Gadre et al. EURASIP Journal on Wireless Communications and
Networking (2018) 2018:197
https://doi.org/10.1186/513638-018-1216-0

EURASIP Journal on Wireless
Communications and Networking

RESEARCH Open Access

Centralized approaches for virtual

@ CrossMark

network function placement in SDN-enabled

networks

Akshay Gadre, Anix Anbiah”

and Krishna M. Sivalingam

Abstract

Software-defined networking (SDN) and network function virtualization (NFV) represent significant changes to the
architecture of data networks. SDN provides clean separation of the control plane from the data plane while NFV
helps virtualize functions typically implemented using middleboxes into virtual network functions (VNFs). The network
function placement (NFP) problem involves placing VNFs to satisfy the service function chaining (SFC) requests of the
flows in the network. Current solutions to this problem are slow and cannot handle real-time requests. In this paper, a
static NFP solution that uses a divide-and-conquer approach is discussed first, with complexity similar to that of
existing solutions. It is shown that the solution is complete and sound. Next, customization of this solution to obtain
an agile version that trades off precision for time complexity is discussed. A combination of this divide-and-conquer

network (DCN) topologies.

solution with a modified version of Dijkstra’s algorithm is used to solve the problem for dynamic requests. Finally, a
centralized, online SDN-enabled approach to solving the problem is proposed. The proposed architecture and
algorithms are simulated and analyzed with various system parameters and are shown to scale to large data center

Keywords: VNF, NFV, SDN, NFP, Divide-and-Conquer, MANO, DCN

1 Introduction

Current data networks are built using massive infrastruc-
ture and serve diverse functions in commerce, education,
research, and social networks. The network itself is built
in layers in accordance with the open systems intercon-
nection (OSI) model. The layers can be broadly classified
into the following: (i) L1-L3 that handle the physical and
network layers responsible for connectivity and routing
and (ii) L4-L7 that handle transport over the network,
security and applications. Traditionally, L1-L3 (lower lay-
ers) were implemented within the network, while L4-L7
(upper layers) were implemented at the edge of the net-
work. Over time, data networks implemented service
functions such as firewalls, intrusion detection, proxy ser-
vices, and video compression. These service functions pri-
marily operate at the upper layers and have been termed
as L4-L7 services. These services are complex and have

*Correspondence: anix@cse.iitm.ac.in
Department of Computer Science and Engineering, Indian Institute of
Technology Madras, Chennai, India

@ Springer Open

been encapsulated in specialized hardware known as mid-
dleboxes. The middleboxes are usually proprietary with
a closed architecture. Thus, they impede the cycle of
innovation and entail expensive upgrade cycles when the
network as a whole must be upgraded to a larger scale.
In recent times, middleboxes have been virtualized and
replaced by virtual network functions (VNFs) that are
more flexible and can scale on demand.

Although virtualizing the network functions improves
flexibility and accelerates innovation, this abstraction
introduces new shortcomings that need to be addressed
to realize such functions in actual deployments. In this
paper, we focus specifically on the problem of network
function placement (NFP). For every data flow enter-
ing the network, we are required to route them through
the appropriate network functions and in a pre-defined
sequential order. For example, a firewall function may be
followed by a deep packet inspection function in the order.
However, we also need to adhere to bandwidth and capac-
ity requirements of the links along the paths between
these VNFs while routing the data flow through a chain

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-018-1216-0&domain=pdf
http://orcid.org/0000-0002-0445-0071
mailto: anix@cse.iitm.ac.in
http://creativecommons.org/licenses/by/4.0/

Gadre et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:197

of such VNFs. Further, this problem is complicated by the
fact that the allocation of these VNFs at the nodes must
be simultaneously solved. Therefore, trivial shortest path
routes might be inefficient for the purpose of NFP since
inefficient routing and function placement solutions may
lead to congestion in the network. Figure 1 presents a
network as an example depicting two flows through the
switches and the placement of network functions to ser-
vice the flows. For instance, Flow 1 utilizes three network
functions, one each at nodes 1, 2, and 4.

The chain of VNFs that are required to process a flow
is called its service function chain (SFC). We formal-
ize NFP problem as the problem of finding the optimal
placement of VNFs for a set of flows subject to their
SFC requirements, bandwidth, and resource constraints
with the objective of minimizing the overall use of the
resources. The NFP problem can be handled either stati-
cally or dynamically.

The static NFP problem deals with the problem of ser-
vicing a static set of incoming flows, each with an SFC
requirement, where the routes are provided by an ora-
cle. This reduces the NFP problem to that of allocating
the VNFs appropriately along the routes to optimize the
use of available resources. Even this static version of the
NEFP problem has been proven to be NP-complete [1].
The dynamic NFP problem involves handling dynamic
requests for flows with SFC requirements, where even the
routes need to be decided by us.

The NFP problem has two main components:

e Routing: This component deals with choosing an
appropriate route through the network topology to
reach the destination considering some path
computation objective such as latency, prior

Page 2 of 19

placement of VNFs and the bandwidth constraints.
Thus, depending on the previous set of VNF
allocations and available bandwidth, we need to
update the routing metrics to minimize congestion
and resource usage in the network. We assume that
this component is solved for the static NFP by an
oracle.

e Allocation: This component deals with allocating the
optimal set of resources for the flows over the paths
selected by the routing component to provision the
SECs of the flows, considering the resource
availability and previous placements. Given the set of
routes provided by the routing component, VNFs are
allocated on the network elements or switches along
the routes to fulfill the SFC requirements while
aiming to optimize the use of the compute resources
available in the network.

Even though attempts [2, 3] have been made to develop
fast and optimal solutions for both of the above compo-
nents individually, they remain impractical for real-world
implementation. Also, optimality of any one of the above
components does not guarantee the optimality of the
overall solution since the output of one feeds into the
other and thus constraining the overall solution. Instead,
we aim to solve this problem considering both compo-
nents simultaneously, for developing real-world online
NEFP solvers. Additionally, we propose a consolidated
SDN-enabled architecture and protocol to perform real-
time solutions for SFC requests.

The main contributions in this work are the following:
(i) A new divide-and-conquer approach for the problem
of static NFP which is theoretically proven to be sound
and complete; (ii) A heuristic version of the above solution

*OHA

Network Functions

Fig. 1 A sample configuration of flows through a network. A sample network with two flows (Flow 1 and Flow 2) is shown. Flow 1 has three VNFs,

while Flow 2 has two VNFs in its SFC




Gadre et al. EURASIP Journal on Wireless Communications and Networking

which allows users to trade off accuracy for fast compu-
tation times; (iii) An extended version of this heuristic
for dynamic NFP along with a complementary and com-
patible routing algorithm; (iv) A framework for using
the above heuristic for real-time online service of SFC
requests; (v) A detailed theoretical and empirical analysis
of time complexity and the trade-off between the quality
of solution and time complexity of the algorithm.

The rest of this paper is organized as follows: first, the
previous work done by researchers on this problem and
the need for better algorithms are described. Next, the
proposed algorithm for solving static NFP is described.
In the subsequent section, the above solution is extended
with a complementary routing algorithm for dynamically
servicing SFC requests. Later, a framework is proposed to
harness the power of SDN to use the above algorithm for
real-time service of such requests. Simulation results with
appropriate inferences and analysis to highlight the major
advantages are then discussed. Finally, in conclusion, the
proposed protocol, empirical results, and future problems
to be solved are summarized.

2 Related work

In this section, brief background information on NFV and
SDN are presented and the previous approaches to solving
the NFP problem are discussed.

2.1 Network function virtualization (NFV)

NFV architecture aims to harness the power of state-
of-the-art virtualization technologies to virtualize the
compute, network, and storage resources of commodity
network elements to host VNFs that perform the mid-
dlebox functionality. This has the advantage of avoiding

(2018) 2018:197 Page 3 of 19

investments in specialized hardware, while allowing elas-
tic scaling of the capacity of the functions [4]. Moreover,
switches and routers can use their spare computational
resources to implement these VNFs [5]. The VNFs per-
form the same functions as the conventional middleboxes
except for the fact that these functions are now imple-
mented in software. This architecture accelerates inno-
vation of the capabilities of the network functions and
supports real-time scaling of the virtualized resources as
the number of data flows through the network and their
service requirements change dynamically [6].

2.2 Software-defined networking (SDN)
Another next-generation network technology, software-
defined networking (SDN) [7], is a paradigm of network-
ing that separates the control and the data planes. In
this architecture, the data plane is primarily responsi-
ble for forwarding the data packets through the network
based on flow rules. A centralized controller (or a set
of synchronized centralized controllers) is responsible
for computing the flow rules based on the state of the
network to be pushed to the data plane. A protocol is
required for communication between the centralized con-
troller and the switches that implement the forwarding,
with OpenFlow [8] being a leading example. SDN allows
commodity switches in the data plane to be controlled by
control software through standard interfaces. Moreover,
in this architecture, the controllers can be modified and
upgraded easily to effect changes to the behavior of the
network as a whole [9].

SDN and NFV are complementary [10] in nature as
illustrated in Fig. 2. They have similar objectives of replac-
ing proprietary and closed network elements (switches)

Centralized
Controller

@ Control Plane
ﬁ Data Plane

Control Links
~——  Data Links

Software-defined networking. b SDN ad NFV

OPEX, Power and
Space Consumption

Aimed to expand
innovation opportunities

and catalyze
cutting edge research

Open Innovation

Software
Defined
Networking

Network
Function
Virtualization

Academia-ideated
liminates proprietary
interactions and enables
faster and better

innovation

Industry-ideated
Reduces CAPEX,

b

Fig. 2 Software-defined networks and network function virtualization. SDN and NFV are complementary in nature. They have similar objectives of
replacing proprietary and closed network elements (switches) with commodity hardware that can be controlled by standardized software. a




Gadre et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:197

with commodity hardware that can be controlled by stan-
dardized software.

2.3 Network function placement (NFP)

The NFV architecture gives rise to many interesting prob-
lems. One such problem is about the number of instances
of the various VNFs required and their placement in the
network [2, 3]. Each flow in the network requires a chain
(either a strict order or a partial order) of functions that
must process the flow according to some defined network
policy. Such a chain is termed as a service function chain
(SFC) [11]. Each instance of a function can be applied to
several flows and takes up resources in the network that
are constrained in their availability. Thus the placement
of these functions is a complex optimization problem that
takes into account the requirements and the constraints
and the overall objective of minimizing the consumption
of resources [12].

The problem has been widely studied and an extensive
survey of the solutions is provided in [2, 3]. The placement
problem is known to be NP-Complete [1] and has primar-
ily been solved by treating it as a constraint satisfaction
problem.

The work presented in [12] attempts to solve path com-
putation (routing) and function allocation as a unified
problem. It combines the path computation constraints
and the network function placement constraints into a
single instance of a mixed integer quadratically con-
strained program (MIQCP) and uses a SAT solver to find
solutions. Similarly, the work discussed in [13] attempts
a co-ordinated solution that solves both the composition
of the network functions in a chain as well as embedding
them in the substrate network. The approach described
in [1] also integrates the solution for VNF allocation and
end-to-end demand realization. Some researchers have
also attempted to treat VNFs as being capable of get-
ting broken into relatively simple functions that can be
distributed and implemented among the switches them-
selves by using commodity compute, network, and storage
resources. The work in [14] proposes a programming
model which allows a centralized stateful program to
be distributed and deployed using state variables imple-
mented at various switches in the network.

The routing aspect of the NFP problem involves finding
the k-shortest paths through the network. This problem
has been widely studied, and D. Eppstein’s solution [15] is
the best known solution that allows looping paths. How-
ever, if we consider only loopless paths, then Yen’s algo-
rithm [16, 17] gives the solution in pseudo-polynomial
time. Two variants of these previous algorithms are pro-
posed in this paper as part of the dynamic NFP solution.

The consolidated approach in this paper for dynamic
NFP is in contrast to the above solutions, since we pro-
pose an architecture and a protocol which are consistent

Page 4 of 19

with current state-of-the-art NFV and SDN architectures.
The paper addresses the interaction of the two technolo-
gies with each other and builds on the prior research work
on this topic by the authors [18, 19].

3 Static network function placement

In this section, we formally describe the problem state-
ment for static NFP. Then, we present our sound and
complete algorithm to solve the problem. A customizable,
agile heuristic version of the algorithm that is exponen-
tially faster than the state-of-the-art solutions is proposed.
We define completeness of an NFP algorithm as its ability
to consider all possible outcomes and generate a solu-
tion if one exists and soundness as the property of the
output being the optimal solution. Also, a solution is
considered more agile than another solution if the algo-
rithm has lower time complexity and customizable if there
are parameters that network administrators can tweak
to improve the performance according to their needs or
available resources.

3.1 Problem definition
As described in previous sections, for the static NFP prob-
lem, the paths of the flows are provided by an oracle. The
computation of such paths is left for the dynamic NFP
solution. Given the paths, we attempt to address the prob-
lem of placement of network functions, subject to the
various constraints such as the SFC requirement of each
flow and the resources available at each switch to deploy
the functions. We consider the chain of functions to be
of linear order. That is, functions that split or merge the
flows are not considered. Similarly, We restrict our dis-
cussion to network functions that can be deployed on
the network switches [5]. We call these nodes as NFV-
enabled nodes. Given the flows through the network and
their SFC requirements (SFCy), we need to place function
instances at the switches such that the overall resource
cost is minimized.

The resource cost of a virtual network function has two
components:

e Instance cost (I;): This is the resource cost to create
an instance of the function on any switch.

e Service cost (S;): This is the dynamic resource cost of
the function that a switch requires to service one unit
of flow data rate.

Modern state-of-the-art switches usually have three
types of resources—network, computational, and storage.
To simplify our discussion, we will capture the capacity
of a switch to host network functions as a single unified
resource (Cap;). It is easy to extend the model to differ-
ent types of resources. We formally define our problem
statement as follows:



Gadre et al. EURASIP Journal on Wireless Communications and Networking

Problem statement: Find the placement of network func-
tions among the switches in a network given a set of flows,
with each flow taking a pre-computed path through the
network and requiring a linear partial order of network
functions, each of which has an instance cost and a service
cost associated with it, such that the overall cost of placing
the network functions for all given flows is minimized.

Let the number of NFV-enabled nodes be N and and
number of network functions be M. Let the number of
incoming requests be K. A is an allocation matrix where
Ajj = 1 denotes there is an allocation of network function
j on node i. F is a routing matrix where F;=1 denotes
that the flow k is using the network function j allocated
on node i. BW is a bandwidth matrix where BW} denotes
the bandwidth utilized by flow k. The problem statement
translates directly to:

minimize Z Cj,
j

subjectto Cj = Z (Iin/‘ + SjAjj Z (FijkBWk)) ’
k

i=1,..,N,j=1,..,M k=1,.. K

COST DEFINITION

i
Cap; > Z(Iinj + SinjZ(FzkaWk)) , CAPACITY CONSTRAINT
j k

ViiFjjk € SFCp, SFC CONSTRAINT
3.2 Proposed solution

In this section, we define the system and its parameters
that define the problem and the approach to model them.
Then, we describe our divide-and-conquer approach to
solving the NFP problem. Finally, we present a customiz-
able heuristic version of our algorithm which is more
agile.

3.2.1 System description
A VNF is characterized by a three-tuple containing (i) the
name of the function, (ii) the instance cost (/;), and (iii)
the service cost per unit data rate of flows (S;). Although
the service cost is taken to be linearly increasing with the
data rate, this can be replaced in the algorithm by other
functions that are non-linear. A tenant request is defined
as a flow taking a given path through the network and hav-
ing a specific SFC requirement. Thus, a tenant request is
described by an ingress node (src), an egress node (dsty),
the path taken by the flow through the network (Py;), the
data rate of the flow (BWy), and the sequence of functions
that need to service this flow (SFCy). Often, a flow only
needs to be serviced by a set of functions or a partial order
rather than a specific sequence of them. The algorithm
assumes that such requests have been pre-processed (one
such heuristic is presented in [12]) and a specific sequence
has been provided as input.

Since the path is also pre-defined for each tenant
request, the only information about the network that is

(2018) 2018:197 Page 5 of 19

required is the resource availability of the network ele-
ments. An instance of a network function placed at a spe-
cific switch to service a set of one or more tenant requests
is called an allocation. Note that this can be a subset of
the set of all requests passing through this switch with the
given VNF in their network function sequence. This may
be caused due to the limited availability of resources on
the node. The output of the algorithm is a set of alloca-
tions that satisfy as many input tenant requests as can be
fully serviced.

An NFPSystem is an instance of the proposed algorithm
that solves the NFP problem or a sub-problem. By the
definition of the NFP problem, an NFPSystem takes as
input the list of possible network functions, the allocations
that were done a priori, the set of tenant requests that
need to be serviced, and the network describing currently
available resource capacities of the network elements. It
returns with the set of allocations for the given inputs
that has the minimum cost among all possible sets of
allocations.

3.2.2 Divide-and-conquer algorithm (DCA)

This section presents the divide-and-conquer algorithm
(DCA) which solves NFP and is shown to be complete and
sound. The pseudo-code of this algorithm is described
in Algorithm 1. We create the first instance of NFPSys-
tem with the complete available set of network functions,
an empty set of allocations, the complete set of ten-
ant requests (in the format described earlier), and the
network describing the resource capacities of all the net-
work switches. It starts by finding the set of all possible
candidate allocations.

Only maximal allocations are considered initially, i.e.,
when a function is allocated on a node, it services
all requests that pass through the node requesting
that function. This will be the optimal allocation strat-
egy if there were infinite resources on each switch.
However, in reality, the capacity of the switches is
constrained.

For each allocation, the algorithm verifies the cost of ser-
vicing the given request. Note that we accrue the instance
cost of the network function only if an instance of that
function is not already allocated on that node. If an allo-
cation is not feasible, then the tenant request that has
the maximum dynamic service cost is removed and the
process is repeated. The intuition behind this is to min-
imize the number of instances of the same type of net-
work function (say, firewall) and, in turn, minimize the
instance cost.

If the allocation is left with no requests to serve, then the
given request cannot be handled in the current NFPSys-
tem, making the NEFPSystem infeasible for any allocation
of the function on the specified node. Hence, no update of
the optimum allocation is done.



Gadre et al. EURASIP Journal on Wireless Communications and Networking

On the other hand, if an allocation is feasible, we remove
the resource capacity needed for that allocation and the
available capacity on the corresponding switch is reduced.
Then a divide-and-conquer method (line number 6 in
Algorithm 1) is used to divide the requests that are being
serviced by this allocation of the given function into two
parts. For example, consider a request with path A-...-
B-C-D-...-E and a VNF chaining request F1-...-F2-F3-
F4-...-F5 and let the current allocation place F3 at C for
this request. As a result, two new requests are created as
<A-...-B-C, F1-...-F2> and <C-D-...-E, F4-...-F5>.

A sample run of the divide-and-conquer algorithm is
demonstrated in Fig. 3. Consider the four-node network
shown in the figure. The tables list the current capacities
of each node, instance, and service costs of each function
and the outstanding requests. Initially, the VNF denoted
by % is allocated on node 2, which results in the capac-
ity of node 2 getting updated and a new reduced set of
requests getting generated. This is shown in Fig. 3b. This

Algorithm 1: Divide-and-Conquer Algorithm (DCA)
for NFP
1 NFPSystem (functions, allocs, regs, net);
Input : Set< Function > functions,
Set< Allocation > allocs, Set< Request >
reqs, Network net
Output: Set< Allocation >

2 findAllPossibleAllocations();
3 for each Allocation a do
4 if verifyAllocation(a) then
5 newNet=updateNetwork(net);
6 newReqs=DNCRequests(regs,a);
7 newAllocs=allocs+a;
8 out=fork(new NFPSystem
(functions,newAllocs,newReqs,newNet));
9 if out ==NULL then
10 if a.reqList.size> 1 then
11 removeLargestDatarateFlow(a);
12 goto 6;
13 else
14 L continue ;
15 else
16 L calculateCostAndUpdateMin(out+a);
17 else
18 if a.reqList.size> 1 then
19 removeLargestDatarateFlow(a);
20 goto 5;
21 else
22 L continue ;

23 return minCostSetAllocations;

(2018) 2018:197 Page 6 of 19

takes care of both tenant requests getting serviced by this
allocation (3 on node 2). Similarly, other allocations are
done one after the other until all requests are satisfied.
The final state showing all allocations in one path is shown
in Fig. 3e.

We recursively create parallel NFPSystem instances to
identify the optimal allocation by exploiting the inde-
pendence of one allocation from the other. Once a fea-
sible allocation has been identified, this allocation is
added to the current list of incoming set of allocations
to be passed to a sub-system to handle the new set
of requests.

A parallel NFPSystem is created as a separate thread to
solve a sub-problem and return the set of optimal allo-
cations satisfying that new NFPSystem. If the sub-system
that handles the new requests is infeasible with the cur-
rent allocation then the tenant request with the highest
data rate is removed. We repeat this process until there
is one request left in the allocation. If the allocation has
only one request, then there are no further possibilities
for reducing the allocation. We deem such a NFPSystem
infeasible which does not yield a candidate for optimum
allocation.

Note that the function chains and the network paths
get smaller for the newly created instances of the NFP-
System. Eventually, the new set of requests will contain
requests with a trivial path that has only a single node.
At this point, a simple feasibility check is used to check
if that node can support all the functions and, if so, they
are allocated on that node. Otherwise, it is deemed infea-
sible. Another trivial case occurs when a request has an
empty set of functions to be serviced along a path. In other
words, there are no functions required to be allocated on
a given path. These requests are discarded since they are
trivially satisfied.

Given the set of sub-systems, each NFPSystem compares
the cost of allocations from each sub-system and keeps
track of the one with the least cost. Similarly, it com-
pares the cost among all such allocations by waiting for
all the threads to join and the overall minimal allocation
is returned to the parent system which spawned that sys-
tem originally. This algorithm, thus, performs exhaustive
search and is therefore as complex as the current solu-
tions based on MIQCP. Thus, it has a time complexity
of O (epob’ log (p"ly)). We provide the detailed analysis in
Section 6. Therefore, a more agile solution that can act as
a dynamic NFP solver is required, which is presented in
the next section.

3.2.3 Fast heuristic algorithm (DCA-H)

Algorithm 1 searches for optimal allocation of all tenant
requests exhaustively. There are many ways the algorithm
can be made more agile by sacrificing the completeness
and the soundness of the algorithm. In this section, we



Gadre et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:197

Page 7 of 19

Function | |; i
A 1.0 | 2.0
* 20|10
- 10|10

Node | Capacity

1 5.0
7.0
3.0
2.0

alw|n

Request | BW
1 2.0
2 1.0

Path
1-2-4
243

VNF Chain
Ak
u-k-A

After allocating A on 1. e After allocating A on 3

a
Node Capacity Node Capacity
50 1 5.0
2.0 2 00
30 3 3.0
20 4 20
Fonctionl § [ 5 Request | BW | Path | VNF Chain functon Request VNF Chain
A [10]20 A |10
~ 20110 1 [20] 12 A o e 1 [20] 12 A
= 10| 10 2 1.0 2 L] . 10| 10 2 10| 2-4-3 A
3 |10]243 A
b c
Node | Capacity Node | Capacity |
1 0.0 1 0.0
0.0 2 0.0
3.0 3 0.0
20 4 20
A
F"":h" TIET [ Request [ BW [ Path | VNF Chain | F""rw" m [ Request [ BW [ path | VNF Chain
* [20][10 ‘ [10]243] 4 ™5 [20]10 A
- 10|10 L] 10|10
d e

Fig. 3 Sample run of divide-and-conquer algorithm. At each step of the divide-and-conquer algorithm, a VNF allocation is made and a new instance
of the problem is spawned corresponding to the allocation. The tables shown list the current capacities of the nodes, instance, and service costs of
the VNFs and the outstanding requests to be handled at each step. a Original set of request. b After allocating % on 2. ¢ After allocating Bon 2.d

present DCA-H, which is a heuristic version of the algo-
rithm and is more customizable and agile. Note that this
algorithm is called agile since it is exponentially faster
than all previous solutions and customizable since there
are multiple parameters that network administrators can
tweak to improve the performance according to their
available compute resources.

The first and most effective way to improve agility is to
bound the branching at every NFPSystem instance. This
can be enforced by only looking at top T of the alloca-
tions possible at every step for the optimal cost solution.
Once the branching is curtailed, the algorithm becomes
significantly faster. Therefore, to achieve this optimiza-
tion, only the top T allocations in line 4 of Algorithm 2
are considered. This requires sorting the allocations in a

particular order beforehand such that the top T alloca-
tions will reasonably represent the overall system. Some
of the possible sorting orders are the decreasing order
of number of requests each allocation serves, decreasing
order of data rate of the flows that each allocation serves,
or the decreasing order of cost to the system due to the
allocation.

We introduce another heuristic by reducing the back-
tracking upon discovering the subsystem created by
a verified allocation is infeasible to solve. This can
be accomplished by making lines 11-17 optional in
Algorithm 2. Note that this will have significant per-
formance impact since this polynomially reduces the
upper bound on the depth of the NFPSystem visitor tree.
The same is true for removing backtracking unverified



Gadre et al. EURASIP Journal on Wireless Communications and Networking

Algorithm 2: Heuristic Algorithm(DCA-H) for NFP

1 HeuristicNFPSystem (functions, allocs, reqs, net);
Input : Set< Function > functions,
Set< Allocation > allocs, Set< Request >
reqs, Network net
Output: Set< Allocation >

2 findAllPossibleAllocations();

3 sortAllocations();

a4 for ain top T allocations do

5 if verifyAllocation(a) then

6 newNet=updateNetwork(net);

7 newReqs=DNCRequests(regs,a);

8 newAllocs=allocs+a

9 out=fork(new HeuristicNFPSystem

(functions,newAllocs,newReqs,newNet));

10 if out ==NULL then

11 OPTIONAL]| if a.reqList.size>1 then
12 removeLargestBandwidthFlow(a);
13 goto 6;
14 else

15 L continue ;

16 ]

17 else

18 L calculateCostAndUpdateMin(out+a);
19 else
20 OPTIONAL([If a.reqList.size> 1 then
21 removeLargestBandwidthFlow(a);
22 goto 5;
23 else
24 L continue ;
25 ]

26 return minCostSetAllocations;

allocations (allocations that will not meet the resource
constraints), which can be done by making lines 22-28
optional in Algorithm 2. This will not drastically improve
the time complexity but will significantly reduce the
soundness of the algorithm. Thus, it is recommended that
this part is left unmodified in DCA-H.

To summarize, we proposed a complete and sound algo-
rithm for static NFP in this section and provided a cus-
tomizable agile heuristic version of the same, which allows
tenants to trade off precision for better computation time.

4 Dynamic network function placement

In this next section, we define the problem of dynamic
NFP formally and describe a modular approach which
harnesses the power of independent optimal solutions of
each of the individual components, namely, routing and

(2018) 2018:197 Page 8 of 19

allocation. While the problem of placement of virtual net-
work functions (VNFs) has been widely studied, most
solutions either look at routing of flows and optimal allo-
cation of VNFs on the route individually or are too slow
for practical implementation as online VNF solvers.

Note that each VNF has a specific migration delay
(Migy), a start up delay (Stp;), and a tear down time
(Trp;). Static values are assumed for migration delay
for a function, since usually the migration happens
through an overlay network built in the NFV Manage-
ment and Orchestration (MANQO) architecture of the
ETSI (European Telecommunications Standards Insti-
tute). Also, homogeneity across all commodity switches
for static start up and tear down delay is assumed.

The allocation component of the problem deals with the
least cost allocation of network functions given a static
set of requests and the corresponding routes that they
will take. Note that the allocation optimization problem
remains the same as in dynamic NFP as static NFP. The
routing part of the problem tries to look for the best pos-
sible route for a VNF chaining request where a set of
VNFs are statically allocated and routes may loop to sat-
isfy function chains. Our approach ignores the possibility
of dynamic VNF migration and may end up using ineffi-
cient routes to meet the SFC requirements. However, even
the fastest VNF migration [20] is too slow for migration
during a flow, hence justifying our assumption.

Let the number of incoming requests be K and the num-
ber of links in the network be L. P is a path matrix where
Py;=1 denotes link / used in route for flow k. BW is a
bandwidth matrix where BWy,; denotes the bandwidth
utilized by flow k or maximum bandwidth of a link /.
Lat is a latency matrix where Lat;,; denotes the latency
constraint for a flow k or latency of a link /. Formally,
the routing component can be described as the following
optimization problem:

minimize ) (ZPleat1+ (3P == )(Mig,+$tp1))

1 k

k=1,...,K,1=1,...,L

subjectto  BW; > > PyBWj, BANDWIDTH CONSTRAINT

k

Pkmk = 1$Pkdszk =1 SOURCE AND DESTINATION CONSTRAINT

The combination of the routing and allocation aspects
of the NFP problem makes it intractable and most of the
complete and sound solutions of the above problems are
too slow for deployment in real networks. However, there
exist fast heuristics which solve both of the above prob-
lems that significantly improve the time complexity. In
this section, we propose a consolidated solution which
combines such heuristic approaches. However, since the



Gadre et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:197

solution is heuristic, neither the soundness nor the com-
pleteness of such a solution is guaranteed. To summa-
rize, the proposed solution is a consolidated approach for
VNEF placement, which combines the objectives of optimal
routing as well as least-cost placement VNFs, to provide a
real-world online solution for NFP.

4.1 Hybrid Dijkstra’s algorithm

In this section, we discuss an approach for the routing
aspect of the dynamic NFP problem that also consid-
ers the importance of the re-utilizing previously allo-
cated functions which are servicing existing flow requests
already. Traditionally, link state routing protocols such
as the Open Shortest Path First (OSPF) protocol are
used for (i) discovering and maintaining the link state
of the network and (ii) using algorithm such as Dijk-
stra’s to compute shortest paths based on administra-
tive weight or path attributes such as latency. We use
the overall latency of allocation as the optimization
criterion [21].

However, such path computation is completely obliv-
ious to the already allocated network functions in the
network and conceivably, a longer path with network
functions which can be reused for the request being ser-
viced, can provide lower latency by avoiding the migration
and setup latency of the network functions. Algorithm 3
is a hybrid Dijkstra’s algorithm that addresses this prob-
lem by considering the presence of network functions on
the commodity switches to compute a path from source to
destination.

Algorithm 3: Hybrid Algorithm for routing tenant
requests

1 HybridRouting(net, req, allocs);
Input : Network net, Request req,
Set< Allocation > allocs
Output: Path p
allPaths=Set< Path >;
shortest=Dijkstra(net,req.src,req.dst);
for each edge e in shortest do
newShortest=Dijkstra(net-e,req.src,req.dst);
L allPaths.add(newShortest);

A R W N

N

minCost=Cost(shortest);
8 for each Path q in allPaths do
cost=Cost(q);

10 if cost<minCost then
11 shortest=q;
12 minCost=cost;

13 end

14 return shortest;

Page 9 of 19

The algorithm proceeds as follows. The shortest path
between the source and the destination using the tradi-
tional Dijkstra’s algorithm (line 3) is first identified. Then,
to provide alternatives to the shortest path, k-shortest
paths are computed between the source and destination.
These paths are retrieved by excluding individual links of
the shortest path. This approach is similar to the ones
taken by Yen [16, 17] to find loopless k-shortest paths.
Thus, the path computed upon removal of each edge is
computed and added to the set of paths to be checked
(lines 4—6).

Algorithm 4: Heuristic Algorithm for NFP

1 HeuristicNFPSystem (functions, allocs, p, fs, net);
Input : Set< Function > functions,
Set< Allocation > allocs, Path p,
FunctionSeq fs, Network net
Output: Set< Allocation >
2 findAllPossibleAllocations(s, p);
3 sortAllocations();
4 for a in top T allocations do
5 if verifyAllocation(a) then

6 newNet=updateNetwork(net,a);
7 {newFS1,newFS2,newP1,newP2}=
DNCNewSystems(fs,a);
8 newAllocs=allocs+a;
9 outl=fork(new HeuristicNFPSystem
(functions,newAllocs,newFS1,newPI1,newNet));
10 out2=fork(new HeuristicNFPSystem
(functions,newAllocs,newFS2,newP2,newNet));
11 if outl #NULL and out2 ANULL then
12 ‘ calculateCostAndUpdateMin(out+a);
13 end
14 end

15 return minCostSetAllocations;

An illustration of the above algorithm is shown in Fig. 4.
The traditional Dijkstra’s algorithm is used to find the path
with the least latency (1-2-5-7) from the source to the des-
tination node (Fig. 4b). Next, for each edge e in this path,
the shortest path is computed assuming e is unavailable
or has oo latency. As illustrated, there are three candidate
paths, namely, “1-2-5-7", “1-3-6-7’, and “1-2-4-5-7, each
found after excluding one of the edges in the shortest path.

The cost of each path is calculated as follows:

matchingAllocs
C; = Z latencyj X (1 — armmm)

jeedges
where matchingAllocs refers to the number of alloca-
tions on the path, where the VNF of the allocation occurs
in the function sequence of the request and totalFuncs



Gadre et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:197

Page 10 of 19

d

Fig. 4 Sample run of the hybrid Dijkstra’s algorithm to generate candidate paths. The shortest path between the source and the destination using

the traditional Dijkstra’s algorithm is first identified. Then, to provide alternatives to the shortest path, k-shortest paths are computed between the

source and destination. These paths are retrieved by excluding individual links of the shortest path. a Sample Topology. b Shortest path. € Shortest
path assuming 1-2 is inactive. d Shortest path assuming 2-5 is inactive. @ Shortest path assuming 5-7 is inactive

denotes the total number of functions in the SFC of the
request. Note that in the above formula, the coefficient of
% (o) represents the ratio of importance given
to previous allocations versus the actual latency/cost of
the path. We use o, = 0.25 for our results but it can be
replaced with any other number depending on the ratio
of importance you want to give the existing allocated net-
work function. Using the above cost heuristic, the cost
of the shortest path (the one with the lowest latency) is
found (line 8). Then for all candidate paths in allPaths, we
calculate that cost and if it is less than the cost of the cur-
rently known lowest cost path, then it is used to replace
the shortest path (lines 9-15). Finally, we return the path
with the lowest cost (line 16).

4.2 Fast Centralized NFP Solution (FDCA-H)
In this section, a heuristic approach is discussed for find-
ing the optimal allocations of functions to resolve the SEC

requirements of a tenant request using the path computed
using the abovementioned algorithm. When a request for
finding new allocations is handled, there may be alloca-
tions already done on the given path. Thus, either existing
allocated functions can be used to serve this flow or due to
resource constraints, new virtual network functions must
be spawned. Using existing allocated functions has the
advantage of not waiting for the migration and setup of
the VNF instances to be complete, while instantiating new
functions will allow load balancing, which may facilitate
better service of future NFV requests.

This fast heuristic approach is described to solve
the allocation problem based on the paths computed
by Algorithm 3 builds upon the solution described in
Algorithm 1. Note that, in this approach, the problem
always reduces at every computation depth and thus guar-
antees completion. We will show in Section 6.1.1 that this
algorithm is neither complete nor sound, but the deficit in



Gadre et al. EURASIP Journal on Wireless Communications and Networking

performance is compensated by the immense decrease in
time complexity.

Figure 5 shows a sample run of the algorithm for the
path shown in Fig. 4d assuming that % is allocated on
node 4. The static and dynamic costs of each function are
displayed along with the remaining capacity of each node
in the path. We find that the next best possible allocation
is to allocate the node 4 to also serve the incoming request
1. After allocating % on node 4 (Fig. 5b), the request is
divided into two sub-requests as described above. Note
that, since % was already allocated, only the service cost
x BW; units of resources were used. Next, if B is allocated
on node 2 (Fig. 5¢), then the first sub-request is fulfilled
and only the second sub-request remains. Finally node 7
being the only possible node to support A with bandwidth
2.0, A is allocated on node 7 (Fig. 5d) and a potential set
of allocations to service request 1 is arrived at. Thus, the
above online NFP solver uses the information of previ-
ous allocations on the path along with current state of the

(2018) 2018:197 Page 11 of 19

system to look for an optimal set of allocations to service
arequest.

5 SDN-enabled framework for online NFP
In this section, we describe a centralized SDN-enabled
consolidated approach to solve the problem described
above with individual components, as illustrated in Fig. 6.
In a traditional network, a set of hardware-based middle-
boxes and other commercial switches are used to imple-
ment the necessary network functions. For the purpose
of our discussion, we will assume that the network is
made of NFV-enabled commodity switches that are capa-
ble of being controlled by an SDN controller connected
directly to each other. Let the topology of such a net-
work be termed as Network Function Topology (NFT).
This allows the simplification of discussion by avoiding
discussion about conventional switches in the network.
As in all SDN-enabled technologies, only the central-
ized controller will have the full view of the NFT and

Function | |; S Node | Capacity Function | |, S; Node Capacity
5.0 5.0
7.0 7.0
3.0 1.0
2.0 2.0
5.0 5.0
Request | BW | Path VNF Chain Request | BW |  Path VNF Chain
1 20| 1-2-457 | m-k-A 1 20| 124 .
1 20| 457 A
a b
Function | | s, Node | Capacity |[_ L s, Node | Capacity
A |10]20 d 20 A |10]20 ! 50
* 20|10 2 40 * 20|10 2 4.0
4 10 4 1.0
- -
5 2.0 5 2.0
7 5.0 7 0.0
Request | BW | Path VNF Chain [ Request [BW [ Path | VNFchain |
1 20| 457 A
c d
Fig. 5 Sample run of the heuristic algorithm for dynamic NFP. The allocation of VNFs for a given incoming request along a given candidate path
chosen by the hybrid Dijkstra’s algorithm is shown. In this example, it is assumed that VNF % is already allocated on Node 4 and the request is
handled using Divide-and-Conquer method. a Path assuming ¥ allocated on 4. b After allocating v on 4. ¢ After allocating B on 2. d After
allocating A on7




Gadre et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:197 Page 12 of 19

3. The SDN controller finds the optimal
allocation and path for the flow

4. Controller
signals NFV
MANO layer t
appropriately
migrate VNFs

NFV
MANO layer

1
- /  5.NFVMANO
1 layer migrates the
VNFs to their
respective nodes

2. Adescription
packet is sent to the,
SDN controller

%l A VNFs
= Links

@ Switches

1. Anew request comes
in requesting a flow from
1 to 7 with function
sequence m-k- A

NFV

SDN MANO layer

6. Appropriate flow rules are
added to the commodity

switches in the path to fulfill
the request

7. Flow passes through
the selected path being
serviced by the VNFs
assigned to serve it

* M A VNFs
= |inks

@ Switches

8. SDN controller
tells the NFV MANO
layer to teardown

the VNFs that are no NFV
longer required and SDN MANO |ayer
free the resources Controller

9. NFV MANO layer
signals the teardown
trigger for the
corresponding VNFs

* M A VNFs
—Links
Switches

Fig. 6 Proposed protocol for solving NFP. A centralized SDN-enabled approach to NFP is illustrated in this figure. An SDN controller uses the optimal
path allocation algorithm and leverages the NFV MANO layer to accomplish NFP for incoming requests




Gadre et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:197

be able to query the remaining bandwidth or resources
of its elements. Also the controller will be a reac-
tive agent, which will respond based on the packets
or requests that it receives. We also assume that the
MANQO layer of the NFV architecture can communi-
cate with the SDN controller, as is prevalent in state-
of-the-art SDN-NFV combined approaches. Whenever
a new flow enters the NFT, the first switch receives a
description packet, which is forwarded to the SDN con-
troller. This description packet contains the description
of the VNF sequence that the incoming flow requires,
the destination node, the bandwidth and the time for
which the flow of packets will occur. While the con-
troller is finding the optimal route and allocation for
the flow, the packets are routed through the controller
to the destination via a high latency path. The con-
troller is assumed to have sufficient resources to run
all possible VNFs always to service the chaining request
of this flow while the dynamic NFP solution is being
calculated [22].

The controller first looks for a set of candidate paths
that could possibly be optimal routes for this flow.
The main constraining resource for routing is the
bandwidth of the links in the NFT. Using appropri-
ate cost functions, the controller finds the best possible
route of the incoming request. Once the appropriate
route is found, this route along with the sequence
of VNFs that need to be serviced for this flow is
supplied to the online NFP solver. The NFP solver
uses the divide-and-conquer approach to divide the
request into smaller requests and find the optimal
NEP solution.

It may so happen that there is no possible route or
that for the chosen route there is no feasible network
function placement found. In such cases, the solution
for the request is delayed by a certain amount described
as the backoff delay of the system. The solution is reat-
tempted periodically until a threshold upper bound value
denoted as the denial cutoff above which the request
is denied and the high latency path through the con-
troller is used for the duration of the flow. However, if
the solution is found, then the SDN controller removes
the bandwidth and resource capacities of the links and
nodes respectively according to the allocation in its
internal view of the NFT. It then invokes the MANO
layer of the NFV architecture to migrate the required
VNF containers to the required nodes and to scale
each of the VNFs to the updated bandwidth. Thus, the
migration delay for a request is defined as the maxi-
mum migration delay out of all the migrations of VNFs
required for the request. We also define startup delay
as the maximum sum of migration and startup delays of
the VNFs required to meet the needs of the specified
allocations.

Page 13 0of 19

Next, the flow rules for the request are pushed by the
controller in the respective switches. At every switch, the
rule will be as follows:

match<VLAN ID=reqID; input port=4>
=>action<output port:=3>

The rules are added in sequence starting from the des-
tination switch and the last rule is added at the source
switch in the path. After this, the incoming flow packets
are switched across the data plane. Once the time defined
in the description packet is elapsed, the flow is said to
have completed. Once the flow is completed, the request
ID is removed from all allocations stored by the SDN con-
troller. At this point, the bandwidth capacity is freed in the
links and dynamic cost for the given request for all rele-
vant allocations in the SDN controller. This may also lead
to some allocations serving no active requests in the NFP
system. The controller triggers a teardown for all such
allocations—i.e., it tells the MANO layer that the VNF
container is no longer required and can be vacated to free
the resources. After a corresponding teardown delay, for
each such null allocation, the instantiation cost for the
VNF container is freed at the switch. This SDN-enabled
framework harnesses the power of individual heuristics
for each of the components and allows a consolidated
feedback-based approach for optimal online service of
VNF chaining requests.

6 Experimentation and results

In this section, details of the experimentation and theo-
retical and empirical analysis of various approaches are
presented and it is shown that these approaches are signif-
icantly better than prior solutions to the NFP problem.

6.1 Analysis of static NFP

In this section, Algorithm 1 (DCA) is shown to be com-
plete and sound. Then, the time complexity of the DCA-H
algorithm is discussed to justify that it is polynomial when
all the subsystems of a given system are run in parallel.
Further, the solution is empirically studied with various
parameters and finally shown to scale to even large state-
of-the-art DCN topologies.

6.1.1 Completeness and soundness of DCA

Completeness of an NFP algorithm is its ability to consider
all possible inputs and generate a solution if one exists.
This is automatically taken care of for each sub-problem
in our case by the definition of the inputs. This is guar-
anteed for a given linear function chain and a given path
for every request and given resource capacity of a network
node. Thus, DCA is proven to be complete.

Soundness of an NFP algorithm is the property of the
output solution being of optimum cost and if the algo-
rithm does not find a solution, then there does not exist
a solution. If the algorithm produces a solution, it is



Gadre et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:197

clear that at each stage it has found the minimum cost
subsystem after each allocation. Also, at each stage, we
find and use the allocation which gives us the mini-
mum cost. After each system and its subsystems return
the possible allocations, the minimum cost among all
possibilities is returned to the parent system. This guar-
antees that given a feasible NFPSystem, the algorithm
finds the optimal solution for all subsystems that are
visited. Using this argument recursively, DCA is proven
to be sound.

6.1.2 Theoretical complexity analysis

For this analysis, N denotes the number of network ele-
ments, M the number of network functions, and K the
number of tenant requests.

DCA complexity: A given NFPSystem is started by find-
ing all possible allocations. The total number of such
allocations is O(NM). Then for each allocation, the allo-
cation is verified and the network is updated, both of
which takes O(1). The divide-and-conquer algorithm is
then executed to find a new set of requests, which is
O(K). In the worst case, the number of new requests
is twice the number of current requests. Thus the com-
plexity of each run of NFPSystem is O(NM + K). Then,
the depth that the search tree can grow to is analyzed,
which has an upper bound of the number of possible allo-
cations O(NM) multiplied by the maximum number of
times a function can be allocated on the node, which is
O(K). Thus, the upper bound of the depth is O(NMK).
The branching at each step is determined by the possible
number of allocations, which is O(NM). Thus, the worst
case time complexity is O ((NM + K) - (NMNME)Y)
which is O (ep"ly log (”"13’)).

Heuristic complexity: In the heuristic version, the allo-
cations are sorted, which is done in O(NM log (NM))
time. Thus, the worse-case complexity with the sort-
ing, but without any heuristic bounding becomes
O ((NMlog (NM) + K) - (NM(NMK))). Looking at only
the top T allocations will bound the number of branches
at each step by T (a constant). This will change the mul-
tiplicative factor to O (... - (T(NMK))). This leads to the
overall complexity of O (ep”ly), where the exponent is
actually quite small in most of the typical scenarios. For
T = 1, the algorithm becomes polynomial time with
complexity O(NM log (NM) + K). The next optimization
step is to reduce the backtracking that happens when we
find an infeasible subsystem which reduces the first term
of the complexity to O((NM log (NM)) - ...). Moreover,
for T = 1, the complexity reduces to O(NM log (NM)).
Note that this complexity is independent of K and is
only a function of the network topology and set of
possible network functions that can be allocated. This
is very important to give performance guarantees in a
network system.

Page 14 of 19

6.1.3 Empirical time complexity analysis

Base case parameters: Given a set of nodes N, we generate
VN requests. Each node has a resource capacity of N*8
and each request has a random number of nodes in its
path size, chosen uniformly from the range JN to ¥/N.
Each request has a data rate of one unit and the nodes on
the path are randomly chosen from 1 to N. The number
of functions requested for each path are chosen randomly
from 1 to W . Each of those functions are chosen from a
pre-decided set of 10 functions. The value of T chosen for
the base case is 1.

The base case is compared with requests having longer
paths and longer function sequences. For longer paths,
path length is varied from /N to N%6 instead, while for
long function sequences, the function sequence length is
varied from from 1 to v/N. The effect of increasing the
path size and having longer function chains per request
is shown in Fig. 7a which shows that the computation
times is of the order of seconds in the scenarios consid-
ered. It is seen that having longer function chains affects
performance more adversely than having longer paths.

Next, the base case is compared with a system hav-
ing N requests instead of +/N. Increasing the number
of requests increases computation time exponentially, as
seen in Fig. 7b. This is because increase in the number
of requests increases the number of possible allocations
exponentially. This reaffirms the results of our complex-
ity analysis. Then, T is varied from 1 to 4 to find the
complexity of increasing the number of top T allocations
considered. As expected, increasing T results in an expo-
nential increase in the time taken for running the system.
This is shown in Fig. 7c, where time is plotted on a log
scale.

Another important dimension to analyze the solution is
to find at what values of N does it become impractical to
be run for different values of T. For this analysis, the base
case is checked with values of T varying from 2 to 10 and
values of N increasing in jumps of 25 each. The cut-off
time for the simulation is taken as 30 min beyond which
the solution becomes impractical. The same experiment
is repeated for DCA as well with N increasing in jumps of
5 each. The results are shown in Fig. 7d. It is seen that to
make this algorithm useful for practical purpose for values
of T beyond 2, significant additional algorithm optimiza-
tion is required. Also, with increase in values of 7, the
maximum value of N, for which it is reasonable, decreases
exponentially. It should also be noted that the DCA did
not finish in 48+ h for N = 45.

6.1.4 Precision time trade-off analysis

Precision is traded off for time complexity when a smaller
value of T is chosen (Table 1). Hence, it must be verified
whether the performance with smaller values of T is com-
parable to the larger values of T. Three topologies of 25,



Gadre et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:197

Page 15 of 19

2500 T T T T T T T T T T
—&— Base Case
—&— Longer Paths
2000[L—°— Longer Function Chains |
‘» 1500 1
£
£
g
= 1000 1
500 1
0 ===:_’ -(:':',- 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000 1100
Number of nodes in the system(N)
a
10° . : : . . . . .
——T=1
—— T=2
—a—T=3
108} | ——T=4 q
@
£
£ 10} 1
(o}
E
=
10°F 1
100 . Y 1 1 o Py - -1 1
0 10 20 30 40 50 60 70 80
Number of nodes in the system(N)
C

practically feasible N vs T

Fig. 7 Performance (time taken) by the DCA and DCA-H algorithms for various parameters. The time taken by the DCA and DCA-H algorithms for
various parameters are shown here. The number of nodes in the network (N), the heuristic parameter T used to limit the number of top allocations
considered at each allocation step and the number of arriving requests are varied and the results are plotted here. The maximum feasible network
size for various values of T are also shown. a Longer paths and function sequences. b Number of requests. € Various values of T. d Maximum

5
x 10
4 T T T T T T T T

T T
—o&— Base Case
+ —=— More number of Requests | -

o
3]

Time(in ms)
b N
- 0 N n W
T T T T T

o
2
T

0 100 200 300 400 500 600 700 800 900 1000 1100
Number of nodes in the system(N)

50, and 100 nodes each were tested with the base case
criteria and various values of T. For 50 nodes, the time
taken by 7' = 1 was 2 ms, T = 3 was 1.8x10° ms, and
T =5 was 1.2x10°. The output minimum cost values of
7.2 resource units matched for both. The simulation for
T=3 and T=5 took 15+ h and thus results have not been
compared. This shows that the deficit in performance by
choosing lower values of T' can be reduced substantially
by using an appropriate sorting mechanism.

Table 1 Precision Time Trade-Off

Resource units T=1 T=3 T=5 T=00
N=25 7.2 7.2 72 7.2
N=50 14 14 14 14
N=100 17.6 17.6 176 17.6

6.1.5 Scalability in DCNs
Since NFV is well suited for data center networks (DCN),
a DCN scenario is also considered. Here, the flows are
primarily between leaf nodes or between core nodes and
leaf nodes. The topology used is the fat-tree topology
described in [23].

The capacity of each leaf node was kept at %, each edge

and aggregate node at %2, and each core node at N{ ina
N-pod FatTree topology. The data rate of each flow was
kept constant at 1.0 unit. This was done so as to not affect
the symmetry of flow requests from each node. The num-
ber of requests generated for an N-pod FatTree was VN,
where NV denotes is the number of nodes is an N-pod Fat-
Tree. The number of functions in the function chain were
specified to be randomly chosen between 1 to 3 for core-
to-end paths and 3 to 5 for end-to-end paths proportional



Gadre et al. EURASIP Journal on Wireless Communications and Networking

to the worst case number of nodes in the paths. N was
varied from 2 to 48 with jumps of 2 each.

The results obtained are shown in Fig. 8. Even for large
48-pod FatTrees containing 30,528 nodes, the time taken
for end-to-end requests was around 10 min. For core-
to-end requests, the time taken was 2.5 min, which is
relatively acceptable.

6.2 Analysis of dynamic NFP

In this section, the execution time (in ms) of the proposed
algorithm is studied with varying parameters. The execu-
tion times for randomly generated connected topologies
are studied first, followed by DCN topologies of K-pod Fat
Trees.

6.2.1 Non-symmetric topologies

In this section, how the algorithm scales to bigger topolo-
gies with a large number of NFV-enabled switches/nodes
is analyzed. For each N-node topology, following arrival
rates of requests are studied:

® Heavy: N requests arriving in N ms.

. 4 P
® Medium: N5 requests arriving in N ms.
® Sparse: /N requests in arriving in N ms.

A backoff delay of 0.IN ms and a denial delay as 2N
ms are used. Each request is generated within these
parameters with random ingress and egress nodes. The
number of functions in the functionSequence (chosen
randomly) are Min(+/N,Random(5,...,15)). Each NFV-
enabled node is provided with a capacity support approxi-
mately Min(+/N,10) flows on it. Each link is given enough

(2018) 2018:197 Page 16 of 19

capacity to support an average of five requests (chosen
randomly). The whole experiment is repeated 10 times to
discard results due to anomalous behavior.

Following parameters are tracked:

e Path computation time/delay: This is the time taken
by the hybrid Dijkstra’s algorithm at the SDN
controller to find the candidate paths and choose one
out of them for a given request.

e NFP computation time/delay: This is the time taken
by the heuristic NFP algorithm at the SDN controller
to find the optimal allocation for the given request on
the chosen path.

® Feasibility delay: This is the delay of backoff and
denial caused due to lack of feasible solutions at a
given time for the incoming request.

e Migration time/delay: This is the time taken by the
VNF containers to be migrated to the appropriate
NFV-enabled switches.

The results have been shown in Fig. 9. The path com-
putation time (Fig. 9a) seems to be a quadratic func-
tion of the number of nodes (N) which is aligned to
the expectation since the algorithm looks at approxi-
mately N candidate paths of approximately N length.
Although, for 1000 nodes and heavy requests, the path
computation takes 1.6 h, if we consider only the NFV
enabled nodes on a topology, the number are not
expected to exceed 500 nodes even for a 10,000-node
topology where the time taken is 5.4 min. Also, faster
and better routing algorithms can definitely reduce this
time overhead.

x 10°

7 T T T T

—oe— End-to-Core
—&— End-to-End

15 0

various number of pods (N) is shown

25
Number of pods in the Fat Tree(N)

30 45

Fig. 8 Performance of DCA on FatTree-based DCN topologies. The performance of DCA in Data Center Networks with FatTree topologies with




Gadre et al. EURASIP Journal on Wireless Communications and Networking

(2018) 2018:197 Page 17 of 19

6 X 108 Comparison of Path Comp ion Time(in ms) vs number of Nodes
T T T T T T T T
numReqs=vN
numReqs=N 8
5 numRegs=N 1
4t 4
@
£
=
=3 q
[0}
E
=
ol i
1k i
0 . L T
100 200 300 400 500 600 700 800 900 1000
Number of Nodes(N)
a

5066 Comparison of Feasibility Delay(in ms) vs number of Nodes

numReqs=vN
numRegs=N §
numReqgs=N

2500 -

2000

1500

Time (in ms)

1000

500

0 . . T 1 n
200 300 400 500 600 700 800 900
Number of Nodes(N)

1000

c Feasibility delay (in ms). d Migration time (in ms)

Fig. 9 Performance of SDN-enabled NFP framework. The performance of the SDN-enabled online NFP framework is shown here. The various delays
involved in accomplishing NFP for networks of various sizes are illustrated. a Path computation time (in ms). b NFP computation time (in ms).

1606 Comparison of NFP Computation Delay(in ms) vs number of Nodes

numReqs=vN
numReqs=N §
numReqs=N

800 [

600 [ 1

400 T

Time (in ms)

200 S

300 500 600 700 800 900 1000
Number of Nodes(N)

0 1
100 200

1566 Comparison of Migration Delay (in ms) vs number of Nodes(N)

numReqs=vN
numRegs=N §
numReqs=N

1000

Time (in ms)

500

800

500 600 700 900
Number of Nodes(N)

400 1000

The NFP computation time (Fig. 9b) for 1000 nodes and
heavy requests is 920 ms at an average and is only a func-
tion of the size of the path and the function sequence.
Since the path size is constrained to 1000 in the worst
case and the function sequence to 15, this result is pretty
reasonable to characterize real-world situations. The fea-
sibility delay (Fig. 9¢) of 2600 ms for 1000 nodes and heavy
requests is actually more than the NFP computation delay
which suggests that, either better NFP solutions can be
considered until the feasibility delay becomes less than
the NFP computation delay, or the backoff delay and the
limit for denial delay can be reduced. The migration delay
(Fig. 9d) for 1000 nodes and heavy requests is 1463 ms
though real-world values of migration delays will give a
better view on this particular factor.

6.2.2 DCN topologies: K-pod Fat Trees

Data center networks are some of the most important
places where our proposed protocol can be primarily used.
In DCN, there are two types of flows:

e End-to-end flows: These are primarily between leaf
nodes (such as for Map-Reduce tasks). The path
computation just has to look at all cores and once a
core is fixed, the path is automatically defined (direct
path).

e Core-to-end flows: These are primarily between core
nodes and leaf nodes (such as for content delivery).

The topology to be used for experimentation is the
fat-tree topology described in [23]. For a K-pod fat
tree, K flows are initiated every K 3 ms and K2 flows
every K2 ms. The backoff delay is taken as K ms and
the denial delay as K®> ms. Each request is generated
as defined above between random core and leaf node
or random leaf and leaf node. The number of func-
tions in the function sequence (chosen randomly) Ran-
dom (1,..,3) for Core to Leaf Node flows and Ran-
dom(1,...,5) nodes for Leaf to Leaf Node flows. The whole
experiment is repeated 10 times to discard data from
anomalous behavior.



Gadre et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:197

The results have been shown in Fig. 10. As is evident
from the results, the path computation for end-to-end
nodes for K2 flows takes on 70-pod fat trees 28 s, the NFP
computation time is 11 s and the migration time is 7 s.
Thus, when a new request comes, it takes about 1 min
for the flow to shift to the data plane for a 91,875-node
topology. Most of the current large-scale data center net-
works are 48-pod fat-trees (30,528 nodes) for which the
combined delay in worst case is just 8 s. This shows that
our protocol can easily scale to the largest of data center
networks.

7 Conclusions

The network function placement (NFP) problem that
requires meeting the service function chaining (SFC)
requirements of data flows in software-defined networks
is a critical problem in the field of network function vir-
tualization. This paper proposes a solution based on the

Page 18 of 19

divide-and-conquer strategy for the NFP problem and
shows that it is complete and sound. The solution is
applied to both static NFP requests and dynamic NFP
requests. It is shown that this model can be customized
to become a heuristic algorithm which trades off preci-
sion for time complexity using various parameters. It is
theoretically shown that there exists a set of parameters
for which our algorithm has a complexity that is just a
function of the topology and not dependent on the num-
ber of requests received. The algorithm was studied for
various parameter values to show their influence on the
time complexity of the heuristic algorithm. Based on the
results, the algorithm scales to large state-of-the-art DCN
topologies. In the case of dynamic NFDP, existing solutions
to optimize individual components of this complex prob-
lem are too slow for being used as online NFP solvers.
This paper combines the divide-and-conquer approach to
NFP with a modified Dijkstra’s algorithm to propose an

3 10* G of Path Ci Time (in ms) vs number of Pods
T T T T T

numRegs=CoreToEnd-K

numRegs=CoreToEnd-K?
251 numRegs=EndToEnd-K =
numRegs=EndToEnd-K?

Time (in ms)
&

05F

0 L . L L
0 10 20 30 40 50 60 70
Number of Pods(K)

Comparison of Migration Time (in ms) vs number of Pods

Comparison of NFP Computation Time (in ms) vs number of Pods

12000
numRegs=CoreToEnd-K
numRegs=CoreToEnd-K?
10000 [~ numReqs=EndToEnd-K
numReqs=EndToEnd-K?
8000
0
£
c
= 6000 [
)
E
[
4000
2000 [~
0 L n L "
0 10 20 30 40 50 60 70
Number of Pods(K)

8000
numRegs=CoreToEnd-K
7000 numReqs=CoreToEnd-K*
numReqs=EndToEnd-K
6000 - numReqs=EndToEnd-K* i
% 5000 1
=
c
= 4000 q
)
£
= 3000 b
2000 1
1000 - G|
0
0 10 20 30 40 50 60 70
Number of Pods(K)
C

Fig. 10 Performance of SDN-enabled NFP framework in FatTree-based DCN topologies. The performance of the SDN-enabled online NFP
framework on K-pod FatTree topologies is shown here. Both core-to-end and end-to-end flows are considered and Path Computation, NFP
Computation and Migration Time are plotted for various pod sizes and number of requests. a Comparison of path computation time (in ms).
b Comparison of NFP computation time (in ms). € Comparison of migration time (in ms)




Gadre et al. EURASIP Journal on Wireless Communications and Networking

online NFP solver. Moreover, a framework based on SDN
controllers and the ETSI MANO architecture is presented
for deploying flows with corresponding VNF chains. The
proposed protocol is simulated on non-symmetric as well
as DCN topologies and it is shown that even for DCNs
beyond the scale of current use, the algorithm takes time
in the order of seconds. With further work, these heuristic
components can mature into fast and more optimal algo-
rithms meeting the constraint of solving the problem in
real time. There is also a possibility of adding fault toler-
ance to the proposed protocol to handle failures of links,
nodes, or VNFs.

Acknowledgements

The authors would like to acknowledge their fellow researchers at the DonlLab
Research Group of the Department of Computer Science and Engineering, IIT
Madras for their valuable input and feedback.

Funding
There are no external sources of funding for this research work.

Authors’ contributions

AG is the main researcher for this work and the first author of this paper. The
simulation framework was programmed by AG and used to generate the
results. A major portion of the work was completed while AG was a
B.Tech-M.Tech Dual Degree student at Indian Institute of Technology Madras.
He is currently a Ph.D. scholar at Carnegie Mellon University.

AA is a co-researcher in this work. He has been working on network function
placement-related problems, analyzing various aspects of both static and
dynamic versions of the problem as well as comparison of centralized and
distributed approaches. AA is a Ph.D. scholar at the Indian Institute of
Technology Madras. He is responsible for final editing of the manuscript.
KMS provided key input to defining the problem and various approaches to
solution as well as analysis and verification of the results. He is currently the
head of the Department of Computer Science and Engineering at Indian
Institute of Technology Madras. He also leads the Donlab Research Group,
which, among other things, is researching network function virtualization. He
is an IEEE Fellow, ACM Distinguished Scientist and INAE Fellow.

All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 30 October 2017 Accepted: 30 July 2018
Published online: 10 August 2018

References

1. TLin,Z Zhou, M Tornatore, B Mukherjee, Demand-Aware Network
Function Placement. J. Light. Technol. 34(11), 2590-2600 (2016)

2. XLi,CQian, in Proceedings of IEEE CCNC. A survey of network function
placement (IEEE, Las Vegas, 2016), pp. 948-953

3. JGilHerrera, J Felipe Botero, Resource Allocation in NFV: A Comprehensive
Survey. IEEE Trans. Netw. Serv. Manag. 13(3), 518-532 (2016)

4. BHan,V Gopalakrishnan, L Ji, S Lee, Network function virtualization:
Challenges and opportunities for innovations. [EEE Commun. Mag. 53(2),
90-97 (2015)

5. RBonafiglia, | Cerrato, F Ciaccia, M Nemirovsky, F Risso, in Fourth European
Workshop on Software Defined Networks (EWSDN). Assessing the
performance of virtualization technologies for NFV: a preliminary
benchmarking, (2015), pp. 67-72

6. JHwang, KK Ramakrishnan, T Wood, NetVM: High Performance and
Flexible Networking using Virtualization on Commodity Platforms. IEEE
Trans. Netw. Serv. Manag. 12(1), 34-47 (2015)

(2018) 2018:197 Page 19 of 19

11.
12

20.

21

22.

23.

N McKeown, Software-Defined Networking. INFOCOM Keynote Talk.
17(2),30-32 (2009)

N McKeown, T Anderson, H Balakrishnan, G Parulkar, L Peterson, J Rexford,
S Shenker, J Turner, Openflow: enabling innovation in campus networks.
ACM SIGCOMM Comput. Commun. Rev. 38(2), 69-74 (2008)

L Vanbever, J Reich, T Benson, N Foster, J Rexford, in Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking. Hotswap: correct and efficient controller upgrades for
software-defined networks, (2013), pp. 133-138

CBu, X Wang, M Huang, K Li, SODNFV-based dynamic network function
deployment: model and mechanism. [EEE Commun. Lett. 22(1), 93-96
(2018)

P Quinn, T Nadeau, Problem statement for Service Function Chaining, (2015)
S Mehraghdam, M Keller, H Karl, in Proceedings of IEEE International
Conference on Cloud Networking (CloudNet). Specifying and Placing Chains
of Virtual Network Functions, (2014), pp. 7-13

MT Beck, JF Botero, in Proceedings of IEEE GLOBECOM. Coordinated
allocation of service function chains, (2015), pp. 1-6

MT Arashloo, Y Koral, M Greenberg, J Rexford, D Walker, in Proceedings of
the 2016 ACM SIGCOMM Conference. SNAP: Stateful network-wide
abstractions for packet processing (ACM, 2015), pp. 29-43

D Eppstein, in IEEE 35th Symposium on Foundations of Computer Science,
Santa Fe. Finding the k shortest paths, (1994), pp. 154-165

JY Yen, Finding the K-shortest loopless paths in a network. Manag. Sci. 17,
712-716 (1971)

JY Yen. vol. 20, in 41st Meeting of Operations Research Society of America.
Another algorithm for finding the K-shortest loopless network paths,
(1972)

A Anbiah, KM Sivalingam, in 42nd Annual IEEE Conference on Local
Computer Networks (LCN). Funplace: A Protocol for Network Function
Placement (IEEE, Singapore, 2017)

A Gadre, A Anbiah, KM Sivalingam, in Proceedings of European Conference
on Networks and Communications (EuCNC). A customizable agile
approach to Network Function Placement, (2017), pp. 1-6

D Cho, J Taheri, AY Zomaya, P Bouvry, in IEEE 10th International Conference
on Cloud Computing (CLOUD). Real-time virtual network function (vnf)
migration toward low network latency in cloud environments, (2017),

pp. 798-801

B Heller, R Sherwood, N McKeown, in Proceedings of the First Workshop on
Hot Topics in Software Defined Networks, ACM. The controller placement
problem, (2012), pp. 7-12

A Dixit, F Hao, S Mukherjee, T Lakshman, RR Kompella, in IEEE Symposium
on Architectures for Networking and Communications Systems (ANCS).
Elasticon; an elastic distributed sdn controller, (2014), pp. 17-27

M Al-Fares, A Loukissas, A Vahdat, in Proceedings of ACM SIGCOMM. A
scalable, commodity data center network architecture, (2008), pp. 63-74

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	Abstract
	Keywords

	Introduction
	Related work
	Network function virtualization (NFV)
	Software-defined networking (SDN)
	Network function placement (NFP)

	Static network function placement
	Problem definition
	Proposed solution
	System description
	Divide-and-conquer algorithm (DCA)
	Fast heuristic algorithm (DCA-H)


	Dynamic network function placement
	Hybrid Dijkstra's algorithm
	Fast Centralized NFP Solution (FDCA-H)

	SDN-enabled framework for online NFP
	Experimentation and results
	Analysis of static NFP
	Completeness and soundness of DCA
	Theoretical complexity analysis
	Empirical time complexity analysis
	Precision time trade-off analysis
	Scalability in DCNs

	Analysis of dynamic NFP
	Non-symmetric topologies
	DCN topologies: K-pod Fat Trees


	Conclusions
	Acknowledgements
	Funding
	Authors' contributions
	Competing interests
	Publisher's Note
	References

