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Maxwell’s equations are solved in an electro-magnetic rectangular waveguide with the
boundary determined by material properties and interface conditions wherein finite point
set method approximates the partial derivatives of the scattered fields. The process is time
dependent. Waveguide propagation depends on the operating wave length, polarization,
shape and aspect ratio of the waveguide.

A continuous incident pulse is used to study the electric field pattern and transmission
behavior in plain and corrugated waveguides. The waveguide is modeled in a 2D rectangle
with incident source at the left boundary.

Transmission coefficients are computed as a function of frequency of the continuous
pulse for both the plain and corrugated waveguide of various heights k=2; k=4 and 3k=4.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Passive components are those that do not require electric power to operate in electrical, computer or storage systems. The
study on microwave passive components like transmission lines (coaxial, rectangular and cylindrical waveguides) is
essential to characterize transmission behavior and attenuation of the wave in the frequency domain. Computation of the
parameters transmission coefficient and attenuation coefficient under various test defect conditions through numerical
modeling and then simulation helps better understanding and proper design of microwave circuits.

As the microwave pulse incident at the source of the waveguide, the conducting walls of the waveguide control the
electro-magnetic waves interior to it. The waves travel longitudinally down the waveguide till the opposite wall and then
reflected back. The process results in a component of either electric field or magnetic field in the direction of propagation
of the guided wave. Therefore, the wave is no longer a transverse electromagnetic wave (TEM) [1–4].

Rectangular waveguide is one of the earliest type of transmission lines [5] still commonly used in many current applications.
Ratanadecho et al. [6] investigated both numerically and experimentally the heating of a liquid layer by microwave with a
rectangular waveguide and showed that the heating kinetic energy depends on dielectric properties. Recently, Erol and Balik
[7] introduced 2D finite difference method to analyze widely used rectangular waveguides and validated computed results
with analytical solution. Tada et al. [8] employed a two dimensional finite difference time domain method in a partially filled
microwave applicator to clearly describe electro-magnetic interferences and power absorption in the dielectric inserted
waveguide, operating in TE10 mode at a frequency 2.45 GHz. Koshiba et al. [9] studied finite element analysis for electro-
magnetic waveguides [10,11] in various approaches capable of suppressing and eliminating the spurious solutions.
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Nomenclature

X computational domain
x; y; z cartesian coordinates
t time, s(seconds)
dx difference between the two points (¼ k=20Þ, m(meters)
h radius to find neighborhood points, m
k wave length (=c=f Þ, m
f frequency, Hz
x angular frequency, cycles/s
c velocity of light (¼ 3� 108Þ, m/s
Nt number of time steps
Ntmax maximum number of time steps
np total number of points
dt magic time step, ð¼ dx

2�cÞ, s
f s sampling frequency ð¼ 1

dtÞ, Hz
ps picosecond
rad radius of corrugate in x-direction, m
rad1 radius of corrugate in y-direction, m
lz magnetic permeability, henrys/m
�z electrical permittivity, farads/m
lr relative permeability, dimensionless
�r relative permittivity, dimensionless
r electrical conductivity, siemens/m
nm equivalent magnetic loss, ohms/m
Ez electric field in z-direction, volts/m
Hx; Hy magnetic field in x-, y-direction, amperes/m
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Electro-magnetic guided waves and ultrasonic guided waves propagation through corrugation [12], bends and defects
have been studied by many researchers to understand reflection and transmission characteristics at the probes. Demma
et al. [13] explained the frequency dependent transmission behavior in terms of modes propagating in the straight and
curved sections of the pipe using finite element method. Takahashi et al. [14] investigated a high power, 170 GHz, long pulse
RF experiments of ITER relevant transmission line consisting of 63.5 mm circular corrugated waveguides [15] and success-
fully obtained transmission efficiency 92% from the inlet of the transmission line to the end.

Smoothed particle methods in electro-magnetic wave applications have been studied extensively. Recently, Ala et al. [16]
employed pairwise interaction dynamically to solve Maxwell’s equations with perfectly matched layer boundary conditions
in a general 2D domain. Frequency of excitation used here is 1.8 GHz.

The present paper addresses finite point set solution [17] of Maxwell’s equations in a rectangular waveguide with and
without corrugation. The actual problem, governing equations and the corresponding boundary conditions are described
schematically in Section 2. The developed numerical scheme wherein time derivatives discretization by central finite differ-
ence scheme while spatial derivatives approximation by finite point set method are presented systematically in Section 3.
Finally, scattering of electric field results and evaluation of transmission coefficients are thoroughly discussed in Section 4.

2. Mathematical model

In order to demonstrate transmission across the waveguide, a hollow rectangular cavity is modeled in a 2D computational
domain (X). Due to biaxial symmetry of the cavity about the two axes, only one quarter of the cross section of the cavity is
considered for the present study. A lossless media is chosen to avoid electric and magnetic field losses inside the waveguide.

Fig. 1 shows the two dimensional corrugated waveguide with the excitation source Ez� > 1:0 � cosðkxdtÞ;
k ¼ 1;2 . . . ;Ntmax; x ¼ 2pf at x = 0. The corrugated plane of the waveguide is divided into two parts: corrugated space
and free space. The corrugated space is rectangle in shape, have centers denoted as A (icenter,jcenter) and B
(icenter,jcenter1).

A microwave beam of light passes through a waveguide, it generates electric and magnetic fields inside it. In general,
microwaves are electro-magnetic waves classified by frequencies.

2.1. Governing equations

The equations which govern the electric and magnetic fields propagation that vary with time in the 2D computational
domain indicated by physical laws are the Maxwell’s equations. The electric field E and the magnetic field H are vector fields
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Fig. 1. A schematic computational domain for the corrugated waveguide.
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have amplitudes and directions varying with three spatial coordinates x; y and z and a time coordinate t. The waveguide is
infinite along z-direction and that incident fields do not vary along z. The following assumptions are made in 2D case:
Ex ¼ 0; Ey ¼ 0; Hz ¼ 0 and
@

@z
¼ 0: ð1Þ
Maxwell’s equations in an electro-magnetic waveguide is as follows:
@H
@t
¼ � 1

l
r� E �

@E
@t
þ rE ¼ r� H: ð2Þ
In cartesian form, Eq. (1) as follows:
@Hx

@t
¼ � 1

l
@Ez

@y
@Hy

@t
¼ 1

l
@Ez

@x
@Ez

@t
¼ 1
�

@Hy

@x
� @Hx

@y
� rEz

� �
; ð3Þ
where l; � and r are magnetic permeability, electric permittivity, and electrical conductivity respectively.

2.2. Boundary conditions

An incident plane wave continuous sinusoidal pulse takes into account scattered fields at the source. For the two dimen-
sional case, a typical wave source condition at x = 0 (the left boundary of the cavity) is:
Ez ¼ 1:0 � ðcosðNtxdtÞÞ Nt ¼ 1; . . . ;Ntmax; ð4Þ
where x is the angular frequency, Nt is the number of time steps, Ntmax is the maximum number of time steps and dt ¼ dx
2c is

the magic time step. The perfect electric conductor condition, i.e., tangential component of electric field Ez is zero, employed
at the remaining three boundaries.

3. Numerical scheme

Finite point set method with Lagrangian approach is used here to solve Maxwel equations numerically. The computa-
tional domain is filled with points or particles that carry microwave properties like velocity, density, electric field and mag-
netic field and those are moving with the wave.

Also, points distribution need not be uniform. An arbitrary point �x in the computational domain is chosen for study. Point
cloud of smoothing radius is constructed around �x so that the points inside the cloud should neither be on the same line nor
be on the same circle.

Before implementing finite point set method, time derivatives in the left hand side of Eq. (3) are discretized using central
finite difference scheme. Thus, Eq. (3) simplifies as follows:
Hxjnþ1=2 � Hxjn�1=2 ¼ �Dt
lz

@Ez

@y

Hyjnþ1=2 � Hyjn�1=2 ¼ Dt
lz

@Ez

@x

Ezjnþ1=2 � Ezjn�1=2 ¼ Dt
2�z

@Hy

@x
� @Hx

@y

� �
: ð5Þ
Three fields Hx : X� > R; Hy : X� > R and Ez : X� > R are defined at the point xi; i ¼ 1;2; . . . ;np as:
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Hxji ¼ Hxðxi; yi; ziÞ; Hyji ¼ Hyðxi; yi; ziÞ; Ezji ¼ Ezðxi; yi; ziÞ ð6Þ
Denote f ji ¼ ½Hxji;Hyji; Ezji� be the unknown function defined at points xi; i ¼ 1;2; . . . ;np. Correspondingly,
f 0ji ¼ ½H

0
x ji;H

0
y ji; E

0
z ji� be the initial guess. The function f and its spatial derivatives around the point �x are evaluated from

the values of the same at the neighboring points using Taylor series expansion.
The spatial derivatives of the fields Ez; Hx and Hy at a particle position �x are approximated based on values of functions of

its neighboring particles. A sliced Gaussian weight function with compact support h of the form:
w ¼wð�xi � �x; hÞ ¼ exp �a
jj�xi � �xjj2

h2

 !
if
jj�xi � �xjj

h
6 1

¼0 elsewhere ð7Þ
is used to restrict number of neighboring points. The positive constant a signifies the exponential decay with a typical value
a ¼ 6.

The set of m neighboring points around the point �x inside the support of size h is denoted as Pð�x;hÞ ¼ fxi; i ¼ 1;2 . . . ;mg.
Also, m >¼ 9 and xi; i ¼ 1;2; . . . ;m should neither be on the same line and nor be on the same circle for consistent solution. In
contrast to condition consistency, solution error increases abnormally as the number of neighboring points exceed 6 due to
discontinuity at corners of the rectangular waveguide. Therefore, radius of the neighborhood h around the point �x is taken as
six times the space step dx.

Substituting spatial derivative approximations obtained from Taylor series expansion in (5), the resultant equation is as
follows:
Hxjnþ1=2 � Hxjn�1=2 ¼ �db
~Ez

nþ1=2 þ ~Ez
n�1=2

2dyi

" #
þ e1i;

Hyjnþ1=2 � Hyjn�1=2 ¼ db
~Ez

nþ1=2 þ ~Ez
n�1=2

2dxi

" #
þ e2i;

Ezjnþ1=2 � Ezjn�1=2 ¼ cb
~Hyjnþ1=2 þ ~Hy

n�1=2

2dxi
�

~Hxjnþ1=2 þ ~Hx
n�1=2

2dyi

" #
þ e3i; ð8Þ
where db ¼ Dt
lz
; cb ¼ Dt

2�z
; dxi ¼ x� xi; dyi ¼ y� yi

~Ez ¼ Ezji � Ezð�xÞ ~Hx ¼ Hxji � Hxð�xÞ and ~Hy ¼ Hyji � Hyð�xÞ.
In corrugated space, the coefficients db and cb are defined as follows:
dbi ¼
dt

lzlri 1þ dtnm
lzlri

� �
dci ¼

dt

�z�ri 1þ dtr
2�z�ri

� � ; i ¼ 1;2; . . . ;np; ð9Þ
where np represents the total number of points.
The least square solution minimizes the error �e ¼ ðe1i; e2i; e3iÞ0 in the resulting system:
�e ¼ M�a� �b; ð10Þ
where M is the matrix having entries as fdxi; dyi; dx2
i =2; dxidyi; dy2

i =2g; i ¼ 1;2; . . . m; a is having entries as
@f
@x ;

@f
@y ;

@2 f
@x2 ;

@2 f
@x@y ;

@2 f
@y2

n o
; f ¼ Hx; Hy; Ez and �b is a column vector having entries as ff jig; i ¼ 1;2; . . . ;m. The finite point set approx-

imation for first order spatial derivatives are obtained from the first two rows of a 5 by 1 column vector ðMtWMÞ�1
MtWb. The

solution f ¼ Hx; Hy; Ez is updated over each time step dt until it reaches Ntmax or steady state.

4. Results and discussion

In the present section, results on electric field Ez propagation along z-direction for both the plain and corrugated wave-
guides, transmission behavior near the opposite boundary in a waveguide and important salient features are thoroughly
discussed.

4.1. Ez propagation in plane waveguide

Numerical simulation is valid only if the space step dx and neighborhood radius h must be properly balanced for various
values of frequency. Also, magic time step (dt) and the space step dx are related with a non-dimensional number
cdt
dx ¼ 1=2ð< 1Þ to insure numerical stability of the method.

Electric field pattern Ez along z-direction in a plane waveguide is investigated at the three frequencies of excitation
28 GHz, 82.3 GHz and 170 GHz. Fig. 2 shows electric field Ez propagation along z-direction at T = 400 for 28 GHz frequency



Fig. 2. A pseudo plot of electric field (Ez) propagation in a plain waveguide at the excitation frequency 28 GHz when the time step T = 400.
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of excitation. The blue strip represents negative values of Ez while the red2 strip signifies positive values of Ez. At the thick red
strip, Ez values are very high while they are very low at the thick blue strip. It is noticed that irregularity in electric field
pattern at the corners is slowly developed once the plain wave hits the opposite boundary. The time step recorded when
it hits opposite boundary is T = 320. Solution is unbounded for a bounded time (320 < T < 450) indicates numerical insta-
bility due to perfect electric conductor boundaries.

Transmission pattern of Ez along z-direction is investigated at three point locations I (0,0.0162), A (0.0324,0.0162)(mid-
dle) and C (0.08046,0.0162) (near the probe) in a plain waveguide of aspect ratio approximately 2.5 for 28 GHz frequency of
excitation and shown in Fig. 3. It is observed that signal (almost one full wave in the middle and a half wave near the probe)
becomes distorted at the 450th time step and after which solution is no longer stable and not suitable for study due to reflec-
tions and irregular scattering.
4.2. Ez propagation in a corrugated waveguide

A non-dimensional wavelength k1ð¼ k
dxÞ; icenterð¼ k1 � i; i ¼ 1;2; . . . 100Þ, jcenter(¼ 1

2), jcenter1 (¼ je=2Þ; radð¼ k1
i ;

i ¼ 4=3;2;3;4Þ and rad1(¼ k1
i ; i ¼ 4=3;2;3;4Þ are defined before numerical simulation of the corrugated waveguide.

Fig. 4 shows pseudo-plots of electric field Ez along z-direction in a corrugated waveguide of corrugation height k=2 for
frequencies of excitation 28 GHz, 82.3 GHz and 170 GHz. From the plot, it is observed that Ez scatters irregularly with the
frequency.

Absolute values of Ez greater than 1 started at corners of the source boundary and propagate very quickly as soon as the
wave hits the boundary opposite to the source boundary. However, propagation error rate much faster in 28 GHz excitation
frequency when compared with the other two.
4.3. Evaluation of transmission coefficients

In the present problem, transmission coefficient is computed from the ratio of average over absolute FFT (fast Fourier
transform) of the signal at probe points on a line probe near the boundary opposite to the source boundary to the average
over absolute FFT of the corresponding incident signal points on a line source.

Transmission coefficients are computed at five specified points on the line proximity to the boundary opposite to the inci-
dent plane source and denoted as Tc1, Tc2, Tc3, Tc4 and Tc5. The coordinates of the selected five points are
ðie� 1;1Þ; ðie� 1; je� 1Þ; ðie� 1; je=2Þ; ðie� 1; je=3Þ and ðie� 1;2je=3Þ. The values ie and je represent the number of points
in x- and y-directions respectively. It is assumed that transmission coefficient Tcfinal at the line proximity to the boundary
opposite to the source is the average over all coefficients at five points on the same line.

Fig. 5 shows the transmission coefficient (Tc) against frequency (range = fs
2 � ð0 : 1=300 : 1ÞÞ in a corrugated waveguide of

height k=4 for various frequencies 28 GHz, 82.3 GHz and 170 GHz. From the plot, it clears that ‘Tc’ values are more than 1 in
between 275 GHz to 285 GHz for the excitation frequencies 82.3 GHz and 170 GHz. It indicates solution is unbounded in that
range for a bounded source and constant parameters. Therefore, it is not advisable to compute transmission lines in the
frequency domain for frequencies of excitation 82.3 GHz and 170 GHz.

Fig. 6 shows transmission coefficients in the frequency domain at the probe near the proximity of the opposite boundary
for both plain waveguide and corrugated waveguide of various corrugation heights k=4; lambda=2 and 3k=4. Transmission
analysis is done for frequencies ranging from 260 GHz to 300 GHz. From the plot, it clears that ‘Tc’ values are distributed
normally over the range and variances increase with the corrugation heights. In case of plain waveguide, ‘Tc’ values are
distributed uniformly in a straight line.

Another important fact is that transmission efficiency is 100% in the frequency range 275GHZ to 285GHZ in case of
corrugated waveguide of corrugation height k=4.
2 For interpretation of color in Fig. 2, the reader is referred to the web version of this article.
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Fig. 3. Electric field Ez values along z-direction in a plain waveguide.

Fig. 4. Ez propagation along z-direction in a corrugated waveguide when the frequencies of excitation 28 GHz, 82.3 GHz and 170 GHz.
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4.4. Ez propagation in a waveguide of aspect ratio less than 1

Electric and magnetic field patterns that exist depends on the dimension of the rectangular waveguide. Fig. 7 shows the
pseudo plot of Ez propagation along z-direction in a waveguide of the aspect ratio 0.6 for 28 GHz frequency of excitation.
From the plot, it clears that stability of the solution is achieved to certain extent with the current aspect ratio <1.
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1844 S. Matle, S. Sundar / Applied Mathematical Modelling 38 (2014) 1838–1845
5. Conclusions

In view of results and discussions, the following conclusions are drawn.

� As the frequency increases from 28 GHz to 170 GHz, transmission loss also increases in a plane waveguide.
� Computed transmission coefficients have been plotted against frequency and concluded that transmission efficiency

decreases with an increase of the corrugation height.
� Finite point set method produced better results in terms of efficiency and stability when compared to the finite ele-

ment method and the finite difference method at the higher frequency of excitation. FDM, a 5-point set mesh less
method, required more number of time steps (approximately 100 times used in FPM) and precision color bar axis
around ½�10�30;10�30� at 28 GHz frequency of excitation. On the other hand, amount of memory and computational
cost were very high for a finite element method. Also, handling of FEM mesh at corrugated grooves were very difficult
in case of the corrugated waveguide.

� Aspect ratio of computational transmission line must be less than 1 to reduce solution instability and to improve
transmission efficiency.
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