moore in [10] who reconsidered a broad range of field
observations, theory and experimental work relevant to the mechanical
interactions between ice and rock debris. It is worth mentioning the
observations reported by Lawson and Elliott in [11] from experimental
strength testing of real glacier ice. They found that, if debris is in-
corporated, transition from ductile to brittle regime (when crevasses
may form) strongly depends on temperature, so that if temperature
decreases, critical total strain also decreases, meanwhile compressive
strength of rock glacier ice increases to its maximum as effect of
regelation of previously formed water films, hardening around rocky
particles. The mechanism shaping ice–debris mixtures constitutive be-
havior is summarized by Moore [10] as a ‘‘competition between the
role of debris in impeding ice creeping’’ (as for ‘locking’ in the case
of granular material) ‘‘and the mitigating effect of unfrozen water
at debris–ice interface’’, driven by shear rate, pressure, temperature,
salinity, debris concentration and particle size.

In 2013 two of the authors, Kannan and Rajagopal, proposed a
generalization of the Man and Sun’s constitutive equation (5) in order
to describe, at the mechanical level, the impact of debris trapped in
ice [12]. Recently, in 2020 present authors published an extension of
that model including explicitly also the representation of the thermal
field [1]. These upgrades are obtained with an appropriate choice
of the viscosity coefficient and of the normal stress parameters as
functions depending also on pressure, temperature and solid fraction.
Inspiration is taken from the work on dense suspensions of a newtonian
fluid and hard spherical particles by Mills and Snabre [13] regarding
the functional expression of the viscosity coefficient, and from the

1 There has been a great deal on unnecessary controversy concerning the
status of these models. A critical review and a detailed discussion of the same
have been developed by Dunn and Rajagopal in [5].

work on non-colloidal suspensions of a non-newtonian fluid and hard
spherical particles by Morris and Boulay [14] regarding the normal
stress parameters. For the dependency of the three parameters on
the temperature field, an Arrhenius type behavior is adopted ensuing
on-field observation data [15].

Without going into the details that can be found in the mentioned
publications, we recall the main formulas and equations of the extended
model in [1] which is, here, the object of validation.

In particular let us rewrite, first, the Cauchy stress tensor with
renamed coefficients:

𝐓 = −𝑝𝐈 + 𝜇𝐾𝑀𝑅𝐀1 + 𝛼𝐾𝑀𝑅,1𝐀2 + 𝛼𝐾𝑀𝑅,2𝐀
2
1
, (6)

having the form:

𝜇𝐾𝑀𝑅 = 𝜇𝐾𝑀𝑅(𝜕𝑖𝑣𝑗 , 𝑝̂, 𝑇 ) =

𝜇𝐺(𝜕𝑖𝑣𝑗 )
[
(1 − 𝑓 )

(
1 + 𝑘1

√
𝑝̂ − 𝑃𝑎

𝑃𝑎

)
+ 𝑓𝑘2

𝑝̂ − 𝑃𝑎

𝑃𝑎

]
⋅ 𝑒

𝐵(
1
𝑇
−

1
𝑇0

)
(7)

𝛼𝐾𝑀𝑅,𝑖 = 𝛼𝐾𝑀𝑅,𝑖(𝑇 ) =

𝛼0
𝑖

[
1 + 𝑘𝑖+2

𝜙̄2

(1 − 𝜙̄)2

]
⋅ 𝑒

𝐵𝑖(
1
𝑇
−

1
𝑇0

)
, 𝑖 = 1, 2 (8)

where 𝑝̂ = −
1

3
𝑡𝑟(𝐓) is the negative of the mean normal stress, 𝑇 is

the temperature, 𝜇𝐺 is the Glen’s viscosity coefficient in (4), 𝑓 and
𝜙̄ are the equilibrium solid fraction and the relative solid fraction of
rock and sand grains trapped in the ice interstices, respectively, 𝛼0

𝑖

and 𝑘𝑖 for 𝑖 = 1, .., 4 are material constants, 𝐵 and 𝐵𝑖 are activation
constant factors, 𝑃𝑎 is the atmospheric pressure and 𝑇0 is the tran-
sition temperature of the material property. Taking into account the
thermodynamical arguments of Dunn and Fosdick [16] and the results
of Man and Sun in [6], as extensively explained in [12], the relation
𝛼𝐾𝑀𝑅,1 + 𝛼𝐾𝑀𝑅,2 = 0 has to be met.

The definition of 𝑓 and 𝜙̄ requires the introduction of the solid frac-
tion of rock and sand grains trapped within the ice interstices, called 𝜙,
and of the maximum solid fraction of such particles achievable in the
’random-close-packing configuration’ (the reader is referred to granular
materials terminology), denoted by 𝜙𝑚𝑎𝑥. Then we can introduce:

𝜙̄ =
𝜙

𝜙𝑚𝑎𝑥

, (9)

f =
𝜙̄

𝜙̄ + e(1 − 𝜙̄)
, (10)

with e measuring the extent of sliding effect due to the presence of
water film at the surface of the ’free-to-move’ rock particles, whose
relative fraction is quantified by (1 − 𝜙̄). It is worth noting that 𝑓 is
close to 1, its maximum value, either when e is null or when 𝜙 = 𝜙𝑚𝑎𝑥,
that is either in condition of null sliding effect of the ’free-to-move’
solid particles or when solid particles are so densely distributed to
prevent any motion. On the contrary, the value of 𝑓 decreases along
with increasing values of e and/or increasing values of (1 − 𝜙̄), both
conditions corresponding to increasing mobility of the ’free-to-move’
solid particles either due to the presence of more water film with
lubricating effect at their interface with ice or for being surrounded
by pure ice and, so, flowing as a part of it without offering any
additional resistance. Compared to 𝜙̄, the equilibrium solid fraction,
𝑓 , represents also the impact of ice or water around the solid particles
and distinguishes the possibility that solid particles move and subtract
themselves from the set of the fixed ones and join the dynamics of
ice, so inducing shear-thinning within ice flow (𝑓 decreasing), from
the possibility that they keep themselves locked with each other inside
ice interstices (𝑓 = 1). The numerical tests, that will be presented
and discussed later, show undoubtedly the critical role played by these
quantities in the detection and characterization of sliding occurring in
rock glacier flow.

The structure of this paper is the following: in Section 2, the test case
and its mathematical formulation are described; in Section 3, the nu-
merical solution approach and the numerical results are presented and
discussed versus the model validation purpose. In Section 4 conclusions
and future work perspective are drawn.
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Fig. 1. Murtel Corvatsch alpine rock glacier in the Upper Engadin, Switzerland, with the location of the borehole 2/1987.

2. The test case

The constitutive character of rock glaciers makes them possibly very
unstable as effective viscosity can reach up to seven times smaller than
for clean ice with consequent onset of shear flow. When shear flow
establishes, it may be rigid and fast with possible devastating effects.
For the criticality of this situation we have decided to challenge the
KMR model with regard to the detection of the shear zone of a rock-
glacier flow very well documented in the literature, as it is in the case
of Murtel-Corvatsch glacier in the Upper Engadin, Switzerland, shown
in Fig. 1.

2.1. Natural set-up and its representation

In [17], based on borehole measurements, Arenson et al. pointed
out that, in contrast to temperate glaciers, permafrost within rock
glaciers has distinct shear zones where deformations concentrate. And
also they observed that the flow velocity depends on the temperature
and the composition. Actually, the KMR model covers both of the as-
pects. Furthermore, they provided the measurement of deformation and
temperature in depth in several boreholes combined with a sufficiently
detailed description of the local composition of the glacier making their
set-up particularly suitable to our aim.

We have focused on the borehole 2/1987 (whose location is high-
lighted in Fig. 1) and from the corresponding data and qualitative
picture, we have reconstructed the profile of 𝜙̄ as in the plot in Fig. 2,
where it is also shown that, ℎ, the thickness of the glacier, is about
60𝑚. Let us observe that 𝜙̄ has a value very close to 1 in the lower layer,
identified as ‘essentially’ rocky zone, and a value smaller than 0.2 in the
upper layer, which is an ‘essentially’ icy zone, whereas, in the internal
3 m thick layer at a distance of 28.4 from bedrock, the value decreases
linearly towards the upper layer. It is expected that here, being the
glacier neither rigid rock nor temperate, the peculiarities of the be-
havior of the rock-glacier might be enhanced. As suggested also in the
paper [12], we have fixed 𝜙𝑚𝑎𝑥 = 0.605, following the observations of
Ovralez et al. who studied a dense suspension of non colloidal particles
via magnetic resonance imaging [18]. The corresponding value of e
and, consequently, the graph of 𝑓 (the last one also plotted in Fig. 2),
have been fixed according to the results of a series of numerical trials
finalized to shoot the measured deformation profile (this aspect will

be extensively discussed in Section 3.2); such testing lead us to fix
e = 175 at the ‘essentially’ rocky zone and at the zone of ice ‘averagely’
mixtured with sand and rocky grains, and e = 1.1 in the ‘essentially’
icy zone. As suggested by the functional expression of 𝑓 , the impact
of a value of 𝑒 is related to the corresponding value of the quantity
(1 − 𝜙̄) and it is quite different if such a quantity approaches 1 rather
than being almost null.

Another important information for the present validation procedure
is the in-depth temperature profile that we have obtained from Arenson
et al. data and picture. At borehole 2/1987 the reconstructed sketch
of temperature in the time period 1987–1990 is shown in Fig. 3. In
their paper Arenson et al. commented that, in the following time period
1991–1995, an increase of 0.5 ◦C was perceived at the shear zone in
[28.4 m, 31.4 m]. So we have included this information by adjusting
correspondingly the previous profile and obtained the temperature plot
for the time range 1991–1995 (see Fig. 3).

The surface of Murtel-Corvatsch glacier is characterized by a slope
of 𝛼 = 14◦, so gravity is an external effective cause of the observed slid-
ing motion. In absence of additional geometrical details, surface slope
and glacier thickness are assumed constant in the sliding direction.

Based on the described set up, the validation test consisted in the
numerical reproduction of the in-depth borehole deformation profile
(shear zone included) at each time shot measured and documented by
Arenson et al.

2.2. Governing equations

The geometrical characteristics and the position of the borehole
2/1987, very close to the longitudinal symmetry axis of the glacier
and where the ice flow is presumably fully developed, have allowed
to adopt the unidirectional approximation. Then, avoiding redundant
indicial notation and fixed a reference frame, as in Fig. 4, with origin
at the bedrock, (𝑥), horizontal axis parallel to the sliding direction, and
(𝑦), vertical axis directed upwards, the unknown velocity and pressure
fields assume the form

𝐯 = (𝑢(𝑦), 0, 0)𝑇 (11)

𝑝 = 𝑝(𝑦). (12)

The particular observed thermal conditions define the test problem as
a steady isothermal glacier creeping flow problem, in correspondence

3



K. Kannan, D. Mansutti and K.R. Rajagopal International Journal of Non-Linear Mechanics 132 (2021) 103710

Fig. 2. Relative rock and sand grain fraction and equilibrium solid fraction reconstructed from borehole 2/1987 data in [17].

Fig. 3. Measured temperature profile at borehole 2/1987 as in [17].

of each measured temperature profile in Fig. 3. The balance of linear

momentum reduces to

𝑑

𝑑𝑦

(
𝜇𝐾𝑀𝑅 𝑢′

)
= −𝜌𝑚𝑖𝑥 𝑔 𝑠𝑖𝑛𝛼 (13)

𝑑

𝑑𝑦

(
−𝑝 + 𝛼𝐾𝑀𝑅,1

(
𝑢′
)2)

= 𝜌𝑚𝑖𝑥 𝑔 𝑐𝑜𝑠𝛼, (14)

Fig. 4. Geometrical set-up of the test case.

holding for 𝑦 ∈ (0, ℎ) (𝑢′ denotes the first derivative of 𝑢). We

observe that, being unidirectional, the velocity field meets a priori the

incompressibility constrain, 𝑑𝑖𝑣 𝐯 = 0, and it results 𝑝̂ = 𝑝.

As 𝜇𝐾𝑀𝑅 depends on 𝑢′, in order to characterize the system let us

introduce explicitly its expression, where the value 𝑚 = −2∕3 is adopted

along with the results in the literature of the classical Glen’s law ([15].

Then Eq. (13) becomes

𝑑

𝑑𝑦

(
𝜇0

[
(1 − 𝑓 )

(
1 + 𝑘1

√
𝑝 − 𝑃𝑎

𝑃𝑎

)
+ 𝑓𝑘2

𝑝 − 𝑃𝑎

𝑃𝑎

]
⋅ 𝑒

𝐵(
1
𝑇
−

1
𝑇0

) (
𝑢′
)1∕3

)

= −𝜌𝑚𝑖𝑥 𝑔 𝑠𝑖𝑛𝛼 (15)

Eqs. (14) and (15) represent a second order system of Ordinary Dif-

ferential Equations (ODE) in (𝑢, 𝑝) that is determined, here, under the

following boundary conditions:

𝑢(0) = 0, (16)

𝑢′(ℎ) = 0, 𝑝(ℎ) = 𝑃𝑎 (17)

which describe the no-slip condition at the bedrock, typical for ice

below melting temperature, and the dynamical equilibrium between ice

and atmosphere at the interface, respectively.
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3. Numerical validation of the model

3.1. Numerical solution approach

The first step taken in the solution of the above system is the
analytic integration in the generic sub-domain [𝑦, ℎ] (for 𝑦 > 0) which
allows to meet the boundary values (17). This operation leads to the
system:

𝜇0

[
(1 − 𝑓 )

(
1 + 𝑘1

√
𝑝 − 𝑃𝑎

𝑃𝑎

)
+ 𝑓𝑘2

𝑝 − 𝑃𝑎

𝑃𝑎

]
⋅ 𝑒

𝐵(
1

𝑇
−

1

𝑇0
) (
𝑢′
)1∕3

= 𝑀 𝑔 𝑠𝑖𝑛𝛼

(18)

𝑝 = 𝑃𝑎 + 𝛼𝐾𝑀𝑅,1

(
𝑢′
)2

+𝑀 𝑔 𝑐𝑜𝑠𝛼 (19)

being 𝑀 = 𝑀(𝑦) = ∫ ℎ

𝑦
𝜌𝑚𝑖𝑥𝑑𝑦̃, the mass of the layer of rock glacier

confined in [𝑦, ℎ]. This system holds for 𝑦 ∈ (0, ℎ]. Then, by substituting
the expression of 𝑝 as a function of 𝑢′, (19), into Eq. (18), a first order
non-linear ODE is obtained which is rewritten in order to provide the
problem with a structure suitable for a following fixed point solution
approach. The resulting equation is:

𝑢′ = (𝑀 𝑔 𝑠𝑖𝑛𝛼)3⋅

{
𝜇0

[
(1 − 𝑓 )

(
1 + 𝑘1

√
𝛼𝐾𝑀𝑅,1 (𝑢

′)2 +𝑀 𝑔 𝑐𝑜𝑠𝛼

𝑃𝑎

)
+

(20)

𝑓𝑘2

𝛼𝐾𝑀𝑅,1

(
𝑢′
)2

+𝑀 𝑔 𝑐𝑜𝑠𝛼

𝑃𝑎

]
⋅𝑒

𝐵(
1

𝑇
−

1

𝑇0
)

}
−3

that is numerically solved under the remaining boundary condition
(16). At this juncture, we discretize the interval domain [0, ℎ] into 𝑛

uniform subintervals of width 𝑑𝑦 = ℎ∕𝑛 and approximate the derivative,
𝑢′, with the second order centered finite difference scheme. Then, by
evaluating the above ODE at the mid-point of each subinterval, 𝑦𝑖−1∕2 =
(𝑖−1∕2) ⋅𝑑𝑦, 𝑖 = 1,… , 𝑛, a system of algebraic equations is obtained for
𝑢𝑖 = 𝑢(𝑦𝑖), 𝑖 = 1,… , 𝑛, the numerical velocity of the studied rock glacier.
Below the fixed point iteration law adopted for solving the system is
shown:

𝑢
(𝑘+1)
𝑖

= 𝑢𝑖−1 + 𝑑𝑦 ⋅ (𝑀𝑖 𝑔 𝑠𝑖𝑛𝛼)3⋅

{
𝜇0 ⋅

[
(1 − 𝑓𝑖)

(
1 + 𝑘1

√√√√√√ (𝛼𝐾𝑀𝑅,1)𝑖

(
𝑢
(𝑘)
𝑖

−𝑢𝑖−1

𝑑𝑦

)2

+𝑀𝑖 𝑔 𝑐𝑜𝑠𝛼

𝑃𝑎

)
+

(21)

𝑓𝑖𝑘2

(𝛼𝐾𝑀𝑅,1)𝑖

(
𝑢
(𝑘)
𝑖

−𝑢𝑖−1

𝑑𝑦

)2

+𝑀𝑖 𝑔 𝑐𝑜𝑠𝛼

𝑃𝑎

]
⋅𝑒
𝐵(

1
𝑇𝑖

−
1
𝑇0

)

}
−3

with 𝑀𝑖, 𝑓𝑖, (𝛼𝐾𝑀𝑅,1)𝑖 and 𝑇𝑖 assigned at the mid-point 𝑦𝑖−1∕2. As
Eq. (20) is of first order, a straightforward upwards marching proce-
dure has been allowed starting by computing the solution, 𝑢𝑖, from
the bedrock where 𝑦𝑖 = 𝑦1 = 𝑑𝑦 and the boundary condition (16)
provides the value 𝑢𝑖−1 = 𝑢0 = 0. At each altitude, 𝑦𝑖, the fixed point
iterations have been initialized with an approximate value of the glacier
velocity, 𝑢(0)

𝑖
, deduced from the local measured deformations reported

by Arenson et al. [17] over the elapsed time from the observation
starting, 15-9-1987. In the numerical simulations that will be presented
in the following sections, iterations have been repeated up to reach
a residual 𝑂(10−14) (equal to relative residual 𝑂(10−3)), in most cases
three steps were required.

A posteriori it has been verified that the iteration function is a
contraction around the sought numerical solution, which guarantees
the convergence of the iterative procedure.

3.2. Parameter calibration and sensitivity analysis

The first step in the numerical simulation of the Murtel-Corvatsch
glacier deformations has been the calibration of the parameters of

the model. Those ones shared with Glen’s law, (3) and (4), and its
extensions with thermal effects have been set to values suggested in
the literature for the predecessor models in the case of alpine glaciers,
that is 𝜇0 = 1.5⋅108, 𝐵 = 4610 𝐾 and 𝑇0 = 263 𝐾 [15]. From the previous
work of Kannan and Rajagopal [12], we get the values 𝛼0

1
= 1016 and

𝑘3 = 0.02, both ones contributing to the assignment of 𝛼𝐾𝑀𝑅,1. Then,
by supposing that the Arrhenius type thermal dependence acts in the
same manner with regard to the viscosity and the normal stress moduli,
we have fixed the value of 𝐵1, the activation factor for 𝛼𝐾𝑀𝑅,1, equal to
the value of 𝐵, the activation factor for 𝜇𝐾𝑀𝑅, that is 𝐵1 = 𝐵 = 4610 𝐾.

For the calibration of 𝑒 we have assumed that the extent of sliding
of the mixture of ice and rock and sand grains is related to the value
of the relative solid fraction 𝜙̄. So we have fixed 𝑒 = 𝑒(𝑦) as well as a
step function with values suitably adjusted at each layer, the bottom
‘essentially’ rocky zone, the center ‘averagely’ mixtured zone and the
top ‘essentially’ icy zone (see Fig. 2):

𝑒(𝑦) ∶=

⎧⎪⎨⎪⎩

𝑒1 if 𝑦 ∈ [0, ℎ1], ‘essentially’ rocky zone

𝑒12 if 𝑦 ∈ [ℎ1, ℎ2], ‘averagely’ mixtured zone (22)

𝑒2 if 𝑦 ∈ [ℎ2, ℎ], ‘essentially’ icy zone.

The values of 𝑒1, 𝑒12, 𝑒2 and 𝑘1 and 𝑘2, the last parameters to be
assigned, have been chosen by a ’trial and error’ procedure aimed at
shooting the horizontal downslope borehole deformation recorded on
4-4-1989 by Arenson et al. [17], that we estimate by the computed
numerical velocity times the elapsed time from observation starting
(15-9-1987).

A preliminary mesh refinement test was conducted in order to fix 𝑛,
the number of subintervals for the finite difference discretization, for
getting the highest accuracy of the ODE system approximate solution
without loss of significant digits: we found that 𝑛 = 2400 meets the
target (𝑑𝑦 = 0.025 𝑚).

We shall see that the best fit of the measured profile is obtained
with the values 𝑒1 = 175, 𝑒12 = 175, 𝑒2 = 1.1 and 𝑘1 = 0.015 and 𝑘2 = 2,
which identify the purple curves of the most representative results in
the figures herein included.

Let us consider, first, the sensitivity of the numerical solution to the
value of extent of sliding at the ‘averagely’ mixtured zone, 𝑒12. Actually
the effect of 𝑝 and 𝑇 , influenced by the reciprocal motion of solid
particles within ice, is mostly registered here with the largest change of
viscosity occurring for the water release induced by local temperature
changes that bring its value above the (eventually decreased) pressure
melting point (𝑒12 is related to the water content). In Fig. 5 the plot of
the computed borehole displacements are drawn for several values of
𝑒12. In Fig. 6 the plot of viscosity shows that at altitude 𝑦 = ℎ1, interface
between the ‘essentially’ rocky zone and the ‘averagely’ mixtured zone,
the larger is the extent of sliding and the smaller becomes the viscosity.
This behavior reflects the change of the equilibrium solid fraction that
can be observed at Fig. 7: in the transition from the ‘essentially’ rocky
zone to the ‘averagely’ mixtured zone, the decrease of solid fraction (see
𝜙̄ in Fig. 2) is perceived by the mixture of ice and rock particles as a
sudden increase of fluidity, quantified in our model through a sudden
decrease of the equilibrium solid fraction, 𝑓 , and, correspondingly, a
sudden decrease of the value of viscosity. This mechanism portrays
successfully the sudden internal sliding occurrences (also called shear
zone) as it is exhibited in Fig. 5, where each profile shows almost
rigid motion of the bottom ‘essentially’ rocky ice, viscous flow motion
of the upper ‘essentially’ pure ice and, at the intermediate ‘averagely’
mixtured layer, critical continuously fitting profiles which depend on
the value of 𝑒12: for 𝑒12 = 0.175 and 1.75 no sudden internal sliding
occurs and mixtured ice moves rigidly and smoothly anchored to the
‘essentially’ rocky ice up to the viscous increase starts at the interface
with the ‘essentially’ icy zone. For 𝑒12 ≥ 10 sudden internal sliding
occurs with sharper profile as 𝑒12 gets larger. By comparison with the
displacement plot of Arenson et al. observed on 4-4-1989 the purple
curve corresponding to 𝑒12 = 175 reports the best match.
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Fig. 5. Numerical borehole displacements at 4-4-1989: sensitivity analysis vs. 𝑒12.

Fig. 6. Numerical viscosity factor, 𝜇𝐾𝑀𝑅∕[
1

2
𝑡𝑟(𝐀2

1
)]𝑚∕2: sensitivity analysis vs. 𝑒12.

The sensitivity analysis was concerned with the upper branch of the
extent of sliding parametrical function, that is the value 𝑒2. The numer-
ical displacement curves in Fig. 8 show internal sliding occurrence for
the three smaller values 𝑒2 = 0.11, 0.3 and 1.1 whereas, for 𝑒2 = 11 and
110, the profiles exhibit smooth, though steep, viscous growth towards
open air. When internal sliding occurs a strong and sudden change of
the dynamics of ice establishes, that our model captures just with a
significant decrease of value of the extent of sliding parameter (remind
𝑒12 = 175). In our case the physical interpretation of this numerical
evidence is that the poor presence of solid grains in the upper ‘essen-
tially’ icy zone allows just occasional, not effective interaction among

solid particles (not enough to induce decrease of viscosity), which
contributes to increase the viscosity value, representing an obstacle to
free flowing. The graphs of viscosity in Fig. 9 reflect consistently the
overall picture. An additional comment on the flection of the viscosity
curve few meters beneath ice/atmosphere interface: that is the effect
of the Arrhenius exponential function of temperature whose influence
in the natural setting shown in Fig. 3 is effective only with sufficiently
large values of viscosity.

The sensitivity analysis on the bottom branch of 𝑒 = 𝑒(𝑦), that is on
the value 𝑒1, exhibits the fact that when the relative solid fraction, 𝜙̄,
is very close to unity the system is not sensitive to changes in 𝑒 (as the
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Fig. 7. Equilibrium solid fraction corresponding to solid fraction graph in Fig. 2: sensitivity analysis vs. 𝑒12.

Fig. 8. Numerical borehole displacements at 4-4-1989: sensitivity analysis vs. 𝑒2.

equilibrium solid fraction keeps 𝑓 ≈ 1). Fig. 10 represents the evidence
that even an unnatural very large value of 𝑒1 induces just a very
small change in viscosity with no significant effect on the dynamics.
For example, we obtained for 𝑒1 = 175, 𝑢(ℎ1) = 0.243 cm∕yr,
𝑢(ℎ2) = 3.619 cm∕yr and 𝑢(60𝑚) = 6.139 cm∕yr and for 𝑒1 = 175 000,
𝑢(ℎ1) = 0.253 cm∕yr, 𝑢(ℎ2) = 3.637 cm∕yr and 𝑢(60𝑚) = 6.139 cm∕yr.

Finally, the results of the numerical testing on the sensitivity of the
system to the parameters 𝑘1 and 𝑘2 are summarized in Figs. 11 and
12 respectively. The formula of viscosity 𝜇𝐾𝑀𝑅(7) assesses how the
parameter 𝑘1 influences viscosity where the equilibrium solid fraction
is far from unity (top and middle layers). Actually, we see that as 𝑘1
increases, displacement of the essentially icy layer (𝑓 ≪ 1) significantly

decreases as for thickening. Furthermore it appears that increasing
values of 𝑘2 effectively counteract shearing, in particular within the
essentially rocky zone. This characteristic makes this parameter strate-
gical for the purpose of shear zone detection, in addition to 𝑒12 on
which we have already commented. Conversely, decreasing 𝑘2 values
induce viscosity lowering and consequent appearance of progressive
shear layering from bottom. Let us notice that the influence of changes
in the value of parameter 𝑘2, explicitly related in the formula only to
lower and more rocky ice, clearly extends to the dynamics of the whole
glacier, from bottom upwards, for the lower layers of ice carry along
the upper ones laying over.
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Fig. 9. Numerical viscosity factor, 𝜇𝐾𝑀𝑅∕[
1

2
𝑡𝑟(𝐀2

1
)]𝑚∕2: sensitivity analysis vs. 𝑒2.

Fig. 10. Numerical viscosity factor, 𝜇𝐾𝑀𝑅∕[
1

2
𝑡𝑟(𝐀2

1
)]𝑚∕2: sensitivity analysis vs. 𝑒1.

3.3. Validation results

With the value of the physical and material parameters previously
fixed and the values corresponding to the red curves in the Figs. 5 - 12
we have computed our best approximation of the borehole downslope
displacements during the whole time span observed by Arenson et al.
in [17]. In Fig. 13 we show the graphs of the obtained numerical results
and those of the measured displacements which compare qualitatively
very well. In addition we report on the velocity in shear zone, whose

measured and computed values amount to 4 cm∕yr and 3.9283 cm∕yr

respectively. Moreover the ratio of the measured shear zone deforma-
tion to surface deformation amounts to 59% whereas the ratio of the
corresponding numerical deformations results 59.23. Then a relative
error of 1.8% and of 0.3% in the reproduction of these two items,
respectively, definitely endorse the good match of the numerical and
measured curves in Fig. 13 well beyond the qualitative appearance.

Arenson et al. observed that from the start of the measurement
campaign, on 5/11/1987, the surface deformation rate kept constant
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Fig. 11. Numerical borehole displacements at 4-4-1989: sensitivity analysis vs. 𝑘1.

Fig. 12. Numerical borehole displacements at 4-4-1989: sensitivity analysis vs. 𝑘2.

till 1991, then it increased and kept constant till the end of the
operations in August 1998 (this is documented in figure 10, a) in [17]).
They identified the cause of this change in the increase of about
0.5◦𝐶 of the temperature in the shear zone during the same period,
as reported by Vonder Muhll et al. [19]. With the present model which
includes temperature effects, we could take into account this change by
upgrading the temperature profile (see Fig. 3) and, then, develop the
numerical simulation up to the end of the observation time.

The uncertain trend of the measured displacements of the glacier
top layer, not captured by the presented simulation, is commented by
Arenson et al. as possibly related either to seasonal external tempera-
ture changes which do not influence internal ice layers or to distortion
effects of the measurement technical equipment. Whatever the cause is,

the numerical simulation suggests that the influence of limited changes
in the dynamics of the 3 m thick top ice layer upon the underneath one
is negligible.

4. Conclusions

In this paper we have provided a validation of the model recently
published in [1] for the numerical description of non-isothermal rock-
glacier flows. We have based this study on the reproduction of the
borehole downslope displacements of the Alpine rock glacier, Murtel-
Corvatsch, in Switzerland, as well as documented by Arenson et al.
in [17]. This case appears particularly suitable to our purpose because it
exhibits internal sliding occurrence in correspondence of an averagely
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Fig. 13. Borehole downslope displacements: numerical (left) vs measured by Arenson et al. (see Figure 9, a) in [17]) (right).

mixtured zone with ice and solid particles and sand grains, a typical and
critical condition which makes rock glaciers potentially very dangerous
for human settlements. It allowed also to test the ability of the model to
describe the impact of a temperature field change within the glacier as,
at mid-term of the observation time period, 1987–1995, on-field mea-
surements pointed out an increase of the displacement rate attributed
to an increase of 0.5◦𝐶 of the temperature at the shear zone. This event
is characteristic of the shear zone as the relatively rapid movement
of ice and rocky particles and the consequent friction typically induce
mechanical dissipation and internal heating.

After the sensitivity study of the model parameters linked to the
described natural set-up evolution (e.g. 𝑒1, 𝑒12, 𝑒2, 𝑘1 and 𝑘2 in (7), (10)
and (22)), whose change impact has been discussed in detail, the nu-
merical results obtained with the parameters selected values are quali-
tatively and quantitatively impressive as it is shown in Fig. 13, where
the present numerical computations and Arensons et al.’s measured
displacement profiles are compared.

The proposed model appears eligible for extensive use in compu-
tational glaciology. However for future modeling tasks of rock-glacier
flows, we stress the importance of having on-field measured data
from paradigmatic set-ups which allow the calibration of the sensible
parameters in relation to the specific ice and rock and sand grains
mixture composition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

Authors acknowledge Piano Nazionale Ricerca Antartide (PNRA),
the funding agency of the project PNRA16-00121 ENIGMA which the
present research is part of. K.R.R. thanks the Office of Naval Research
for its support.

D.M. acknowledges the licence n. 5016591052717 released by Wi-
ley for reuse of Figure 9.a in [17] as right part of Figure 13 in present
article.

References

[1] K. Kannan, D. Mansutti, K.R. Rajagopal, S. Urbini, Mathematical modeling of
rock glacier flow with temperature effects, in: P. Cannarsa, D. Mansutti, A.
Provenzale (Eds.), Mathematical Approach to Climate Change and Its Impacts,
in: Springer-INDAM Series, vol. 38, 2020, pp. 137–148.

[2] J.W. Glen, The creep of polycrystalline ice, Proc. R. Soc. Lond. Ser. A Math.
Phys. Eng. Sci. 228 (1175) (1955) 519–539.

[3] D.F. McTigue, S.L. Passman, S.J. Jones, Normal stress effects in the creep of ice,
J. Glaciol. 31 (108) (1985) 120–126.

[4] W.R. Schowalter, Mechanics of Non-Newtonian Fluids, Pergamon Press, London,
1978.

[5] J.E. Dunn, K.R. Rajagopal, Fluids of differential type: critical review and
thermodynamical analysis, Intl. J. Eng. Sci. 33 (1995) 689–729.

[6] C.-S. Man, Q.-S. Sun, On the significance of normal stress effects in the flow of
glaciers, J. Glaciol. 33 (115) (1987) 268–273.

[7] P.D. Barrette, I.J. Jordan, Pressure-temperature effects on the compressive
behavior of laboratory-grown and iceberg ice, Cold Reg. Sci. Technol. 36 (2003)
25–36.

[8] M. Arcangioli, A. Farina, L. Fusi, G. Saccomandi, Constitutive equations with
pressure-dependent rheological parameters for describing ice creep, J. Glaciol.
65 (252) (2019) 557–564.

[9] P. Duval, The role of the water content on the creep rate of polycrystalline ice,
IAHS Publ. 118 (1997) 29–33.

10

http://refhub.elsevier.com/S0020-7462(21)00044-5/sb1
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb1
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb1
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb1
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb1
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb1
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb1
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb2
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb2
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb2
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb3
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb3
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb3
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb4
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb4
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb4
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb5
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb5
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb5
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb6
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb6
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb6
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb7
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb7
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb7
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb7
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb7
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb8
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb8
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb8
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb8
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb8
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb9
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb9
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb9


K. Kannan, D. Mansutti and K.R. Rajagopal International Journal of Non-Linear Mechanics 132 (2021) 103710

[10] P.L. Moore, Deformation of debris-ice mixtures, Rev. Geophys. 52 (2014)
435–467.

[11] W. Lawson, C. Elliott, Strain rate effects on the strength of debris-laden glacier
ice, N. Z. J. Geol. Geophys. 46 (2010) 323–330.

[12] K. Kannan, K.R. Rajagopal, A model for the flow of rock glaciers, Int. J.
Non-Linear Mech. 48 (2013) 59–64.

[13] P. Mills, P. Snabre, Apparent viscosity and particle pressure of a concentrated
suspension of non-brownian hard spheres near the jamming transition, Eur. Phys.
J. E 30 (3) (2009) 309–316.

[14] J.F. Morris, F. Boulay, Curvilinear flows of noncolloidal suspensions: the role of
normal stresses, J. Rheol. 43 (1999) 1213–1237.

[15] K.M. Cuffey, W.S.B. Paterson, The Physics of Glaciers, BH Elsevier, Croydon, UK,
2010.

[16] J.E. Dunn, R.L. Fosdick, Thermodynamics, stability and boundedness of fluids of
complexity 2 and fluids of second grade, Arch. Ration. Mech. Anal. 56 (1974)
192–252.

[17] L. Arenson, M. Hoeltzle, S. Springman, Borehole deformation measurements and
internal structure of some rock glaciers in Switzerland, Permafr. Periglac. Process.
13 (2002) 117–135.

[18] G. Ovralez, F. Bertrand, S. Rodts, Local determination of the constitutive law of a
dense suspension of non-colloidal particles through magnetic resonance imaging,
J. Rheol. 50 (2006) 259–292.

[19] D. Vonder Muhll, T. Stucki, W. Haeberli, Borehole temperatures in alpine per-
mafrost: a ten year series, in: Proceedings of the 7th International Conference on
Permafrost, Yellowknife, Nordicana 57, Universite’ Laud, 1998, pp. 1089–1095.

11

http://refhub.elsevier.com/S0020-7462(21)00044-5/sb10
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb10
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb10
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb11
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb11
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb11
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb12
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb12
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb12
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb13
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb13
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb13
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb13
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb13
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb14
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb14
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb14
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb15
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb15
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb15
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb16
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb16
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb16
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb16
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb16
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb17
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb17
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb17
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb17
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb17
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb18
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb18
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb18
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb18
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb18
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb19
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb19
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb19
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb19
http://refhub.elsevier.com/S0020-7462(21)00044-5/sb19

	Computational corroboration of the flow of rock glaciers against borehole measurements
	Introduction of the model
	The test case
	Natural set-up and its representation
	Governing equations

	Numerical validation of the model
	Numerical solution approach
	Parameter calibration and sensitivity analysis
	Validation results

	Conclusions
	Declaration of competing interest
	Acknowledgments
	References


