Computational complexity of minimum P_{4} vertex cover problem for regular and $K_{1,4}$-free graphs

N. Safina Devi ${ }^{\text {a }}$, Aniket C. Mane ${ }^{\text {b }}$, Sounaka Mishra ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Department of Mathematics, Indian Institute of Technology Madras, 600036, India
${ }^{\text {b }}$ Birla Institute of Technology and Science Pilani, Goa, 403726, India

ARTICLE INFO

Article history:

Received 30 August 2013
Received in revised form 25 September 2014
Accepted 17 October 2014
Available online 24 November 2014

Keywords:

P_{4} vertex cover
Regular graph
$K_{1,4}$-free graph
Approximation algorithm

Abstract

In VCP_{4} problem, it is asked to find a set $S \subseteq V$ of minimum size such that $G[V \backslash S]$ contains no path on 4 vertices, in a given graph $G=(V, E)$. We prove that it is APX-complete for 3 -regular graphs as well as 3 -regular bipartite graphs. We show that a greedy based algorithm approximates VCP_{4} within a factor of 2 for regular graphs. We also show that VCP_{4} is APX-complete for $K_{1,4}$-free graphs and a local ratio based algorithm generates a solution which is within a factor of 3 .

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A graph property Π is nontrivial hereditary if there exists an infinite family of graphs satisfying Π, an infinite family not satisfying Π and if G satisfies the property Π then every induced subgraph of G also satisfies the property Π. A large class of graph optimization problems can be expressed as, given a graph $G=(V, E)$ and a nontrivial property Π, find a minimum size/weight vertex set $S \subseteq V$ such that $G[V \backslash S]$ satisfies the property Π. In [13], Lewis and Yannakakis proved that if Π is a nontrivial hereditary property, then the vertex-deletion problem for Π is NP-hard and if Π can be tested in polynomial time, then such vertex-deletion problem for Π is NP-complete. Lund and Yannakakis [14] proved that such kind of minimum vertex deletion problems are APX-complete and they can be approximated within a constant factor. This approximation factor depends on a finite forbidden graph characterization of the property Π. A property Π has a finite forbidden graph characterization if there exists a finite set \mathscr{H} of graphs such that G has property Π if and only if no element of \mathscr{H} is an induced subgraph of G. A trivial greedy algorithm for this class of vertex deletion problems gives a solution with approximation factor k, where k is the number of vertices in a largest graph in \mathscr{H}.

One of the interesting nontrivial hereditary properties is "at most degree b ", where b is a nonnegative integer. The associated vertex deletion problem is known as Minimum bounded degree vertex deletion (Min-BDD-b). In Min-BDD-b, given a graph $G=(V, E)$, find a minimum size vertex set S such that degree of each vertex in $G[V \backslash S]$ is at most b. Such a graph property has a finite forbidden set characterization as a result of which the associated vertex deletion problem can be approximated within a factor of $b+2$. However, Fujito [8] improved this trivial approximation factor to $b+1$ (for $b \geq 2$) which is based on local ratio approximation of [3]. In Minimum Vertex Cover (VC), given a graph $G=(V, E)$, we are asked to find a set $S \subseteq V$ of minimum size such that degree of each vertex in $G[V \backslash S]$ is 0 . For $b=0$, Min-BDD- b is same as VC.

[^0]For $b=1$, given a graph $G=(V, E)$, we are asked to find a set $S \subseteq V$ of minimum size such that degree of each vertex in $G[V \backslash S]$ is at most 1 (it is related to dissociation number of G [21]). Based on local ratio approximation method Min-BDD-0 and Min-BDD-1 are approximated within a factor of 2 due to Fujito [8].

In this paper, we consider the minimum vertex deletion problem associated with the nontrivial hereditary property "at most k-path", i.e. given an undirected graph G and a positive integer k, find a minimum size vertex set F such that $G[V \backslash F]$ contains no k-path (path on k vertices). We shall denote this problem as k-path vertex cover $\left(\mathrm{VCP}_{k}\right)$. A subset F of the vertex set V is called a k-path vertex cover if every path on k vertices, not necessarily induced, in G has at least one vertex from F. The k-path vertex cover number, $\psi_{k}(G)$, of G is the cardinality of a minimum k-path vertex cover for G. The $V C P_{k}$ problem which generalizes the well studied VC was introduced by Brešar et al. in [5] motivated by its relation to secure connection in wireless networks [15]. Tu and Zhou in [19] considered the vertex weighted version of the VCP_{k} motivated by its applications in traffic control along with the aforementioned. In general, VCP_{k} is known to be NP-complete, for $k \geq 2,[5,19]$. Brešar et al. [5] present a linear time algorithm for trees and investigate upper bounds on $\psi_{k}(G)$ in regular graphs. For any graph $G=(V, E)$ without isolated vertices, they show that $\psi_{k}(G) \leq n-\frac{k-1}{k} \sum_{u \in V} \frac{2}{1+d(u)}$, where $n=|V|$. In [4]. Brešar et al. give lower bounds for $\psi_{k}(G)$ in regular graphs. They show that for any d-regular graph $G, \psi_{k}(G) \geq \frac{d-k+2}{2 d-k+2} n$ and also give the exact values of $\psi_{k}(G)$ for certain graph classes.

When $k=2, \mathrm{VCP}_{2}$ is equivalent to VC which is APX-complete even when restricted to cubic graphs [1]. The best known approximation factor for VC in general graphs is $2-\Theta\left(\frac{1}{\sqrt{\log n}}\right)$ given by Karakostas in [10]. Also, Khot and Regev in [11] prove that Vertex Cover cannot be approximated within any constant factor better than 2 based on unique game conjecture.

When $k=3$, the VCP_{3} is the dual to the Dissociation number problem. Dissociation number of a given graph $G=(V, E)$ is the number of vertices in a maximum induced subgraph of G of degree at most 1 . The problem of finding the dissociation number of a graph was introduced by Yannakakis in [21] and proved to be NP-hard even in bipartite graphs and planar graphs. It is not hard to observe that VCP_{3} is identical to Min-BDD-b with $b=1$. Therefore, VCP_{3} is APX-complete and Fujito's local ratio based algorithm [8] approximates VCP_{3} within a factor of 2. In [19], the authors presented a primal-dual factor 2 approximation algorithm for VCP_{3}, which is based on a new integer linear program formulation. Tu and Yang [18] give a 1.57-approximation to VCP_{3} in cubic graphs.

When $k \geq 4, \mathrm{VCP}_{k}$ is not the same as bounding the degree by $k-2$. The approximability of the generalized problem of the two above mentioned node deletion problems in the direction of bounding the degree has been studied extensively in [6-8,16]. The method of formulating VCP_{3} as an integer linear program formulation as in [19] does not get extended to have an integer linear program formulation for VCP_{k}, for $k>3$. Based on the lower bound results for Min-BDD-b [16], we expect that VCP_{k} may not be approximable within a constant factor for arbitrary k.

We define $V C P_{4}$ as: Given a graph $G=(V, E)$, find a set $S \subseteq V$ of minimum size such that $G[V \backslash S]$ contains no path on 4 vertices. In Section 3, we show that VCP_{4} is NP-complete for cubic planar graphs and APX-complete for cubic graphs, cubic bipartite graphs and $K_{1,4}$-free graphs. In Section 4, we give a greedy 2-approximation algorithm to VCP_{4} in regular graphs. In Section 5, we use the local ratio technique used by Fujito [8] to get a 3-approximation in $K_{1,4}$-free graphs.

2. Notations and definitions

In this paper we follow the notations about graphs from West [20]. Let $G=(V, E)$ and $S \subseteq V$. We shall refer to S as a $P_{4}-V C$ for G if $G[V \backslash S]$ contains no path on 4 vertices. If G has no path on 4 vertices then we refer to G as a P_{4}-free graph, though the path mentioned here is not necessarily induced.

Following [2], we next recall some basic concepts regarding approximation algorithms for NP-optimization problems. The class NPO is the set of all NP-optimization problems.

For an instance x of a problem $\pi \in \mathrm{NPO}, m^{*}(x)$ denotes the measure (or weight) of an optimal solution of x, i.e. $m^{*}(x)=$ $\operatorname{goal}_{y \in \operatorname{sol}(x)} m(x, y)$ where $\operatorname{sol}(x)$ denotes the finite set of feasible solutions of x and $m(x, y)$ denotes the nonnegative measure of the solution y of the instance x of π. Given an instance x of $\pi \in$ NPO and $y \in \operatorname{sol}(x)$, the performance ratio of y with respect to x is defined by

$$
R_{\pi}(x, y)=\max \left\{\frac{m(x, y)}{m^{*}(x)}, \frac{m^{*}(x)}{m(x, y)}\right\}
$$

A polynomial-time algorithm A for a problem $\pi \in$ NPO is an ϵ-approximate algorithm for π, if $R_{\pi}(x, A(x)) \leq \epsilon$, for some $\epsilon \geq 1$ and for any instance x of π, where $A(x)$ is the solution for x given by A. The class APX is the set of all $\pi \in$ NPO which have ϵ-approximate algorithm for some constant $\epsilon \geq 1$. In order to introduce the notion of completeness for the class APX, several approximation preserving reductions are introduced. Among them is L-reduction [17] which is most commonly used and is defined as follows:
π_{1} is said to be L-reducible to π_{2} [17], in symbols $\pi_{1} \leq_{L} \pi_{2}$, if there exist a function f from instances of π_{1} to instances of π_{2} and two positive constants α, β such that:

1. $m_{\pi_{2}}^{*}(f(x)) \leq \alpha \cdot m_{\pi_{1}}^{*}(x)$.
2. For any $x \in I_{\pi_{1}}$ and for any $y \in \operatorname{sol}_{\pi_{2}}(f(x))$ we can in polynomial time find a solution $y^{\prime} \in \operatorname{sol}_{\pi_{1}}(x)$ such that

$$
\left|m_{\pi_{1}}^{*}(x)-m_{\pi_{1}}\left(x, y^{\prime}\right)\right| \leq \beta \cdot\left|m_{\pi_{2}}^{*}(f(x))-m_{\pi_{2}}(f(x), y)\right| .
$$

Fig. 1. An edge gadget in H corresponding to an edge $e=(u, v)$ in G.

A problem $\pi \in \mathrm{NPO}$ is APX-hard if, for any $\pi^{\prime} \in \mathrm{APX}, \pi^{\prime} \leq_{L} \pi$, and problem π is APX-complete if π is APX-hard and $\pi \in \mathrm{APX}$.

3. APX-hardness proofs for cubic graphs

We have already mentioned that the property $\Pi=P_{4}$-free is a nontrivial hereditary property. Also, one can prove that this property has a finite forbidden graph characterization. i.e. a graph G contains no P_{4} if and only if G does not contain any one of the graphs $\boxtimes, \triangle, \square, Z$ and \sqsupset as an induced subgraph. Because of this characterization and each forbidden graph has 4 vertices, VCP_{4} is approximable within a factor of 4 . From this observation it follows that VCP_{4} is in APX. Next we show that VCP_{4} is APX-hard for cubic graphs using the following known results.

Claim 1. If $G=(V, E)$ is a k-regular graph with $k \geq 1$ and $S_{\text {opt }}$ is a minimum vertex cover in G, then $\left|S_{o p t}\right| \geq \frac{|V|}{2}$.
Proof. Suppose $\left|S_{o p t}\right|<\frac{|V|}{2}$. Since G is k-regular, $|E| \leq k\left|S_{o p t}\right|<k \frac{|V|}{2}$. This contradicts the fact that $|E|=k \frac{|V|}{2}$.
Lemma 1 ([1]). For cubic graphs, VC is APX-complete.
Theorem 1. For cubic graphs, VCP_{4} is APX-complete.
Proof. We exhibit an L-reduction from $V C$ for cubic graphs to $V C P_{4}$ for cubic graphs. For a given 3-regular graph $G=(V, E)$, an instance of VC, we construct a cubic graph $H=\left(V^{\prime}, E^{\prime}\right)$, an instance of $V C P_{4}$, by replacing each edge $(u, v) \in E$ by a gadget as given in Fig. 1. From this construction, it follows that $\left|V^{\prime}\right|=|V|+\frac{3|V|}{2} 14=22|V|$ and $\left|E^{\prime}\right|=33|V|$.

Now, let $S \subseteq V$ be a vertex cover for G. Consider $S^{\prime}=S \cup\left\{u_{u v_{1}}:(u, v) \in E, u \notin S, v \in S\right\} \cup\left\{u_{u v_{1}}:(u, v) \in E,\{u, v\} \subseteq\right.$ $S\} \cup\left\{e_{11}, e_{12}, e_{21}, e_{22}: e \in E\right\}$. From the construction of S^{\prime}, it should be noted that for any edge $(u, v) \in E$ with both u and v in S, exactly one of the vertices $u_{u v_{1}}$ and $v_{u v_{1}}$ is chosen arbitrarily in S^{\prime}. We claim that S^{\prime} is a $P_{4}-V C$ for H . For $i \in\{1,2\}$, let $H_{e_{i}}$ be the subgraph of H induced by $\left\{e_{i 1}, e_{i 2}, e_{i 3}, e_{i 4}, e_{i 5}\right\}$ for $e \in E$. We must delete 2 vertices from $H_{e_{i}}$ to make it P_{4}-free. Deleting $e_{i 1}$ and $e_{i 2}$ kills all P_{4} s that contain vertices of $H_{e_{i}}$. Let $(u, v) \in E$. Since S is a vertex cover for $G,|S \cap\{u, v\}| \geq 1$. Without loss of generality, $u \in S$. Hence for the corresponding edge gadget, we have in S^{\prime}, u and $v_{u v_{1}}$. If in addition $v \in S$, then $v \in S^{\prime}$ and this implies that there is no path on 4 vertices in the remaining graph involving vertices from this edge gadget. Suppose $v \notin S^{\prime}$. Then $v_{p v_{1}}, v_{q v_{1}} \in S^{\prime}$ where $v_{p v_{1}}$ and $v_{q v_{1}}$ are the only other neighbours of v in H. Therefore, $H\left[V^{\prime} \backslash S^{\prime}\right]$ does not contain any path on 4 vertices involving vertices from this edge gadget. Thus S^{\prime} is a $P_{4}-V C$ for H. Let $|V|=n$. Then $|E|=\frac{3 n}{2}$, since G is a cubic graph. For each edge-gadget there are 5 vertices from H in S^{\prime} in addition to vertices from V. Therefore, we have that $\left|S^{\prime}\right|=|S|+5|E|=|S|+\frac{15 n}{2}$. Let $S_{o p t}$ be a minimum vertex cover for G, then by Claim $1,\left|S_{o p t}\right| \geq \frac{n}{2}$. Let $S_{o p t}^{\prime}$ be a minimum $P_{4}-V C$ for H, then $\left|S_{o p t}^{\prime}\right| \leq\left|S_{o p t}\right|+\frac{15 n}{2} \leq\left|S_{o p t}\right|+15\left|S_{\text {opt }}\right| \leq 16\left|S_{\text {opt }}\right|$.

Conversely, let S^{\prime} be any $P_{4}-V C$ for H. We construct another $P_{4}-V C$, say $S^{\prime \prime}$ for H such that $\{u, v\} \cap S^{\prime} \neq \varnothing$ for every $(u, v) \in E$ and $\left|S^{\prime \prime}\right| \leq\left|S^{\prime}\right|$. For an edge-gadget corresponding to $e \in E, S^{\prime}$ contains at least 2 vertices from each of the two sets $\left\{e_{i 1}, e_{i 2}, e_{i 3}, e_{i 4}, e_{i 5}\right\}$, for $i=1,2$. We can assume that they are fixed. We do not need any other vertices from these two sets. If S^{\prime} has $u_{u v_{1}}$ then $S^{\prime} \cap\left\{u_{u v_{1}}, v_{u v_{1}}, v_{u v_{2}}, v\right\} \neq \varnothing$. It is sufficient to replace $S^{\prime} \cap\left\{u_{u v_{1}}, v_{u v_{1}}, v_{u v_{2}}, v\right\}$ by $\{v\}$ in $S^{\prime \prime}$. If $S^{\prime} \cap\left\{u_{u v_{1}}, v_{u v_{1}}\right\}=\varnothing$ then $\{u, v\} \cap S^{\prime} \neq \varnothing$ and $\left\{u_{u v_{2}}, v_{u v_{2}}\right\} \cap S^{\prime} \neq \varnothing$. If $v \in S^{\prime}$, then we can substitute $v_{u v_{2}}$ or $u_{u v_{2}}$ by $u_{u v_{2}}$ in $S^{\prime \prime}$.

Thus, we have constructed $S^{\prime \prime}$ such that $\left|S^{\prime \prime}\right| \leq\left|S^{\prime}\right|$. Also, by construction of $S^{\prime \prime},\{u, v\} \cap S^{\prime \prime} \neq \varnothing$ for all edges in E. Hence, $S^{\prime \prime} \cap V$ gives a vertex cover for G. Also, $|S|=\left|S^{\prime \prime}\right|-15 n / 2$. Let S^{\prime} be any $P_{4}-V C$ set for H and S be the corresponding vertex cover for G and $S_{o p t}^{\prime}$ be a minimum $P_{4}-V C$ set for H and $S_{o p t}$ be the corresponding minimum vertex cover for G. Then,

$$
\begin{aligned}
& \left|S^{\prime}\right|-\left|S_{o p t}^{\prime}\right| \geq|S|+\frac{15 n}{2}-\left|S_{o p t}\right|-\frac{15 n}{2} \\
& \left|S^{\prime}\right|-\left|S_{o p t}^{\prime}\right| \geq|S|-\left|S_{o p t}\right|
\end{aligned}
$$

This gives an L-reduction from VC for cubic graphs to VCP_{4} for cubic graphs with $\alpha=16$ and $\beta=1$.

Fig. 2. An edge gadget in H corresponding to an edge (u, v) in G.
VC restricted to cubic planar graphs is known to be NP-hard [9] and the construction of the graph H from a cubic graph G, in the above reduction, preserves planarity property. Hence we have the following corollary.

Corollary 1. For cubic planar graphs, VCP_{4} is NP-complete.
Next we shall proceed towards proving that VCP_{4} is APX-hard for $K_{1,4}$-free graphs. In order to prove it, it is enough to prove that VCP_{4} is APX -complete for cubic bipartite graphs. Before that we need to observe that VCP_{4} is approximable within a factor 2 when restricted to bipartite graphs which follows from a result of [12].

Lemma 2 ([12]). For bipartite graphs, VCP_{4} is approximable within a factor of 2.
Theorem 2. For bipartite graphs with degree at most $3, \mathrm{VCP}_{4}$ is APX-complete.
Proof. Let $G=(V, E)$ be a cubic graph. We construct the graph $H=\left(V^{\prime}, E^{\prime}\right)$ as follows. We define V^{\prime} as, $V^{\prime}=V \cup$ $\left\{u_{u v_{1}}, u_{u v_{2}}, u_{u v_{3}}, v_{u v_{1}}, v_{u v_{2}}, v_{u v_{3}}:(u, v) \in E\right\}$. We transform each edge (u, v) into a graph on 8 vertices as given in Fig. $2 . H$ is a bipartite graph of degree at most 3 where $X=V \cup\left\{u_{u v_{2}}, v_{u v_{2}}:(u, v) \in E\right\}$ and $Y=\left\{u_{u v_{1}}, u_{u v_{3}}, v_{u v_{1}}, v_{u v_{3}}:(u, v) \in E\right\}$ give a bipartition of V^{\prime}. Let $S \subseteq V$ be a vertex cover for G. Let $S^{\prime}=S \cup\left\{v_{u v_{2}}: u \in S, v \notin S,(u, v) \in E\right\} \cup\left\{u_{u v_{2}}: u, v \in S,(u, v) \in E\right\}$. It should be noted that we choose exactly one of $u_{u v_{2}}$ and $v_{u v_{2}}$ into S^{\prime} whenever both endpoints u and v of an edge are in S. Then $H\left[V^{\prime} \backslash S^{\prime}\right]$ has no path on 4 vertices. Also, S^{\prime} has exactly $|E|+|S|$ many vertices.

Conversely, let $S^{\prime} \subseteq V^{\prime}$ be any $P_{4}-V C$ for H. Let $A=\left\{u_{u v_{2}}, v_{u v_{2}}:(u, v) \in E\right\}$. We construct an $S^{\prime \prime} \subseteq V^{\prime}$ such that $\left|S^{\prime \prime}\right| \leq\left|S^{\prime}\right|$, $S^{\prime \prime} \subseteq V \cup A$ and $\left|S^{\prime \prime} \cap\left\{u_{u v_{2}}, v_{u v_{2}}\right\}\right|=1$, for every $(u, v) \in E$. Initially, let $S^{\prime \prime}=S^{\prime}$. We need to delete at least 2 vertices from each edge gadget to make it P_{4}-free. For an edge $(u, v) \in E$, if the corresponding edge gadget in H has 3 vertices in S^{\prime}, then we replace these 3 vertices by $u, v, u_{u v_{2}}$ in $S^{\prime \prime}$. If there are only 2 vertices from the edge gadget and if $u \in S^{\prime}$ then at least one of $\left\{u_{u v_{1}}, u_{u v_{2}}, u_{u v_{3}}, v_{u v_{2}}\right\}$, say x, is in S^{\prime}. We can then replace x by $v_{u v_{2}}$ in $S^{\prime \prime}$. Suppose both u and v are not in S^{\prime} and $u_{u v_{2}} \in S^{\prime}$. Then at least one of $\left\{u_{u v_{3}}, v_{u v_{1}}, v_{u v_{2}}, v_{u v_{3}}\right\}$ is in S^{\prime} and we can replace this vertex by v in $S^{\prime \prime}$. The only remaining possibility is that $u_{u v_{3}}$ and $v_{u v_{3}}$ are the 2 vertices in S^{\prime}. Then we can replace them by u and $v_{u v_{2}}$. In any case, we do not increase the size of S^{\prime} or include any new P_{4}. In addition, $S^{\prime \prime} \cap\{u, v\} \neq \varnothing$ for every edge $(u, v) \in E$. Hence $S^{\prime \prime}$ is a $P_{4}-V C$ for H and $S=S^{\prime \prime} \cap V$ is a vertex cover for G. Also, $|S|=\left|S^{\prime \prime}\right|-|E|$. Since G is a cubic graph, $|E|=\frac{3|V|}{2}$. Thus $\left|S^{\prime \prime}\right|=|S|+\frac{3|V|}{2}$. We can thus assume that any VCP_{4} for H has the properties of $S^{\prime \prime}$. Let $S_{\text {opt }}^{\prime}$ be a minimum VCP_{4} for H and $S_{\text {opt }}$ be the corresponding minimum VC for G. Then $\left|S_{o p t}^{\prime}\right|=\left|S_{o p t}\right|+\frac{3|V|}{2} \leq\left|S_{o p t}\right|+3\left|S_{o p t}\right|=4\left|S_{o p t}\right|$. Let S^{\prime} and S be respectively a $V C P_{4}$ for H and the corresponding $V C$ for G. Then $\left|S_{o p t}^{\prime}\right|-\left|S_{o p t}\right| \leq\left|S^{\prime}\right|-|S|$. Hence this reduction proves to be an L-reduction from VC in cubic graphs to VCP_{4} in bipartite graphs of degree at most 3.

Theorem 3. For cubic bipartite graphs, VCP_{4} is APX-complete.

Proof. Let $G=(V, E)$ be a cubic graph. We construct the graph $H=\left(V^{\prime}, E^{\prime}\right)$ from G as in the previous theorem. This graph H has vertices of degree either 2 or 3 . To adjust the vertices of degree 2 we make two copies $H_{1}=\left(V_{1}, E_{1}\right)$ and $H_{2}=\left(V_{2}, E_{2}\right)$ of H. For each $x \in V^{\prime}$ let x^{1} and x^{2} be the corresponding copies in H_{1} and H_{2}, respectively. We take the union of the graphs H_{1} and H_{2}, and for any pair of vertices x^{1}, x^{2} which are of degree 2 we add the graph structure H_{x} (the subgraph induced by the vertex set $\left\{x_{1}, x_{2}, \ldots, x_{10}\right\}$) between them as given in Fig. 3. We shall refer to H_{x} as the vertex gadget corresponding to x. We shall denote the entire graph by $H_{0}=\left(V_{0}, E_{0}\right)$. Since G is a cubic graph, we have that H_{0} is cubic. We claim that it is also bipartite. In the proof of Theorem 2, we have observed that H is a bipartite graph with vertex bipartition sets as $X=V \cup\left\{u_{u v_{2}}, v_{u v_{2}}:(u, v) \in E\right\}$ and $Y=\left\{u_{u v_{1}}, u_{u v_{3}}, v_{u v_{1}}, v_{u v_{3}}:(u, v) \in E\right\}$. It should be noted that a vertex $x \in V^{\prime}$ has a vertex gadget in H_{0} if and only if $x \in Y$. Let $X_{0}=\left\{x^{1}: x \in X\right\} \cup\left\{x^{2}: x \in Y\right\} \cup\left\{x_{1}, x_{3}, x_{5}, x_{7}, x_{9}: x \in Y\right\}$ and $Y_{0}=\left\{x^{2}: x \in X\right\} \cup\left\{x^{1}: x \in Y\right\} \cup\left\{x_{2}, x_{4}, x_{6}, x_{8}, x_{10}: x \in Y\right\}$. Then $\left(X_{0}, Y_{0}\right)$ gives a vertex bipartition of H_{0}. Therefore, H_{0} is a cubic bipartite graph.

Claim 2. Any $P_{4}-V C$ of H_{x} contains at least 4 vertices.
Proof. If we delete any two vertices from H_{x} then the remaining graph can contain either a C_{6}, or a C_{8}, or a C_{4} with 3 vertex disjoint paths attached to three distinct vertices of the C_{4}. In all these three cases, it is required to remove at least two vertices to make each one them P_{4}-free.

Let $S \subseteq V$ be a vertex cover for G. We construct a $P_{4}-V C$ for H_{0} from S. By Claim 2, it is required to delete at least 4 vertices from each vertex gadget such that it becomes P_{4}-free. If we choose them to be x_{1}, x_{4}, x_{7} and x_{9}, for each $x \in Y$, then the

Fig. 3. Transformation of two degree 2 vertices x^{1} and x^{2} in $H_{1} \cup H_{2}$ to degree 3 in H_{0}.
problem reduces to finding a $P_{4}-V C$ in each of H_{1} and H_{2}. Let $S^{\prime} \subseteq V^{\prime}$ be a $P_{4}-V C$ for H constructed from S as in Theorem 2. Let $S_{0}=\left\{x^{1}, x^{2}: x \in S^{\prime}\right\} \cup\left\{x_{1}, x_{4}, x_{7}, x_{9}: x \in S^{\prime} \cap Y\right\}$. Then S_{0} is a $P_{4}-V C$ for H_{0}.

Conversely, let $S_{0} \subseteq V_{0}$ be a $P_{4}-V C$ for H_{0}. For each vertex gadget H_{x}, we can replace $S_{0} \cup V\left(H_{x}\right)$ by $\left\{x_{1}, x_{4}, x_{7}, x_{9}: x \in S^{\prime} \cap Y\right\}$ and this does not increase the size of $S_{0} . S_{1}=S_{0} \cap V_{1}$ is a $P_{4}-V C$ for H_{1} and $S_{2}=S_{0} \cap V_{2}$ is a $P_{4}-V C$ for H_{2}. We choose the smallest of the two sets, say S_{1}, and replace S_{2} by vertices in V_{2} corresponding to S_{1}. We can then normalize S_{1} to a $P_{4}-V C$ of our requirement as in Theorem 2 and find a vertex cover for G accordingly.

Let $S_{\text {opt }}^{\prime}$ be a minimum $V C P_{4}$ for H_{0} and $S_{\text {opt }}$ be the corresponding minimum $V C$ for G. Then $\left|S_{o p t}^{\prime}\right| \leq\left|S_{o p t}\right|+|E|+4|Y|=$ $\left|S_{o p t}\right|+17|E|=\left|S_{\text {opt }}\right|+\frac{51|V|}{2} \leq\left|S_{o p t}\right|+51\left|S_{o p t}\right|=52\left|S_{o p t}\right|$. Let S^{\prime} and S be respectively a VCP 4 for H_{0} and the corresponding $V C$ for G. Then $\left|S_{o p t}^{\prime}\right|-\left|S_{o p t}^{2}\right| \leq\left|S^{\prime}\right|-|S|$. Hence this reduction proves to be an L-reduction from VC in cubic graphs to VCP_{4} in cubic bipartite graphs.

Corollary 2. For $K_{1,4}-$ free graphs, VCP_{4} is APX-complete.
Proof. The class of $K_{1,4}$-free graphs contains cubic bipartite graphs. Since VCP_{4} is APX-complete on cubic bipartite graphs (by Theorem 3), VCP_{4} is APX-hard on $K_{1,4}$-free graphs. Since P_{4}-free graphs has a finite forbidden subgraph characterization and each forbidden subgraph has 4 vertices, VCP_{4} can be approximated within a factor of 4 on any graph. Therefore, VCP_{4} is APX-complete on $K_{1,4}$-free graphs.

4. Approximation algorithms

In the introduction of Section 3, we have mentioned that VCP_{4} is approximable within a factor of 4. However, in this section we will improve this approximation factor to 2 when the input graphs are restricted to regular graphs. We use a greedy approach to find an approximate solution to VCP_{4} in regular graphs.

Theorem 4. Algorithm 1 gives a 2-approximate solution to VCP_{4} for k-regular graphs.
Proof. By construction, each $F_{i}, i=k$ to 2 , is an independent set. For $i=2$ to $k-1$, each vertex in F_{i} can have at most one neighbour in F_{i+1}. Therefore, each subgraph $G\left[S_{j}\right], j=1$ to $\left\lfloor\frac{k}{2}\right\rfloor+1$, can have only stars and isolated vertices and hence is P_{4}-free. A maximum sized set, say S_{j}, has at least $\frac{n}{\left\lfloor\frac{k}{2}\right\rfloor+1}$ many vertices. We consider the remaining set of vertices to be S and hence $|S|$ is at most $n-\frac{n}{\left\lfloor\frac{k}{2}\right\rfloor+1}$ which is $\frac{\left\lfloor\frac{k}{2}\right\rfloor n}{\left\lfloor\frac{k}{2}\right\rfloor+1}$.

A lower bound for the optimum solution in k-regular graphs is $\frac{k-2}{2 k-2} n$ given by Brešar et al. [5]. Therefore, we have that

$$
\frac{|S|}{\left|S_{o p t}\right|} \leq \frac{\left(\left\lfloor\frac{k}{2}\right\rfloor\right) /\left(\left\lfloor\frac{k}{2}\right\rfloor+1\right)}{(k-2) /(2 k-2)}
$$

It can be easily seen that this fraction is always less than 2 for $k \geq 3$. Hence we have a 2 -approximation for VCP_{4} in regular graphs.

5. Approximation algorithm for $K_{1,4} \mathbf{- f r e e}$ graphs

Let $G=(V, E)$ be such that G does not have $K_{1,4}$ as an induced subgraph and let $w: V \rightarrow Q^{+}$be a weight function defined on V. We shall denote the set of vertices which have a non-zero weight under w as $V(w)$. We give a recursive algorithm using local ratio technique to find an approximate solution in G with the given weight function w.

```
Algorithm 1: Greedy Algorithm for \(\mathrm{VCP}_{4}\) in \(k\)-regular graphs
    Input: \(k\)-regular graph \(G=(V, E)\);
    Output: \(S \subseteq V\) such that \(G[V \backslash S]\) has no paths on 4 vertices;
    \(S=\emptyset\);
    \(F=\emptyset ;\)
    \(G^{\prime}=G\);
    for \(i=k\) down to 3 do
        while there is a vertex of degree \(i\) in \(G^{\prime}\) do
            Choose a vertex \(v\) with \(d(v)=i\);
            \(F_{i}=F_{i} \cup\{v\} ; G^{\prime}=G^{\prime} \backslash\{v\}\);
            Remove all components in \(G^{\prime}\) which are isomorphic to \(K_{1, i}\) and call the resulting graph as \(G^{\prime}\);
        end
        Remove all components in \(G^{\prime}\) which are isomorphic to \(K_{1, i-1}\) and call the resulting graph as \(G^{\prime}\);
    end
    Choose a minimum \(P_{4}-\mathrm{VC}, F_{2}\), for \(G^{\prime}\) such that
    - \(F_{2}\) is an independent set in \(G^{\prime}\) and
    - \(d_{G^{\prime}}(v)=2, \forall v \in F_{2}\);
    \(F_{1}=V \backslash \cup_{i=2}^{k} F_{i}\);
    (Clubbing two sets at a time)
    if \(k\) is odd then
        \(S_{1}=F_{1}\);
        \(S_{i}=F_{2 i-2} \cup F_{2 i-1}\) for \(i=2\) to \(\left\lfloor\frac{k}{2}\right\rfloor+1\);
    end
    else
        \(S_{1}=F_{1} ; S_{2}=F_{2} ;\)
        \(S_{i}=F_{2 i-3} \cup F_{2 i-2}\) for \(i=3\) to \(\frac{k}{2}+1\);
    end
    Choose \(j\) such that \(\left|S_{j}\right| \geq\left|S_{i}\right|\), for \(i=1\) to \(\left\lfloor\frac{k}{2}\right\rfloor+1\);
    \(S=V \backslash S_{j}\);
    Return \(S\);
```

In the above algorithm, each iteration i finds the minimum ratio α_{i} and the weight function w_{i} slices the weight of each vertex (in the remaining graph) by a factor of α_{i} and w^{\prime} gives the weight that is remaining. The minimum ratio is achieved at least at one vertex and hence the weight of this vertex is reduced to zero in the corresponding iteration. At each iteration i, the corresponding vertices whose weights are reduced to zero are taken into the set S_{i} and only those vertices which are left with a non-zero weight are considered in the next iteration. This assures that this recursive algorithm terminates in a finite number of steps. For each i, S_{i} is a solution to the graph $G\left[V\left(w^{i}\right)\right]$ and S_{1} is the solution to the given graph G. Also, the solutions are minimal at each stage since the cleaning up step is also done recursively. Let $w_{1}, w_{2}, \ldots, w_{t}$ be the different weight functions obtained from the algorithm. Then $\left\{w_{1}, w_{2}, \ldots, w_{t}\right\}$ gives a decomposition of the given weight function w. That is, $\sum_{i=1}^{t} w_{i}(v)=w(v)$ for every $v \in V$. Therefore, we have that $w\left(S_{1}\right)=\sum_{v \in S_{1}} w(v)=\sum_{v \in S_{1}} \sum_{i=1}^{t} w_{i}(v)=\sum_{i=1}^{t} w_{i}\left(S_{1}\right)$.

We use the following result by Fujito [8] to get the performance ratio of Algorithm 2 which depends on a weight scheme defined on V, \bar{w}, and is for the node deletion problem for any graph property Π. Substituting 'no path on 4 vertices' by any graph property Π and $d_{G^{\prime}}(v)$ by $\bar{w}_{G^{\prime}}$ in the algorithm, we get the local ratio algorithm for VCP_{4}.

Theorem 5 ([8]). The Local Ratio Algorithm computes a solution of the node deletion problem for the graph property Π whose performance ratio is bounded by max $\frac{\bar{w}_{G}(S)}{\bar{w}_{G}\left(S^{*}\right)}$ where maximum is taken over any minimal and optimal solutions S and S^{*} respectively, in any graph G under weight \bar{w}_{G}.

The weight scheme \bar{w}_{G} mentioned here is computable in polynomial time given any graph G and is such that if S is any solution to G, then so is $S \cap V\left(\bar{w}_{G}\right)$. With $\bar{w}_{G}(v)=d_{G}(v)$, we get the same bound on the performance ratio of Algorithm 2 . Now we have to only show a bound for $\frac{\bar{w}_{G}(S)}{\bar{w}_{G}\left(S^{*}\right)}$ where S and S^{*} are any minimal and optimal solutions respectively.

Theorem 6. Algorithm 2 gives a 3-approximate solution to VCP_{4} for $K_{1,4}$-free graphs.
Proof. Let S and S^{*} be any minimal and optimal solutions respectively. For convenience, we shall denote \bar{w} as w during the analysis. Let $\delta(X, Y)$ be the set of edges between X and Y. It is not difficult to show the following two equations.

$$
\begin{aligned}
w(S) & =w\left(S \cap S^{*}\right)+w\left(S \backslash S^{*}\right) \\
& =2 \delta\left(S \backslash S^{*}, S \cap S^{*}\right)+w\left(S \cap S^{*}\right)-\delta\left(S \backslash S^{*}, S \cap S^{*}\right)+w\left(S \backslash S^{*}\right)-\delta\left(S \backslash S^{*}, S \cap S^{*}\right) .
\end{aligned}
$$

```
Algorithm 2: Approximation Algorithm for \(\mathrm{VCP}_{4}\) in \(K_{1,4}\)-free graphs using Local Ratio
    Input: Graph \(G=(V, E)\) which does not have \(K_{1,4}\) as an induced subgraph and a weight function \(w\) defined on \(V\);
    Output: \(S \subseteq V\) such that \(G[V \backslash S]\) has no path on 4 vertices;
    \(i=0\);
    \(S_{i}=\emptyset\);
    LocalRatio \((w)\{\)
    \(i=i+1\);
    \(w^{i}=w\);
    if \(G\) has no path on 4 vertices then
        Return Ø;
    end
    else
        \(G^{\prime}=G\left[V\left(w^{i}\right)\right] ;\)
        \(\alpha_{i}=\min \left\{\frac{w^{i}(v)}{d_{G^{\prime}}(v)}: v \in V\left(w^{i}\right)\right\} ;\)
        \(w_{i}(v)=\alpha_{i} d_{G^{\prime}}(v) \quad \forall v \in V\left(w^{i}\right) ;\)
        \(w_{i}(v)=0 \quad \forall v \notin V\left(w^{i}\right) ;\)
        \(w^{\prime}(v)=w^{i}(v)-w_{i}(v) \quad \forall v \in V\left(w^{i}\right) ;\)
        \(w^{\prime}(v)=0 \quad \forall v \notin V\left(w^{i}\right)\);
        \(S^{\prime}=\operatorname{LocalRatio}\left(w^{\prime}\right)\);
        \(S_{i}=\left.S^{\prime} \cup\left(V\left(w^{i}\right)-V\left(w^{\prime}\right)\right)\right|^{*}\) Takes all zero weighted vertices into solution*/;
        for every \(v \in V\left(w^{i}\right)-V\left(w^{\prime}\right)\) do
            If \(S_{i} \backslash\{v\}\) is a solution in \(G^{\prime}\) then \(S_{i}=S_{i} \backslash\{v\} ;\)
        end
        Return \(S_{i}\);
    end
    \}
```

$$
w\left(S^{*}\right)=\delta\left(S \backslash S^{*}, S \cap S^{*}\right)+w\left(S \cap S^{*}\right)-\delta\left(S \backslash S^{*}, S \cap S^{*}\right)+w\left(S^{*} \backslash S\right)
$$

Therefore,

$$
\frac{w(S)}{w\left(S^{*}\right)} \leq \max \left\{2, \frac{w\left(S \backslash S^{*}\right)-\delta\left(S \backslash S^{*}, S \cap S^{*}\right)}{w\left(S^{*} \backslash S\right)}\right\} .
$$

Now we show that

$$
w\left(S \backslash S^{*}\right)-\delta\left(S \backslash S^{*}, S \cap S^{*}\right) \leq 3 w\left(S^{*} \backslash S\right)
$$

We can assume that there are no cross edges between $S \backslash S^{*}$ and $S \cap S^{*}$ and hence it is enough to prove that $w\left(S \backslash S^{*}\right) \leq$ $3 w\left(S^{*} \backslash S\right)$. Let $v \in S \backslash S^{*}$. Suppose there is a cross edge e from v to a vertex in $S^{*} \backslash S$. Then e gives a contribution of 3 to the RHS and only 1 to the LHS. Suppose v has at most 2 neighbours in $V \backslash S^{*}$ then we are done. Also, v cannot have 4 neighbours in $V \backslash S^{*}$. For, if so then there is an edge between two of its neighbours since G is $K_{1,4}$-free. This will give rise to a path on 4 vertices in $G\left[V \backslash S^{*}\right]$ contradicting the fact that S^{*} is a solution to G. Therefore, v can have at most 3 neighbours in $V \backslash S^{*}$. If there are 3 neighbours then no two of them are adjacent and there is an edge between one of these vertices and a vertex in $S^{*} \backslash S$, which has a contribution of 3 on the RHS. Also, these 3 vertices are adjacent to only v in $S \backslash S^{*}$ (otherwise there will be a path on 4 vertices in $G\left[V \backslash S^{*}\right]$). Therefore, this second cross edge is unique to v and we are done.

Assume there is no cross edge from v to $S^{*} \backslash S$. If v has at least 2 neighbours in $V \backslash S^{*}$ then none of these neighbours are adjacent to any other vertex in $S \backslash S^{*} . v$ can have at most 3 neighbours in $V \backslash S^{*}$ and if it has only one then there can be at most 3 such vertices of $S \backslash S^{*}$ which are adjacent to the same vertex in $V \backslash S^{*}$ (using $K_{1,4}$-free property of G). Since S is a minimal solution to G, there is at least one path on 4 vertices in $G[V \backslash S] \cup\{v\}$ which gives a cross edge from $V \backslash S^{*}$ to $S^{*} \backslash S$. This proves the inequality and hence we have the 3 -approximation.

6. Conclusion

VCP_{4} is approximable within a factor of 2 in regular graphs and within a factor of 3 in $K_{1,4}-$ free graphs. Also, it is approximable within a factor of 2 in bipartite graphs which is better than the trivial 4 -approximation in graphs. This motivates us to expect that it can be approximable within a factor less than 4 in general graphs. Also, Min-BDD-b has a $2+\log b$ factor approximation due to Okun and Barak [16]. A similar approximation (which is better than the trivial k factor approximation) for VCP_{k}, for any k, is still unknown. Moreover, in Section 3, we exhibit a reduction from VC to VCP_{4} in
cubic planar graphs to show NP-hardness of the problem. The question of whether VCP_{4} is APX-hard in cubic planar graphs remains open.

Acknowledgements

The authors thank the unknown referees for their valuable comments and suggestions.

References

[1] P. Alimonti, V. Kann, Some APX-completeness results for cubic graphs, Theoret. Comput. Sci. 237 (1)(2000) 123-134.
[2] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, M. Protas, Complexity and Approximation: Combinatorial Optimization Problems and their Approximability Properties, Springer, 1999.
[3] R. Bar-Yehuda, S. Even, A local-ratio theorem for approximating the weighted vertex cover problem, Ann. Discrete Math. 25 (1985) $27-46$.
[4] B. Brešar, M. Jakovac, J. Katrenič, G. Semanišin, A. Taranenko, On the vertex k-path cover, Discrete Appl. Math. 161 (13) (2013) $1943-1949$.
[5] B. Brešar, F. Kardoš, J. Katrenič, G. Semanišin, Minimum k-path vertex cover, Discrete Appl. Math. 159 (12) (2011) 1189-1195.
[6] T. Ebenlendr, P. Kolman, J. Sgall, An approximation algorithm for bounded degree deletion.
[7] M.R. Fellows, J. Guo, H. Moser, R. Niedermeier, A generalization of Nemhauser and Trotter's local optimization theorem, J. Comput. System Sci. 77 (6) (2011) 1141-1158.
[8] T. Fujito, A unified approximation algorithm for node-deletion problems, Discrete Appl. Math. 86 (2) (1998) 213-231.
[9] D.S. Johnson, M.R. Garey, Computers and Intractability-a Guide to the Theory of NP-Completeness, Freeman \& Co., San Francisco, 1979.
[10] G. Karakostas, A better approximation ratio for the vertex cover problem, ACM Trans. Algorithms (TALG) 5 (4) (2009) 41.
[11] S. Khot, O. Regev, Vertex cover might be hard to approximate to within 2-\&, J. Comput. System Sci. 74 (3) (2008) 335-349.
[12] M. Kumar, S. Mishra, N. Safina Devi, S. Saurabh, Approximation algorithms for node deletion problems on bipartite graphs with finite forbidden subgraph characterization, Theoret. Comput. Sci. 526 (2014) 90-96.
[13] J.M. Lewis, M. Yannakakis, The node-deletion problem for hereditary properties is np-complete, J. Comput. System Sci. 20 (2) (1980) $219-230$.
[14] C. Lund, M. Yannakakis, On the hardness of approximating minimization problems, J. ACM (JACM) 41 (5) (1994) 960-981.
[15] M. Novotnỳ, Design and analysis of a generalized canvas protocol, in: Proceedings of WISTP 2010, in: Lecture Notes in Computer Science, vol. 6033, Springer, 2010, pp. 106-121.
[16] M. Okun, A. Barak, A new approach for approximating node deletion problems, Inform. Process. Lett. 88 (5) (2003) $231-236$.
[17] C.H. Papadimitriou, M. Yannakakis, Optimization, approximation, and complexity classes, J. Comput. System Sci. 43 (3) (1991) 425-440.
[18] J. Tu, F. Yang, The vertex cover P_{3} problem in cubic graphs, Inform. Process. Lett. 113 (13) (2013) 481-485.
[19] J. Tu, W. Zhou, A primal-dual approximation algorithm for the vertex cover p3 problem, Theoret. Comput. Sci. 412 (50) (2011) $7044-7048$.
[20] D.B. West, Introduction to Graph Theory, Prentice-Hall, 1996.
[21] M. Yannakakis, Node-deletion problems on bipartite graphs, SIAM J. Comput. 10 (2) (1981) 310-327.

[^0]: * Corresponding author.

 E-mail addresses: safina@smail.iitm.ac.in (N. Safina Devi), acmane92@gmail.com (A.C. Mane), sounak@iitm.ac.in (S. Mishra).

