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Abstract

Exercise-induced muscle damage is a condition which results in the loss of muscle function due to overexertion. Muscle

fatigue is a precursor of this phenomenon. The characterization of muscle fatigue plays a crucial role in preventing mus-
cle damage. In this work, an attempt is made to develop signal processing methods to understand the dynamics of the

muscle’s electrical properties. Surface electromyography signals are recorded from 50 healthy adult volunteers under

dynamic curl exercise. The signals are preprocessed, and the first difference signal is computed. Furthermore, ascending
and descending slopes are used to generate a binary sequence. The binary sequence of various motif lengths is analyzed

using features such as the average symbolic occurrence, modified Shannon entropy, chi-square value, time irreversibility,

maximum probability of pattern and forbidden pattern ratio. The progression of muscle fatigue is assessed using trend
analysis techniques. The motif length is optimized to maximize the rho value of features. In addition, the first and the last

zones of the signal are compared with standard statistical tests. The results indicate that the recorded signals differ in

both frequency and amplitude in both inter- and intra-subjects along the period of the experiment. The binary sequence
generated has information related to the complexity of the signal. The presence of more repetitive patterns across the

motif lengths in the case of fatigue indicates that the signal has lower complexity. In most cases, larger motif length

resulted in better rho values. In a comparison of the first and the last zones, most of the extracted features are statisti-
cally significant with p \ 0.05. It is observed that at the motif length of 13 all the extracted features are significant. This

analysis method can be extended to diagnose other neuromuscular conditions.
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Introduction

Bouts of high intensity and prolonged muscle activity

cause excessive strain on the muscle fibers thereby alter-

ing their function and structure. This phenomenon is

often referred to as exercise-induced muscle damage

(EIMD) and as a consequence leads to reduced force

production capabilities, edema, delayed-onset soreness

in the exercised muscles and loss in range-of-motion.

Reduction in movement economy, elevated levels of

perceived exertion, acute and prolonged reductions in

VO2 peak have been reported to be observed in the

days following EIMD. Muscle fatigue is a precursor to

EIMD.1

Muscle fatigue is a neuromuscular condition caused

due to overexertion of the muscle. It causes a reduction

in muscle force production capability. This is a normal

phenomenon which is reversible; however, repeated

fatigue can result in muscle damage. The gold standard

method to access muscle fatigue is by blood test which

involves the analysis of the concentration of lactic acid

build-up in the muscle.2 Recently, it has been estab-

lished that noninvasive techniques such as surface elec-

tromyography (sEMG) is a viable tool to access fatigue.

sEMG records the electrical activity of the muscle.3
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The sEMG signals are nonlinear and nonstationary,

so conventional signal processing techniques such as

Fourier transform and root mean square value perform

poorly.4 Nonlinear signal processing techniques such as

wavelet transform,5 fractal dimensions6,7 and multi-

scale entropy8 have been used to quantify fatigue. It is

assumed that the fractal dimension of a biological com-

ponent is constant within the scaling window that can

be applied to quantify variations in length, area or vol-

ume. The scale-invariant structure of signals from

human body reflects its adaptability to underlying phy-

siological process. Measurement of these patterns and

scaling properties can indicate healthy or abnormal

characteristics.6,7

Recently, symbolic transformation techniques have

been used to analyze nonlinear time series data such

as gas/liquid two-phase flow measurement fluctuation

signals,9 electroencephalogram10 and other chaotic

signals.11,12 This technique can control noise interfer-

ence and can improve the efficiency of discovering and

quantifying the dynamics of systems.11

Symbolic time series analysis is a technique through

which features such as the existence of frequent pat-

terns12,13 or the presence of missing/forbidden pat-

terns14,15 from stochastic, high-dimensional signals can

be extracted.16,17 The benefit of symbolization is the

reduction in sensitivity to noise.

Complexity measures such as sample entropy and

permutation entropy have been proposed to character-

ize the symbolic sequence.8,18–20 In recent studies on the

binary symbolic dynamics reflecting the succession of

acceleration and deceleration of the instantaneous heart

rate indicate that this technique is capable of discerning

the normal from congestive heart failure,21 and changes

in the dynamics related to age.22

The presented study is conducted to determine the

dynamics of nonfatigue and fatigue state, using sym-

bolic transformation techniques. The sEMG signals are

recorded under a well-defined protocol. The prepro-

cessed signals are transformed into symbols, and time

series motifs of various sizes are constructed. Features

such as the number of missing/forbidden patterns, max-

imum probability along with Shannon entropy, time

reversibility and chi-square value are extracted and are

used to quantify the variations in the complexity of the

signal toward fatigue.

Methods

Experimental protocol

Fifty healthy subjects of age 26.12 (3.12) years, weight

69.4 (11.56) kg and height 1.63 (0.28) m with no previ-

ous history of neuromuscular condition participated in

the study. Prior to the experiment, the participants are

briefed about the protocol. It is ensured that all the

participants are well rested. The protocol involved

dynamic contraction exercise to activate the biceps bra-

chii muscle. The participants held a 6-kg-force

dumbbell in the supine position; continuous flexion

and extension exercise is performed. The experiment is

continued until they are unable to lift the load. The

participants reported their first discomfort time, and

the time to fatigue is also noted.4 The study is approved

by the Institute’s ethics committee (IEC/2017/04/SR-2/

02), and informed consent is obtained from the partici-

pant as per the Helsinki declaration.

Signal acquisition

sEMG signals are recorded from the biceps brachii

muscle as per the guidelines of Surface EMG for Non-

Invasive Assessment of Muscles (SENIAM) standards.

After skin preparation with abrasive and alcohol, Ag–

AgCl electrodes are placed on the belly of the biceps

brachii muscle. A bipolar configuration is used with an

inter-electrode distance of 2 cm. Furthermore, the

ground electrode is placed on the elbow. Biopac MP36

a biomedical amplifier with a 24-bit analog-to-digital

converter and a sampling rate of 10,000Hz are used to

acquire the signals. The signal-to-noise ratio and com-

mon mode rejection ratio of this system are 89 and

110dB, respectively. The experiment was conducted in

an electrically isolated environment with precautions to

prevent electric shocks.8,23

The signal is downsampled to 1000Hz, as it reduces

the computational complexity. The motion artifacts,

power line interference and high-frequency noise are

removed using bandpass filter (10–400Hz) and notch

filter (50Hz).4 The signal is segmented into 10 equal

zones, and the symbolic time series analysis is carried

out.

Symbolic transformation

First difference partition method is a dynamic transfor-

mation technique which involves computation of the

arithmetic difference of adjacent data points. This

results in a first difference signal which is relatively

resistant to noise and spikes in the data. A positive

value is assigned a symbol ‘‘1’’, and a negative value

has a symbol of ‘‘0’’9,21

y nð Þ= x n+1ð Þ � x nð Þ, n=1, 2, 3, . . . ,N� 1 ð1Þ

z nð Þ=
1, if y nð Þø 0

0, Otherwise

�

ð2Þ

The transformed symbolic sequence is analyzed by

choosing a standard motif length L. Motifs or words

are formed by defining a standard window length to

group consecutive symbols, and the window is shifted

along the symbol series. Each motif is converted into

its decimal equivalent to form a code series. The rela-

tive frequency of each motif is calculated. Here, a motif

length of 2–13 is used.9
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Symbolic sequence statistics

Given a sequence of words, the following measures are

used to analyze the sequence.

Word probability is the ratio of the count of the

occurrence of each pattern to the total number of pat-

terns in the time series. For a binary sequence of motif

size 2, there are four patterns, namely, ‘‘00,’’ ‘‘01,’’ ‘‘10’’

and ‘‘11.’’9 For a motif of size n, a total of 2n patterns

are generated

Wpr=
Count of the occurance of each pattern

Total number of patterns in Time series
ð3Þ

The maximum probability value indicates how often

a pattern occurs and can be considered as a factor of

self-similarity. It is computed as follows

Max prob=Max pið Þ ð4Þ

The feature representing the forbidden pattern ratio

(FPR) is calculated as the ratio of the number of pat-

terns with 0 probabilities to the total number of possi-

ble patterns

FPR=
# of patterns pi = =0

# of possible patterns
ð5Þ

The definition of modified Shannon entropy is given

below

Hs = �
1

logNobs

X

i

pi log pi ð6Þ

where pi is the probability of the ith symbol sequence,

the standard definition of Shannon entropy is that if

the regularity of the system is lost then the entropy is

large.

Time irreversibility is the Euclidean norm with the

word’s probability. Time irreversibility aims to count

words, especially is suitable for multi-dimensional space

Tfb =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

Pf, i � Pb, i

� �2
q

ð7Þ

The other factors, namely, the chi-squared x2
fb calcu-

lates the forward symbolic sequence and backward

symbolic sequence statistics and closely resembles time

irreversibility

x
2
fb=

X

i

(Pf, i � Pb, i)
2

Pf, i +Pb, i

� � ð8Þ

where Pf, i and Pb, i are the forward and backward

sequence word probabilities.

Statistical tests

First, to study the variation of the features with respect

to time, a Spearman rho rank correlation is computed.

The R-value and the p-values are computed to test the

significance of the trend. Second, to compare the first

and the last zone, the normality of the data is studied

using Anderson–Darling test (adtest) to access the fea-

tures in the zones. Furthermore, the normally distribu-

ted data are tested using paired t-test and the other

features are compared using Wilcoxon signed rank test.

Results and discussion

The signals recorded from age-matched subjects have

different signal amplitude and frequency. The signal

from the same subject has different patterns with fati-

gue. This makes the processing of these signals to be

non-trivial, hence the use of nonlinear signal processing

techniques is required. The representative sEMG sig-

nals recorded from biceps brachii muscles of two age-

matched subjects are shown in Figure 1. The amplitude

of the sEMG signal varied in the range of millivolt

(mV). For the representative signals, the amplitude var-

ied between 64.0mV for subject A and 63.0mV for

subject B. The peak positive and negative amplitude of

these signals in the study ranged from 0.32 to 8.21mV

and 20.29 to 27.39mV, respectively.

The burst patterns occurred during each curl (flex-

ion–extension action) and corresponding to concentric

(shortening of the muscle) and eccentric (elongation of

the muscle). These variations in amplitude of sEMG

signals may be attributed to factors such as variations

Figure 1. Representative sEMG signals from two age-matched

subjects.
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in the firing rate, volume conductor effects and non-

linear recruitment pattern of the motor units.

Furthermore, the endurance time for the subjects varied

with 55 s for subject A and 91 s for subject B. This var-

iation in the endurance time is greatly influenced by the

anthropometric factors and the fiber distribution.8,23

In Figure 2, the mean word probability of the binary

pattern, namely, ‘‘00,’’ ‘‘01,’’ ‘‘10’’ and ‘‘11’’ for the sig-

nal zones 1–10 is shown. It is seen that the ‘‘00’’ pattern

has the highest probability in all zones. It is followed by

‘‘11’’ pattern. An increasing trend is observed in these

patterns as the signal progresses to fatigue. Accordingly,

a decrease in the occurrence of ‘‘01’’ and ‘‘10’’ pattern is

observed. It is to be noted that in an equiprobable distri-

bution of a size 2 motif the word probability is 0.25.

Based on this, it can be shown that the EMG signal is

quasi-stochastic and there is an underlying pattern.

Furthermore, the structure becomes more predictable

with the progression of fatigue.

In Figure 3(a), the variation of the mean maximum

probability with the progression of fatigue at various

motif sizes is shown. It is seen that the highest values

are seen in the size 2 motif. This is due to the lower

number of possible words. As the motif length

increases, the maximum probability reduces. However,

it is to be noted that compared to an equiprobable dis-

tribution, the motif size of 13 has the maximum distinc-

tion. An increasing trend is observed with the

progression of fatigue. It might be due to the synchro-

nization of motor units that results in more repetitive

patterns with fatigue.

Figure 3(b) shows the variation in the mean forbid-

den pattern for multiple motif sizes with respect to the

zones of fatigue. It is seen that there is an increase in

the number of forbidden pattern with fatigue.

Furthermore, the highest value is observed in the size

13 motif. This is due to the fact that there are close to

213 patterns and only a few patterns repeat. It is to be

noted that this feature compliments the maximum

probability value as an increase in the probability of

one pattern will result in loss in another pattern.

Figure 2. The bar chart on variation in word probability of a

size 2 motif word with respect to zones. The mean value of 50

subjects is showcased here.

Figure 3. Influence of motif size on the analysis of progression of muscle fatigue using features, namely: (a) maximum probability,

(b) forbidden pattern ratio, (c) modified Shannon entropy, (d) time irreversibility and (e) chi-square value.
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In Figure 3(c), the line plot of the mean of the modi-

fied Shannon entropy is shown. A decrease in the

entropy values is observed with progression of fatigue

indicating a more repetitive pattern. It is seen that the

maximum value is observed in motif sizes 2 with a

value of 0.92 in the first zone. This is closely followed

by the motif size of 13. The slope in the case of 13 is

higher than that of the motif size of 2.

Figure 3(d) shows the variation in the time irreversi-

bility with the progression of fatigue. The features are

highly overlapping. The highest values in zone 1 are

observed in the motif of sizes 3 and 4. Motifs 6 and 7

have a constant slope.

In Figure 3(e), the variation of the chi-square value

at various motif sizes is shown. The first six motif sizes

have a decreasing trend. In the following motif, there is

no trend observed. The largest slope is observed in

motif size of 13. A maximum value of 0.45 is seen in

the first zone at motif size 13.

To quantify the trend across 50 subjects, Spearman

rho statistics is used. The R-values of the various fea-

tures are described below.

In Figure 4(a), the distribution of the Spearman

rank correlation coefficients for 50 subjects for the

maximum probability feature is shown. All the motif

sizes have an increasing trend; most of them have R-

value greater than 0.5. The least variance is seen in

motif length of 13. In Figure 4(b), the R-value of the

forbidden pattern is shown. It is seen that for the lower

motif sizes, namely, 2–4, an R-value of 0.5 is observed.

At higher scales, the variance decreases, and the mean

value is observed to increase.

In Figure 4(c), the variation in R-value with respect

to motif length for the modified Shannon entropy fea-

ture is shown. The R-values are negative in all motif

lengths. The last two motif lengths have the least var-

iance. In Figure 4(d), the Spearman rho correlation

coefficient of time irreversibility for the analysis of the

progression of fatigue at various motif lengths is shown.

It is seen that at the initial few motif lengths, the mean

R-values are closer to 0 indicating that there is no clear

trend. At higher scales, the variance is low and the

mean value is less than 0.5.

In Figure 4(e), the R-values of the chi-square feature

are shown and it is seen that at all motif lengths, the

values are closer to 0. Furthermore, at lower lengths,

the features have a negative correlation. This makes

this feature inappropriate for analyzing the progression

of fatigue.

Table 1 shows the comparison of various features in

the first and last zone of the sEMG signal. The varia-

tion in the mean and standard deviation of the

Shannon entropy is shown. Zone 1 has higher values in

all motif sizes. It is seen that in zone 1, the maximum

value is observed in motif length of 2. It is seen that

lower and higher motif sizes have large values and the

intermediate motif sizes have lower values. This might

be because the extremities are not normally distributed.

In addition, a lower standard deviation is observed in

zone 1 in all motif lengths.

Figure 4. The Spearman rho correlation values for features, namely: (a) maximum probability, (b) forbidden pattern ratio, (c)

modified Shannon entropy, (d) time irreversibility and (e) chi-square value.
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The maximum probability features have higher val-

ues in the case of fatigue at all motif lengths. At all

motif lengths, the fatigue has a value greater than the

equiprobable distribution. At most motif lengths, the

distribution of the data is nonnormally distributed. The

difference between the two cases is double in the case

of motif length of 13.

FPR is the absence of certain motifs. It is seen that

the number of forbidden patterns increase with motif

length as expected. The FPR is higher in the case of fati-

gue condition at motif lengths greater than 4. At lower

motif lengths, there are no forbidden patterns in both

nonfatigue and fatigue conditions. At lower motif

lengths, the data distribution is normal. The distinction

between the patterns is the highest at motif length of 13.

The time irreversibility characteristics of zone 1 and

zone 10, shown in the table indicate that the mean var-

ies between 0.018 and 0.026. A higher value is observed

in nonfatigue conditions in motif sizes 2–6. It is higher in

fatigue for motif lengths 7–13. The standard deviation is

high in the initial few motif lengths. As motif length

increases, the standard deviation decreases. It is seen that

the data are distributed normally at all motif lengths.

An increasing trend with respect to motif length in

the chi-square values is observed in both nonfatigue

and fatigue conditions. A clear distinction is observed

in higher scales of chi-square value. The value is higher

in the case of nonfatigue condition. Furthermore, the

data are normally distributed at all motif lengths.

The statistical test such as paired t-test and

Wilcoxon signed rank test are performed based on the

normality of the data. It is found that at motif size of

13 all features are significant in differentiating the

zones 1 and 10, that is, nonfatigue and fatigue condi-

tion. Furthermore, the Shannon entropy feature and

the maximum probability features are significant at all

Table 1. The statistical significance of various features in differentiating the first and the last zones.

Motif length Zone 1 Zone 10 P-value Normal

Mean SD Mean SD

Shannon entropy 2 0.920 0.021 0.869 0.037 0.005 No
3 0.890 0.027 0.821 0.045 0.005 No
4 0.874 0.030 0.797 0.049 0.005 Yes
5 0.863 0.031 0.784 0.051 0.005 Yes
6 0.859 0.032 0.779 0.053 0.005 Yes
7 0.857 0.031 0.779 0.053 0.005 Yes
8 0.859 0.031 0.784 0.052 0.005 Yes
9 0.864 0.030 0.794 0.051 0.005 Yes
10 0.874 0.028 0.807 0.049 0.005 Yes
11 0.886 0.027 0.821 0.046 0.005 No
12 0.901 0.025 0.837 0.044 0.005 No
13 0.917 0.024 0.854 0.042 0.005 No

Max_prob 2 0.373 0.018 0.401 0.018 0.005 No
3 0.262 0.029 0.310 0.029 0.005 No
4 0.183 0.031 0.239 0.031 0.005 No
5 0.124 0.030 0.185 0.030 0.005 No
6 0.082 0.025 0.142 0.025 0.005 Yes
7 0.055 0.018 0.107 0.018 0.005 Yes
8 0.038 0.011 0.079 0.011 0.005 Yes
9 0.027 0.008 0.057 0.008 0.005 No
10 0.020 0.006 0.040 0.006 0.005 No
11 0.016 0.005 0.029 0.005 0.005 No
12 0.012 0.004 0.022 0.004 0.005 No
13 0.009 0.004 0.018 0.004 0.005 Yes

FPR 2 0 0 0 0 – Yes
3 0 0 0 0 – Yes
4 0 0 0 0 – Yes
5 0.001 0.010 0.014 0.020 0.005 Yes
6 0.025 0.017 0.047 0.031 0.005 Yes
7 0.060 0.027 0.109 0.045 0.005 Yes
8 0.117 0.040 0.205 0.066 0.005 No
9 0.204 0.058 0.328 0.080 0.005 No
10 0.324 0.073 0.467 0.083 0.005 No
11 0.463 0.078 0.603 0.076 0.005 No
12 0.603 0.071 0.720 0.063 0.005 No
13 0.725 0.057 0.811 0.047 0.005 No

SD: Standard deviation; FPR: forbidden pattern ratio.
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motif sizes. The FPR feature is significant at motif sizes

greater than 4.

The motifs of shorter lengths identify large fluctua-

tions (instantaneous change in state) present in the sig-

nal, and the larger motif lengths represent the presence

of smaller fluctuations (slow change in state). These fea-

tures quantify the degree of regularity across various

scales of data. The presence of more number of regular

patterns indicates variation in the physiological process

of muscle control. This might be due to the synchroni-

zation of motor units which leads to presence of more

regular patterns.

Conclusion

The muscles are the crucial part of the human body that

supports us in our movement. Muscle fatigue is a condi-

tion in which the muscles are unable to provide the

required force. The characterization of muscle fatigue

plays a crucial role in preventing muscle damage. In this

work, an attempt is made to develop features that can

discern the dynamics of the muscle’s electrical proper-

ties. The sEMG signals are recorded from healthy adult

volunteers under dynamic curl exercise. The signals are

preprocessed, and the first difference signal is com-

puted. Furthermore, thresholding techniques are used

to generate a binary sequence. The binary sequence is

windowed and the resultant patterns are analyzed using

features such as the average symbolic occurrence, modi-

fied Shannon entropy, chi-square value, time irreversi-

bility, maximum probability of pattern and FPR. The

results indicate that the recorded signals differ in

both frequency and amplitude in both inter- and intra-

subjects. The binary sequence generated has informa-

tion related to the complexity of the signal. The

extracted features from the sequence are distinct. The

Spearman rho correlation coefficient extracted from the

features indicates that the maximum R-value which is

significant is observed in modified Shannon entropy

and maximum probability at motif length of 7; in the

case of FPR. it is maximum at motif length of 13. Most

of the extracted features are statistically significant with

p \ 0.05. It is observed that at the motif length of 13

all the extracted features are significant. In addition, it

is observed that repeated patterns are present in the

case of fatigue and is in coherence with our previous

research where an increase in multifractality is observed

with fatigue in these signals.7 These techniques can be

extended to analyze other neuromuscular conditions.
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