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seasonal influences. It is usual to consider the seasonal movement to be occurring annually, however it should 

be noted that the season could also be different from a year. 

Two common models for decomposing a time series, which aim to isolate each component of the 

series as accurately as possible, are the additive model and the multiplicative model. 

Suppose X, is the time series value at period t, S, is the seasonal index at period t, T, is the trend-cycle 

component at period t, and E, is the irregular component at period r, 

The additive model has the form = +Tt +£, _ That is, the seasonal, trend, and irregular 

components are added together to give the observed series. In the additive model, the seasonal indices over the 

periods of a particular season add up to zero [4], 

Alternatively, the multiplicative decomposition has the form = S,T,Et Here, the seasonal, trend-

cycle and irregular components are multiplied to give the observed series [16]. In multiplicative model, the 

average seasonal index for a season is unity [1], 

An additive model is used if the magnitude of the seasonal fluctuations does not vary with the level of 

the series. However, if the seasonal fluctuation increases or decreases in the level of the series, then a 

multiplicative model is more appropriate. As seen from the data analysis, for the data series considered in this 

paper, the magnitude of seasonal variation increases with time (please refer to Figures 1 and 6 in Section IV). 

Hence a multiplicative model is used. Often the transformed series can be modeled additively, when the original 

data are not additive. Logarithms, in particular, turn a multiplicative relationship into an additive relationship 

[16], since 

X, =S,T,E, =>ln[X,] = ln[S,] + ln[7;] + ln[£,] 

Suppose we have observations Xh X2... XTof a process; in particular, for our model, or 

ln[X,] = ln[>;] + ln[S,] (1) 

where Y, are observations at discrete time points of a GBM process and S, is the seasonal factor. 

The observations of the process can also be recorded in terms of the seasons and periods. Let Xy be the 

observation corresponding to the j th period of the i th season, where i = l...m and j — that is, we have 

data for m seasons, with each season having p periods in it and T - mp. Correspondingly, let Y,j be the 
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observation of the j th period of the i th season of a GBM process; and let .S',; be the seasonal index for period j 

of season i, where ^ = $, > for each i. Then, = . Hence Equation ( 1 ) can be written as: 

ln[X. ] = ln[ï^] + ln[S.] (2) 

where in Equation (1), ' = (, -l)P +j . 

In the following, we treat this as a usual additive model, the only difference being that we are using log 

values, instead of the actual values. 

Our goal is to remove the seasonal effects from the time series. This process is referred to as 

deseasonalization [1], The first step in deseasonalization is to estimate the values of the seasonal indices for 

each period. And once the estimates sj of the seasonal variation for each period j are found out, the lognormal 

variable Y can be estimated using the equation 

ln[yi] = ln[X,J]-ln[5,] (3) 

In the additive model, two estimation methods have been proposed. The analysis of both the methods with 

respect to the GBM model that is to be tested is included in the following sections. The two methods are 

compared on the basis of bias and the unbiased one selected. The first method uses moving averages of the 

consecutive data values [4], [16] and the second one uses averages of all the data values corresponding to each 

period of the season in turn [8]. In this paper we examine the estimates of the seasonal indices obtained from the 

series in Equation ( 1 ) or (2) using both the methods to see whether the estimates add up to zero and are free of 

bias. 

3.1 Method I [3], [4], [16] 

Here, we use the arithmetic centered moving average. The arithmetic moving average of (2f+l) data 

(Lk-t +Lk-v+1 +• •• •+Lk -+Lk+t) 
points centered at k is calculated by 2; +1 where {L:: i = 1, 2, 3...} is the series of 

data points. The moving averages isolate the seasonal components, which then can be estimated in the case of 

the additive model by subtracting the moving average from the corresponding data series value. The values thus 

found are estimates of the seasonal indices for those periods. Hence, first we make sure that these estimated 
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seasonal indices for any season add up to zero in case of additive model, that is 2^ ^-l1 - 0 . Secondly, we 

prove that these calculated values are unbiased estimators of the actual seasonal index. That is, £[^] = s, . 

Now, since Y, follows a GBM process, continuing from the Section 2.2, from the properties of 

lognormal distribution [15], given Yh we have, 

E[\nY,]= E [In r, ] + // + — (?-!)= £ [in K, ]+ <5(f - l), where S = jt + 
-> \ 

2  y  

o" 

2 

So, if we let Y !, be the first value of the series, 

£[ln7,] - £[ln Y u ]  +  S ( t - \ ) ,  where t  =  ( i - \ ) p +  j  ( 4 )  

Let Pjj represent the arithmetic moving average for the j th period of the i th season (year, for example). 

Let m denote the smallest integer that is greater than or equal to jc, and |_*j denote the largest integer that is 

less than or equal to x. 

From [4], [16], for our model, the centered moving average P,y when p is odd will be given by 

p = (lnX,_Lf,/2j+...lnX, +-lnX^/^where^(/_1)p+ • 

P 

And when the number of periods p is even, the centered moving average is calculated as [16]: 

, where t = (i-\)p + j . 
i' 

0.5 In X „ + In X n +... + In X n + 0.5 In X 
V (5) 

After calculating the values of centered moving average, we compute the deviation, ^ ~ 'n ̂ , 

to estimate the log of the seasonal index for the period j based on season i. The log of the estimated seasonal 

index for a period is calculated as a simple arithmetic average of log of all the seasonal indices for that 

particular period from all the seasons. That is, 

£ K] = è î £ [ | n i «] '  m 7=1 ' " -1 (6) 

In particular, for an odd number of periods p, 
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In S  j =— £lnS.., for j  =  \ p !  2 ~ \  
m ,=i 

In Sj = —!— £ln S» - for 7 = 1 to |_p / 2 J 
m — 1 ,=2 

1 m-l - -, 
In S j  = X In S,,, for j  =  \  p / 2 ]  +  \  t o  p  

When p is even, the corresponding equations are given as; 

In S j  =  — f> S , j f o r j  =1 t o  
m — 11=2 2. 

— 1 ~ n 
ln5; = rEln5,7/0''7 = (— + !) top 

77? — 1 ,=| 2 

Lemma 1: For the model in Equation (2), using Method I, the estimates of the logs of the seasonal indices add 

toO. That is, Z£Hn5.] = 0 

Proof: See Appendix A. 

Lemma 2: For Method I, the expected value of the log of the estimate of the seasonal index for a particular 

period is equal to the log of the seasonal index for the period. That is, Sj ] = In Sy 

Proof: See Appendix B. 

Theorem 1: The expected value of the log of a variable following the GBM process for a particular period, 

obtained from subtracting the corresponding expected log of the seasonal factor from the log of the observation, 

is an unbiased estimator of the actual log of that variable. That is filing] = £[in Ylt]. 

Proof: From Equation (3), ^ ancj taking expectation of both sides, 

4 ln^]=4 ln*,]-4 ln^] 

However, from Lemma 2, we have ^t'n ^13 = 'n ̂ i . 
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The above equation becomes, £ [ln £ [ln ]- ln sj . Hence from Equation (2) we can see 

that, y In K, 1= /-'[In X I . 

3.2 Method II [8] 

In the previous method, the moving average was used. Here the simple arithmetic average of the log 

values across seasons [8] is examined as an alternative method of deseasonalization. Let P, denote the average 

value for the j th period, that is, the average of all the period j values over all m seasons. 

- 1 p 
The overall average for the season is the average of all the periods of the season, p ~ ^ 

Now the seasonal indices for each period can be calculated by the equation ln [^y ] = Pi i • 

Using this method, the sum of the estimated logs of the seasonal indices of all the periods of the season 

p 

is zero. That is, 0 However, the expected value of the ratio of the X variable and the estimated 

seasonal index for the particular period is not the actual Y variable for the period, as obtained in the previous 

method. This method can be shown to overestimate the Yy values by the factor e (Note that this 

factor is greater than 1 for j<JL^ and less than 1 for j>£y- ; see Figure 2). 

We conclude that the method of using moving average (with additive model of log of parameters) is 

better than the one using simple average. Hence we use Method I to analyze the numerical data. 

IV. Data Analysis 

The purpose of fitting a model to historical data is to help predict the future, assuming that past and 

current trends will continue. In trying to fit and forecast demand for services, two difficulties immediately arise. 

First, the demand will depend on price to varying extents depending on the level of necessity of service and the 

availability of alternatives for meeting the same need. Secondly, without extensive consumer surveys, the only 
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way to measure past demand is by actual usage, which was limited by the available supply of the service. As a 

surrogate for the actual demand data, we collected usage data for publicly available sources in the energy, 

transportation and telecommunication sectors, the analysis for which is given in the succeeding sections. 

4.1 Electric Power Consumption 

The data were collected from the U.S. Department of Energy's Office of Scientific and Technical 

Information, which provides access to energy, science, and technology research and development information 

[7]. The data represent the total monthly sales by electric utilities to all the sectors (namely, residential, 

commercial, industrial and others). The monthly consumption (in million kilo-watt-hours) for electric power 

was recorded for each month for 8 years (from 1993 to 2002). Hence the total of 120 data points were used for 

the analysis of the electric power consumption. 

First, the seasonal variation was removed from the data. For this the two methods described in Section 

III were tested. The results are shown in Table 1, which gives the value for the seasonal index for each month 

using each of the methods. 

Table 1 here 

Figure 1 here 

The difference between the two methods of evaluating of seasonal variation is seen in Table 1 and 

Figure 1. For the detailed difference, Figure 2 compares the values before and after deseasonalization by both 

methods for a representative year, 1998. The deseasonalized values obtained by Method I are seen to have more 

of an upward trend over the year. 

Figure 2 here 

The deseasonalized data obtained from Method I were analyzed to check the normality of the log ratios 

and also their independence. 

Even before the normality test, as a visual check for the independence of the log ratios, we observe a 

scatter plot of log ratios in Figure 3. As there is no apparent pattern to the w(k) values for the data points, we 

may tentatively say that the w(k) values are independent, which will be examined analytically in the chi-square 

test of independence. The plot also indicates the plausibility of a constant mean and variance of the w(k) values. 



95 

Figure 3 here 

Figure 4 shows the histogram and normal probability plot of the log ratios with fitted mean and 

variance. Since the Shapiro-Wilk test statistic is 0.9844 and the corresponding p value is 0.768, we fail to reject 

the null hypothesis that the distribution of the log ratios is normal. Hence we can conclude that the data are 

consistent with the lognormal aspect of GBM. 

Figure 4 here 

The remaining key characteristic of the GBM process is independent increments. Figure 5 plots the 

deseasonalized log ratios for years 1994, 1997, 1999, and 2001. The lack of any visible pattern in values for any 

given year indicates the independence of the successive ratios. 

Figure 5 here 

Next the independence of the log ratios is checked using a two-way chi-square test. The w(k) values 

were divided into 4 categories as shown in Table 2 and the two way table chi-square test resulted in a p-value 

for the test of 0.319. The null hypothesis that the variables are independent cannot be rejected. 

Table 2 here 

Hence we conclude that overall the data are consistent with the periodic observations from a GBM 

process. The mean log ratio was 0.0025 with a standard deviation of 0.02, indicating the mean growth rate of 

3% per annum. 

The importance of removing the seasonal variation prior to checking for the normality and 

independence is stressed from the fact that, for the original time series (before the deseasonalization) the 

normality test for the log ratios failed (with p-value 0.0004, rejecting the null hypothesis that the distribution for 

log ratios is normal); also these log ratios were not found to be independent. In fact, the two-way chi-square test 

on these log ratios gave a p-value of 0.001, indicating that we reject the null hypothesis of independence of the 

variables. The same fact could also be observed from the scatter plot of log ratios with respect to the prior 

values (see Figure 6). If the log ratios had been independent, the points of the scatter plot would not have had 

any trend. 

Figure 6 here 
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4.2 Airline Passenger Enplanement 

We collected the historical monthly data on U.S. Revenue Passenger Enplanements for the years 1981 

through 2001 from the U.S. Aeronautical Board [26]. Revenue Passenger Enplanement can be defined as the 

number of paying passengers boarding a flight, including origination, stopovers and connections. It should be 

noted that each connecting flight between origination point and destination counts as one enplanement. 

While analyzing the passenger data, a seasonal trend was observed for which the moving average 

(Method I) was applied to deseasonalize the log ratios. The final seasonal indices were as given in Table 3. 

Table 3 here 

The variation in the data values with respect to time is given in Figure 7. It can be seen that as the time 

increases, the amount of seasonal variation increases (observing the original data); motivating the use of the 

multiplicative model described in Section 3.1. 

Figure 7 here 

Figure 8 plots the corresponding log ratios over time. From the plot, it can be seen that there is no 

visible pattern in the values of log ratios, which indicates their distribution is stationary, and suggests serial 

independence. 

Figure 8 here 

The histogram and normal probability plot for the normality test for the passenger data are given in 

Figure 9. As the p-value of the Shapiro-Wilk test is 0.4416 (greater than 0.05), we cannot reject the hypothesis 

that the log ratios are normally distributed. 

Figure 9 here 

Again, as with the electric utility data, the random nature of the deseasonalized w(k) values can be 

visually inspected by the graphs of w(k) values given in Figure 10. Here, the changes in w(k) values appear to be 

independent over time, as seen from the randomness of the w(k) values for various years. Hence it can be 

tentatively concluded that the w(k) values are independent of each other. 

Figure 10 here 

To more rigorously test independence by the chi-square test, four intervals of w(k) values were selected 

as shown in Table 4. 
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Table 4 here 

The p-value for the test was found to be 0.058, so we cannot reject the null hypothesis that the w(k) 

values are independent at a 5% significance level. 

Once again, as done in the electric demand case, the importance of removing the seasonality factors 

before checking normality and independence of log ratios is confirmed by performing similar tests with the 

original log ratios (obtained from the time series without deseasonalization). The normality of the log ratios 

could not be confirmed (the p-value of the normality test is 0.0001); also the chi-square test gives a p-value, 

which is very close to zero, forcing the rejection of null hypothesis of the independence test. Hence prior to the 

deseasonalization, the log ratios are not independent. The same fact could be observed by inspecting the scatter 

plot of these log ratios with respect to the prior values (Figure 11), which indicates clear trend in the values. 

Figure 11 here 

Thus, we can conclude that the lognormal ratios after deseasonalization are independent; however, a 

higher significance level could lead to the opposite conclusion. Hence, the independence test is not as 

convincing as for the electric power data. The mean log ratio was found to be 0.00271 with a standard deviation 

of 0.029, and hence the average growth rate was calculated to be 3.3% per annum. 

4.3 Cell Phone Revenue 

Usage of mobile phone service might be measured by minutes of usage, total connections made, or 

even the number of handsets sold. Because of the lack of available data on these quantities, the revenue 

collected from the cellular phone subscribers was analyzed for the period of January 1985 to June 2002, with 

data collected every 6 months [5]. 

First of all, the plot given in Figure 12 of log ratios over time was observed. It is seen that there is a 

decreasing trend in both the mean and the variance of log ratios. Hence visual inspection reveals that the w(k) 

variable may be neither stationary nor independent. Note that, since revenue is the product of sales volume and 

price, the downward trend could be attributed to price drops rather than flattening growth in demand. 

Figure 12 here 
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The normality test, which includes the histogram of the log ratios and the normal probability plot, is 

given in Figure 13. From the Shapiro-Wilk test, the p-value is 0.0003, proving that the log ratios are not 

normally distributed. 

Figure 13 here 

The result could be influenced by the fact that the number of data points available was only 35. 

However, the Chi-square test did show independence of the w(k) values. The p-value for the independence test 

is 0.3735. Hence the null hypothesis that the log ratios are independent cannot be rejected. For this 

independence test the intervals of w(k) values used are given in Table 5. 

Table 5 here 

4.4 Internet Hosts 

Internet growth can be measured by changes in either the number of users or number of hosts 

connected to the network. A host used to be a single machine on the net. However, the definition of a host has 

changed in recent years due to virtual hosting, where a single machine acts like multiple systems (and has 

multiple domain names and IP addresses) [11]. Typically, multiple users are connected to a host and the hosts 

are connected to the network. Since there is no central mechanism for tracking the number of users connected to 

the network [19], we use number of hosts as a measure of Internet size. In an attempt to gauge the growth of the 

Internet over the years, The Internet Software Consortium [11] conducted a survey called 'The Domain Survey' 

and measured the number of hosts. This survey was used in conjunction with the data in [19] to obtain a time 

series of the number of Internet hosts from 1982 to 2003 with data points recorded every six months. As before, 

w(k) values for the data are calculated and tested for normality and independence. 

Figure 14 indicates the values of log ratios over time. It is seen again that the values do not appear to 

be random. There is visible downward trend in the values of w(k), indicating that the values may not be 

stationary. One can also observe possible cyclical behavior. 

Figure 14 here 

The plots for the test of normality are given in Figure 15. The p-value for the Shapiro-Wilk test of 

normality is less than 0.001; hence the null hypothesis that the log ratios are normal is rejected. 
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Figure 15 here 

To test the independence of w(k) values, the Chi-square test cannot be used as before, because the 

number of data points is too small to create cells such that each holds a positive number of observed values as 

required by the chi-square test. Hence the w(k) scatter plot is analyzed visually to determine the independence 

of w(k). 

From the plot in Figure 16, it can be seen that the w(k) values are not random, but rather large (small) 

log ratios tend to be immediately followed by other large (small) values. Hence we can say that the w(k) values 

are not independent of each other. 

Figure 16 here 

4.5 Summary of Results 

The results of the data analysis for different industries are summarized in Table 6. 

Table 6 here 

Hence it can be seen that data related to service consumption from different sectors of industry may or 

may not meet the criteria for the GBM process. Among the services examined, the ones that fail one test or 

another are in newer industries that perhaps can still be considered emergent. Data on the usage of these 

services are also less direct and more difficult to obtain. The older and more established services of electric 

power and airline travel exhibit a better fit to the GBM assumption after deseasonalization. Having ascertained 

the model's fit to the deseasonalized data, a forecast of future demand can be obtained from the GBM model 

with the fitted parameters by re-inserting the seasonal factors. How the seasonal patterns would affect decision­

making depends on the application, for example, capacity decisions typically consider the peak demand in a 

season. 

We caution that, even when a model appears to closely fit historical data, extrapolation into the future 

does not carry any guarantee of accuracy. In 1995, logistic growth models showed a very good fit to historical 

data on the number of cell phone subscribers [27]. Extrapolation suggested that the number of U.S. subscribers 

would level out close to 80 million early in the 21st century. As of December 2004, however, the Cellular 
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Telecommunications and Internet Association reported over 173 million current U.S. wireless subscribers [5], 

The fit of a model to historical data is a necessary but not sufficient condition for the credibility of its forecasts. 

V. Conclusion 

From the theory of the Brownian motion discussed in the paper and the subsequent analysis, it can be 

concluded that the structure for the analysis to check whether a particular time series data follows a Geometric 

Brownian motion process or not can be applied to varied data types. The result may be different for different 

data types; for some of the data sets, the GBM process may be appropriate, based on the criteria of normality 

and independence (for example, electric utility data and passenger data); however for some of the data sets, the 

assumption of GBM process distribution may not be appropriate (example, cell-phone revenue data and Internet 

host data). Hence in any given model, caution should be taken before assuming that the particular data set 

follows the GBM process. It was observed during the analysis of Cellular phone data and the Internet host data 

that the number of data points may affect the analysis results. Hence attempts need to be made to collect more 

data points for the given example type. 

For cell phone revenue data and Internet hosts' data, it was observed that the log ratios decrease over 

time. It could be possible that the drift for those time series is dependent on time and the level of the time series. 

Hence the criteria for the GBM (with assumption of constant drift and volatility) were not being followed in 

these cases. For these data not following the GBM process, the data can be analyzed for other stochastic 

diffusion processes [6], Also to incorporate the dynamic nature of drift (and possibly volatility) parameter, the 

Ito process for the stock prices can be used. More generalized models can also be studied. In [10], authors 

discuss some of the extended one-state-variable interest-rate models that involve time dependent parameters. 

The data for the cell phone revenue and Internet hosts might be analyzed using models similar to the ones given 

in that paper. 
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Appendix A: Proof of Lemma 1 

We consider the case where the number of seasons m is even and number of periods p is odd. 

tE[lnS,]=E[lnSr„2l]+ i2JE[l„S,]+ £ E[taSj] 
>1 L i u  J = ]  l j m+|-/)/2-| 

= E 
1 m 
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where Pjj is the arithmetic moving average, as defined earlier. 

Substituting values of P,j, we have that 

y=i i=2 
1 1 ) $4 

• p(m-\) mpj S L ip//U^ /Xzn-1), 
p-» + ^ u__jzzl 

tfpi2iV "P P(m-l) 
£k,] 

l/"2j 
+i 

j=1 
p-1 i i~2 

p{m-l) rrp p(m-1) 
£[h^.] 

Now we have from Equation (2), ] - lnl^, 1 + 'nIS, ] . Substituting this for each of the X l p  we cancel out the 

seasonal indices 5} from the above equation. To evaluate the Ytj terms, we use Equation (4) and write all the K,, 

in terms of Yu and solve the equation. We get 

é£[lnsj] = 0 
j=i 

For the case where the number of season m is odd, and the periods p is also odd, the condition can be found out 

as: 
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b'2J 
Z<lny= t 
H M 

l 0-1) 

rrp p(m-l) 
— £[lnXly]+£[lnXf;,/2l+lnXfw2l] 

p-1 Lp/2J 
pm pijn-1) 

+ I 
P-1 1 7-2 

/xw-1) wp /xw-1) 

>1 i=-

1 

p(m-l) mpj 
+ z 

1 (7-1) 

mp p(m-1) 

+ 
l«y_£-i—i—tlw,„xj 
>i l/Xm-1) z?p P(M-l)J 

The case when the number of periods p is even is also similar to the one formulated above, using Equation (5), 

which had to be centered because of the even number of periods [5], 

Hence, the sum of estimated log of seasonal indices for a season is: 

E[lnS,.] = Z 
j=1 

where u, -

27-1 

And wj 

m-1 2(m-l)p 

0 for j < p/2 

1 for j> p/2 

1  f o r  j <  p / 2  

0  f o r  j  >  p / 2  

E [  I n X . ^  +  J  
w. 1 P - J  

j=Atn — 1 2(m-l)p (m-l)p 
E [ \ n X m j ] ,  

which, when we use Equation (2) for ln[X,y] and subsequently Equation (4) for ln[Y,,] as before, comes to zero. 
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Appendix B: Proof of Lemma 2 

To show ^['n Sj ] - In Sj ^ for any j 

We have, 

£[ln5,] = £[lnX,-/>] 

= E 
i '+L' , /2J 

In Xjj Z lnX, 
P i='-Lp'2J 

wheret  =  ( i - l ) p +  j ,  therefore 

£[lnStf] = £ ^lnx,-l'+lfjlnxt 
P P k=l-[p/2J 

k*t 

Since In X t ]  = In StJ + In Ytj, we have 

£[ln5#] = £ ^-lln^.-1'^ln^ 
P p i"=/-L/>/2j 

+ E -ink -1 ,+l£j lny, 
P t='-Lp'2J 

k*l 

p '+[/>/2j 
We know that £In5. = 0,hence £ In5, = -in S. 

;=1 A-i-[/i/2j 

£[lnSff] = £ •^lns.y™hn5.y) + E ^-i|nk,-i,+lfjlnn 
P P /r=r~|_p/2j 

k*t 

= E 
-—instf (-in) + zzlg[,ny,]-1 T  e[,nyj 

P  P k —  [ P l 2 i  

n — 1 1 ,+L/ , /2J 
= In S,y + ——{£,[lnl/

11] + <î(r-l)} 2 £[ln F,, ] +  < ? ( £ - 1 ) ,  w h e r e  t  =  ( i - \ ) p  +  j  
P k=i-[pl 2j 

k*t 

which gives, 

f[ln Siy J = In S y + 0 = In S,.. 

From the above equation: 
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From Equation (6), 

£[lnS ] = —]TlnS.. =—['«• (In )] 
L J m m mL J 

because we know that, In SjJ = In S,, V j 

Hence £[ln5; j = lnS; . 

In the case where the number of periods p  is even, the calculations are similar except for the fact that again 

Equation (4) for the centered moving average is used instead of the simple moving average. Hence, the values 

obtained after substituting respective values in the equation £[ln^o] = £[ln xu ~ change accordingly, 

however the concept is similar; and it gives a similar result. 
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Normal Quantile Plot 

Figure 13. Distributions of w(k) for cell phone revenue data 
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Figure 14. w(k) values for data points for internet host data 
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Normal Quantile Plot 

Figure 15. Distributions of w(k) for Internet host data 
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Table 1. Seasonal Indices for electric power consumption data from two different methods 

Month Method I Method II 

January 1.0469 1.0372 

February 0.9560 0.9507 

March 0.9459 0.9458 

April 0.8957 0.8952 

May 0.9274 0.9244 

June 1.0275 1.0288 

July 1.1328 1.1396 

August 1.1524 1.1594 

September 1.0576 1.0649 

October 0.9597 0.9686 

November 0.9202 0.9269 

December 0.9872 0.9971 

Sum of Log -0.00232 0 

Table 2. Categories of w(k) values for the independence test 

Categories w(k) ranges 

1 From -0.05 to -0.02 

2 From -0.02 to 0 

3 From 0 to 0.02 

4 From 0 to 0.05 
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Table 3. Seasonal indices for airline passenger data using moving average method 

Month Sea. Index 

January 0.8928 

February 0.8686 

March 1.0545 

April 1.0073 

May 1.0203 

June 1.0704 

July 1.1095 

August 1.1361 

September 0.9335 

October 0.9962 

November 0.9368 

December 0.9664 

Sum of Log 
-0.00381 

Table 4. Categories of w(k) used for airline passenger data 

Categories w(k) ranges 

1 w(k) >0.04 

2 w(k) from 0.04 to 0.01 

3 w(k) from 0.01 to -0.03 

4 w(k) from -0.08 to -0.03 
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Table 5. Categories of w(k) values used for cell-phone revenue data 

Categories w(k) range 

1 from -0.02 to 0.085 

2 from 0.085 to 0.16 

3 from 0.16 to 0.25 

4 from 0.25 to 0.6 

Table 6. Summary of results of the various data sets 

Data Set Time Series Normality Independence Remarks 

Electric Utility Electric 

Consumption data 

Yes 

p = 0.768 

Yes 

p — 0.319 

Log ratios stationary and 

independent 

Airline Revenue Passenger 

Enplanement 

Yes 

p = 0.4416 

Yes 

p = 0.058 

Log ratios stationary and 

independent 

Cell phone Revenue from 

Consumer 

Subscription 

No 

p = 0.0003 

Yes 

p = 0.3735 

Independence test not 

credible because of fewer 

data points 

(Downward trend in log 

ratios over time) 

Internet 

Industry 

Number of Internet 

Hosts 

No 

p < 0.001 

No (No chi-square, 

just scatter plot) 

Few Data Points, hence 

Chi-square independence 

test cannot be carried out 

(Downward trend in log 

ratios over time) 
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Appendix II: Optimal Solution to a Capacity Expansion Problem 

Rahul R. Marathe and Sarah M. Ryan; Department of Industrial & Manufacturing Systems 
Engineering; Iowa State University; Ames, IA 50011-2164, USA. 

Abstract 

For a service provider, stochastic demand growth along with expansion lead times and economies of scale may 
encourage delaying the start of expansion until after some shortages have been accumulated. Assuming demand 
follows a geometric Brownian motion, we define the service level in terms of the proportion of demand 
satisfied, which is then analytically evaluated using financial option pricing theory. Under a stationary 
expansion policy, an infinite time horizon discounted expansion cost is minimized under the service level 
constraint, where the expansion timing and size parameters are the decision variables. With the current 
formulation, the problem seems to be unbounded. 

Keywords 
Capacity expansion, service level, barrier option pricing, cutting plane algorithm 

1. Introduction 
Capacity expansion problems arise in numerous applications varying from communications networks to 
manufacturing facilities. The problem is to find an optimal policy of expansion given a particular forecasted 
demand pattern, assuming that the costs and lead times of expansion are known. 

We consider a service provider having certain facilities with installed capacity to provide certain services. We 
consider a single location and single resource assuming that the demand for that resource follows a geometric 
Brownian motion (GBM) process. The capacity added does not deteriorate; that is, once the capacity is 
installed, we assume that it is available forever. Expansion costs exhibit economies of scale and there is a 
deterministic expansion lead time from the time the capacity expansion decision is made to the time when the 
added capacity is actually available to satisfy the demand. 

Modeling demand as a GBM process may be justified when empirical data show that demand growth in a 
period is on average a constant percentage of demand at the beginning of the period, and periods of higher or 
lower than average demand occur at random. Marathe and Ryan [1] verified empirically that the historical usage 
of electric power in the US as well as the number of passenger enplanements in the airline industry each 
followed a GBM process. 

The capacity expansion literature is richly stocked. Manne [2] considered a random-walk pattern demand and 
proposed the optimal size of the capacity expansion when there were economies of scale available. Whitt [3] 
considered the utilization aspect of the capacity expansion and found the stationary distribution for the capacity 
utilization under a simple policy that we adapt in this paper. Chaouch and Buzacott [4] considered the demand 
with plateaus and formulated the capacity expansion for two cases, viz., when the expansion starts with some 
initial shortages and when it starts before the demand reaches the current capacity. Our model is similar to this 
case, with our demand being GBM process driven. Bean et al. [5] considered demand to be following either a 
transformed Brownian motion process or a semi-Markovian birth and death process. They showed that the 
problem can be transformed into an equivalent deterministic problem and that the effect of the probabilistic 
nature of demand is to reduce the interest rate. This result was used by Ryan [6] wherein the effect of a fixed 
lead time was also considered. Financial option pricing theory was used to develop a stationary expansion 
policy so that the specified service level is met when the expansion started before the demand reaches the 
current capacity position. Our model is further extension of Ryan [6] in the sense that we consider the case 
where the expansion starts when the demand has already crossed the current capacity position. 
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Our parameter definitions are similar to Ryan [6]; and most of the details may be found in Marathe and Ryan [7, 
8]. We briefly summarize the model and definitions in section 2; the service level and the expansion cost 
analyses are carried out in section 3. We present a numerical example in section 4 and conclude the paper with 
section 5. 

2. Model 
Demand for the service is given by the GBM process P(t) = P(0)eB i" - where B(t) is a Brownian motion with 

2 t2 
drift //and variance cr. Define y=M+ — as the mean (exponential) growth rate of the demand. 

We assume that capacity additions occur at discrete time points and that a fixed lead time of L time units is 
required to install new capacity. The problem is to choose a sequence{(Tn, xn),n >1}> where T„, the time when 

the n"1 capacity expansion starts, is a stopping time with respect to the Brownian motion B(t) and X„ is the n* 
increase in capacity. For any realization to of the Brownian motion B(t), let tn = Tn (a>). Let K„ be the installed 

capacity after n additions are completed, where the initial capacity is K0 .  The capacity position includes 
capacity on order (being constructed or installed) in addition to the installed capacity. 

We describe the model by quoting directly from Marathe and Ryan [7, 8], We follow the Whitt-Luss policy 
from Whitt [3], where each new expansion starts when demand reaches some fixed proportion (say, '/>') of 
current capacity position, and after its addition at the end of the lead-time, the new capacity is a constant 
proportion of its previous value. That is K„ - vKn.h where v > 1. For the case of p < 1 Ryan [6] used financial 
option pricing theory to find optimal stationary expansion policy (that is, the values of parameters p and v). In 
t h i s  p a p e r ,  w e  c o n s i d e r  t h e  c a s e  w h e r e  p > \ .  

Figure 1 illustrates the policy and potential shortages seen at the realized time t„, when demand first equals pKn .  
] .  The n"1  capacity expansion has just  started.  With this  expansion,  the total  installed capacity wil l  reach level  K„ 
after the lead time L. As stated earlier, we model the situation wherein the service provider waits until certain 
amounts of initial capacity shortages are accumulated before starting the next expansion project. Hence, since 
the new capacity position is Kn, the next expansion would start at the time when the demand Pit) first reaches 
the position pK„. Since the demand process is stochastic, this time for starting the next expansion (Tn+I) is a 
random variable. The goal, then, is to find the optimal initial shortage that will trigger the start of capacity 
expansion (the parameter p), and the optimal size of each expansion (the parameter v). Figure 1 shows a non-
overlapping expansion cycle where the capacity being built is already available before we begin the next 
expansion. It is also possible for expansion cycles to overlap. 

Demand or 
P(t) 

Capacity 

Shortage 
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Figure 1. Capacity expansion policy when the expansion starts after the end of the current expansion cycle. 

As explained in Marathe and Ryan [7], the service level in the expansion cycle [tn+LJ '„+, +L) 's defined as: 

P  =  E  

After approximations, the above equation becomes: 

= 1 - E  
\P{t)-Ka ,0]dt 

P ( p  ,v) = l — : 

(1) 

(2) 
pE[Tn t l->„) 

We note that the service level is the same for each expansion cycle and a function only of the policy parameters 
p and v. 

3. Analysis of Service Level and Expansion Cost 
By comparing the numerator of Equation (2) with the up-and-out barrier option and also simplifying the 
denominator, we have the capacity shortage equation as: 

1 -J3(p,v) = I _ If  
PE[T , ,*i pln[v] 

, where 

I = je i r- r )" f i r  

_lnlpj+(r+T)" H*)-(r+Y){u-L) ^ 

-'-v— CTx/m ayJu-L 

-ln^j + 2|n(v) + (r + ̂  -ln(v) + (z+—)(m-Z.) r^[ 

"  •  v t ~  0\!u-L 

-e'Vyr 
"'"i pj + (r_^)m ln(v)-(7-yx«-d r^r-

~'\~V o4u aJu-L 

+ e ^v"'  ( — I\jf  
_ln[ —J+21n(v) + (7——)« -ln(v) + (7-^-)(H-L) 

a sfu CTVÎ 
'~Y )(u-L) I^< 
TT ' V « 

du. 
(3) 

and V(x>yiP) is the bivariate normal distribution function evaluated at (x, y) with correlation coefficient p. 

To evaluate the infinite time horizon total cost of expansion, let V,(K) be the minimum expected cost, at time t  
with capacity position K, of expanding capacity over infinite horizon while satisfying the service level 
constraint. Let the rate at which future costs are discounted be r. Referring to Figure 1, at time when the 
expansion has just been initiated, our goal is to find the timing (p) and size (v) parameters for the next 
expansion. We assume an economies of scale regime, under which cost of installing capacity of size X is given 

by C ( X )  =  k X "  ;  where k is a constant and a (< 7J is the economies of scale parameter. Hence, C„ = kX" is the 

cost of expansion of size X„, and, for the nth expansion, 

(4) 
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Now at time T/, the total costs (TC) incurred are the actual cost of expansion (from initial capacity position of 
K0 to the new capacity position of K:), because of start of the expansion project; and the total cost of all the 
future expansion discounted at t ime T t .  

TC = E[e- r T \VT(KQ) 

=E[e~ r T<]{kXï + E, [e~ r" r ' , )~\VT  ()],  (5) 

where *1 = K, -K, =K , , ( v -l) js the size of the first capacity expansion; and cost of continuing from the second 

capacity expansion is first discounted to time T, and then the total cost at time T, including the cost of 
expansion is discounted to time zero. In Equation (5), we note that the expected discount factor can be 
evaluated independently of V,(K) is possible because of the underlying independent increments in the demand 
model. Now, if we keep expanding the V,(K) term in Equation (5) using Equation (4), then the expression for 
the expansion cost can be written as a telescoping infinite series of costs: 

TC = E[e~ r T i  ]|jkX,e + Eh  [e"rr/2-'i,]{^« + Eh  [e"r(r'"'2)]{to3
a + Eu+ £, [e 

r(7;'•>]...})jj 

Now it can be shown that the total cost equation is equivalent to: 

f(p,v) = TC- ;—— ,wh erep-J—+ —. (6) 

Hence, the optimization problem is to find the minimum infinite horizon cost of expansion given by Equation 
(6), under the constraint that the capacity shortages (from Equation (3)) in the expansion cycle cannot exceed a 
certain specified limit. The decision variables are the timing and the size factors of expansion, as explained 
earlier. The problem is formulated as: 

min f  ( P , v )  =  -
1-V" " 

(7) 

p , v >V x r  \ - v " - p  

subject to: 

g(p,v) = l-/]{p,v)<£ 

4. Solution Methodology 
The non-linear program (7) is inherently difficult because of the complex constraint expression. Since the 
constraint inequality involves integration of bivariate normal density functions, it is very difficult to apply the 
commonly used gradient-based solution methods. Hence, a derivative-free cutting plane algorithm (Bazaraa et 
al. [9]) was used for the problem. Important steps of the cutting plane algorithm as it applies to our problem 
instance are described here: 

Initialization step: Select an initial feasible point -to = <Po- v'o )• 

For each iteration, solve the Master Problem, which is given as 

Maximize z 

s.t .  z< f(Pj,Vj) + ug(ppv• ) for; = 0. . .k -1 

u > 0 

Let (zb uk) be the optimal solution. Now using the optimal value of the penalty variable uh  solve the sub-
problem: 

Minimize f{p,v) + ukg(p,v) : p , v  >  1 .  

Let xk = (Pt<vk> be the optimal solution for the sub problem. Let ) = f ipk ,vk  ) + iikg(pk ,vk).  

If Zi = 0("n) then stop. Otherwise continue with the master problem with added constraint: 

Z <  f (p k , v k )  + ug(p k , v k ) .  
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Figure 2. Cutting plane algorithm steps. 

Zangwill [10] proved the convergence of this algorithm in a finite number of steps. 

5. Numerical Results 
The capacity expansion problem (CEP) in Equation (7) was solved using the cutting plane method with the 

parameter values as: drift of 8%, volatility of 20%, discount rate of 15%, economies of scale parameter of 0.9, 
and lead-time of 1 year, with the specified service level of 95%. The initial feasible point was taken to be (1.01, 
1.01984). Initial numerical runs of the algorithm indicated an unbounded solution. Hence to test convergence of 
the algorithm in Figure 2, we added an artificial constraint p 5 2 to each sub-problem. The successive iterations 

and the convergence of the cutting plane algorithm are summarized in Table 1. 

Table 1. Results of the cutting plane algorithm applied to CEP. 
Iteration Constraint Added Master problem Sub-problem Sub-problem 

solution (z, u) solution (p, v) optimal value 6 
1 Z < 3.0156-0.001(7 (3.0156, 0) (2, 1.15272) 1.04207 
2 Z <1.04272 + 3.57%/ (2.88, 5.1455) (2, 2.08893) 1.39851 
3 Z <1.35628 + 0.0083(7 (1.762, 48.94) (1, 1.29867) 0.0331 
4 Z< 2.7977 - 0.0564(7 (1.539,22.32) (2,3.177) 1.0751 
5 Z <1.7725-0.0367(7 (1.431,9.307) (2,2.34) 1.40 
6 Z <1.4543-0.0073(7 (1.4075,6.45) (2, 2.22) 1.403 
7 Z< 1.407-0.00072(7 (1.403,5.974) (2, 2.17) 1.4027 
8 Z <1.387 + 0.00265(7 (1.4031,6.16) (2, 2.186) 1.4031 

As seen from Table 1, the minimum cost for the CEP is achieved at decision variable values (p, v) = (2, 2.186). 

Since our feasible region was l s p < 2, l < v, we see that the optimal solution is reached at the artificially 

imposed boundary level of one of the decision variables— indicating an unbounded solution to the CEP. 

To explore whether the unboundedness was caused by the approximations used to transform Equation (1) to 

Equation (2), the same capacity expansion problem was solved using simulation to evaluate the constraint in 

Equation (1). That is, instead of using the analytical expression of the service level developed through the 
approximations and use of barrier option valuation formulas, the service level was directly computed by 
simulation of the GBM process using Matlab. The expression for the infinite time horizon expansion cost was 
the same as that was used in the analytical solution (Equation (6)). The graphical solution for the CEP is given 
below: 
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Figure 3. Graphical solution for the CEP via simulation for a 95% service level. 

The feasible region is the area below the curve for the service level. The p-v cost contours are also plotted. As 
we see from Figure 3, we can go on decreasing the cost as we move away from the origin along the p-v curve 
for the service level. The simulation result was tested over wide range of parameter values, and every time we 
obtained similar plots. This leads us to believe that the problem under the current formulation is unbounded. 

6. Conclusions and Future Work 
From the formulation of the CEP and the numerical solution in section 5, we can conclude that if the service 
provider wants to start the capacity expansion when the demand has already crossed the current capacity 
position, he can do so by starting with any amount of initial shortage, provided that at each expansion the 
capacity increment is subsequently matched to satisfy the service level. In other words, if the service provider 
wants to start with a higher level of initial shortage, all that needs to be adjusted is the size of the capacity 
expansion so that the specified level of service is achieved (which can be accomplished by manipulating the 
constraint equation); moreover, this can be done without losing the minimum cost advantage (because, although 
the expansion cost increases in expansion size, the higher initial shortage will always pull it down). Simulation 
of the service level, instead of using analytical expectation, also leads to similar conclusions. 

The possibility of achieving minimal cost with an acceptable service level by an unbounded initial shortage 
seems counter-intuitive. Hence, currently a reworking of the service level constraint is underway. Instead of 
considering the total shortages during the expansion cycle of random length, the distribution of instantaneous 
capacity shortage (in the same expansion cycle) is being considered. 
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Appendix III: Capacity Expansion for Uncertain Demand with Initial Shortages 

Rahul R. Marathe and Sarah M. Ryan; Department of Industrial & Manufacturing Systems 
Engineering; Iowa State University; Ames, IA 50011-2164, USA 

Abstract 

For service providers, uncertain demand for capacity and expansion lead time may create unavoidable capacity 
shortages, which may be allowed to accumulate before initiating an expansion. For the demand following a 
geometric Brownian motion process, we assume a stationary expansion policy where the timing and size of 
expansion are determined as fixed proportions of the capacity position. We define the service level in terms of 
the capacity shortages, which can be evaluated by applying pricing formulae for barrier options in finance. We 
observe the relationship between the two policy parameters at different specified service levels and for other 
model parameters. 

Keywords 
Capacity expansion, Service level, Barrier options 

1. Introduction 
Capacity expansion is the addition of facilities to keep up with the increasing demand. The goal is to find the 
optimal sizes and times of expansion under given conditions. The problem is complicated in cases where the 
demand is stochastic and where capacity cannot be added instantaneously, meaning there is some lead-time 
present. This paper formulates a model for such a case in which we assume a fixed lead-time and a random 
demand. 

The capacity expansion problem has been widely researched. Manne [1] proposed a model to decide the size of 
each expansion in the case where the demand follows random-walk pattern; also the effects of economies of 
scale and penalties for demand not being satisfied were considered in the model. Whitt [2] developed the Whitt-
Luss utilization formula for the capacity expansion problem where the demand is stochastic. In the current 
paper, we extend this analysis for the case where the capacity expansion starts with initial shortages and there is 
a fixed lead time for expansion. Chaouch and Buzacott [3] examined the same problem as in Buzacott and 
Chaouch [4] with consideration of lead time. They also considered two cases, where the capacity addition 
started before and after the current capacity is reached. Our paper is similar to the work of Chaouch and 
Buzacott [3] in the sense that we also consider initializing the capacity expansion after certain deficit has been 
accumulated; only the demand process considered in our model is different. A generalization of Brownian 
motion demand was considered by Bean Higle and Smith [5], where demand was assumed to be following 
either a transformed Brownian motion process or a semi-Markovian birth and death process. They showed that 
the problem can be transformed into an equivalent deterministic problem and that the effect of the probabilistic 
nature of demand is to reduce the interest rate. This result was extended in Ryan [6] with consideration of fixed 
lead-time. In this model, the demand was assumed to be following a geometric Brownian motion process and a 
timing policy was developed to provide a specified level of service. It was showed how the parameters of the 
timing policy could be obtained numerically using some of concepts of financial options pricing. Our paper is a 
further extension of this model. While Ryan's model assumed that the next capacity expansion starts before the 
installed capacity level is reached, in this paper we consider a case where the next expansion is started only after 
accumulation of some shortages. 

This situation can be compared to the barrier options in the world of finance. In particular, the value of an up-
and-out call option is mathematically similar to the expected shortage considered in this paper. Heynen and Kat 
[7] discuss some of the important results about barrier options when the Brownian motion and its maximum are 
tracked over different time intervals. 
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In this paper, we record the service level in terms of the average capacity shortages per unit time. A detailed 
study of service levels for inventory models was carried out by Klemm [8], Rigorous definitions for the three 
types of the service level viz. a, >9, 7 service levels were given for (,v, 5) and (r, Q) type inventory models. 
Further mathematical calculations for each type of service level and its effect on the order points in the various 
inventory models was done by Schneider [9]. 

As stated earlier, this paper builds on the variables and environment analyzed in Ryan. We start the paper by 
describing all the variables and notations used in Section 2. Here we also describe the basic model for this 
paper. Section 3 discusses the expression for the shortages in terms of the policy parameters. We present our 
numerical analyses in Section 4 and concluding remarks in Section 5. 

2. Model 
As our model is similar to Ryan [6], we will use consistent notation. Let B(t) be a Brownian motion having drift 
ju and volatility <72 with B(0) = 0- Demand for the product or service is given by the geometric Brownian 

motion (GBM) process P(t) = P(0)eH<". As Pit) is a GBM process, for any values of k and t given P(t), the ratio 

P(k+t) is a random variable independent of all the values of the process up to t and in addition, its logarithm 
Pit) 

Inf f(' + t)lhas a normal distribution with mean /A and variance a2k . And hence, given Pit),  the logarithmic 
l  m J 

growth in demand over a short interval of time At is given by ln| P(t + At) j _ + , where z is a standard 

I m J 

normal random variable. Define as the mean (exponential) growth rate of the demand. Marathe and 

Ryan [10] empirically verified the fit of the GBM process to historical data series for usage of airline and 
electric power capacity. 

We assume that capacity additions occur at discrete time points and that a fixed lead time of L time units is 
required to install new capacity. The problem is to choose a sequence {(T„,X„),«>!}» where T,„ the time when 

the n"1 capacity expansion starts, is a stopping time with respect to the Brownian motion B(t) and Xn  is the nlh 

increase in capacity. For any realization to of the Brownian motion B(t), let tn = Tn (a>). Let Kn be the installed 

capacity after n additions are completed, where the initial capacity is Ka . Then, 

The installed capacity at time t  is given by, 

K(t) = 

The capacity position at time t  is given by, 

y=i 

K0 ,  0 < ? < z, + L 

Kn ,  tn+L<t < r„+ 1  + L, n> 1. 

n(z)=lA'0' 0<t<t' 
[K„, t„ < / < < „ „ ,  n> 1. 

We assume that the policy proposed by Whitt and Luss for the same demand function is modified to account for 
the lead times and to allow planned shortages to occur. Whitt [2] showed that, without lead times, their policy 
results in a stationary distribution for the capacity utilization and provided a simple formula for its expected 
value. In the Whitt-Luss policy, each new expansion occurs when demand reaches some fixed proportion (< 1) 
of current capacity, and after its instantaneous addition, the new capacity is a constant proportion of its previous 
value. In this paper, we assume that each expansion occurs when demand reaches some fixed proportion, p, of 
the capacity position, and K„ = vK„_h where v > 1. Ryan [6] showed that for p < 1 with fixed lead times, the 
value of p to attain a specified service level can be found by using the Black-Scholes formula for pricing a 
European call option. Moreover, assuming this timing policy is followed, the expansion size policy minimizes 
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the infinite horizon discounted cost under a widely used expansion cost function that reflects economies of 
s c a l e .  I n  t h i s  p a p e r ,  w e  c o n s i d e r  t h e  c a s e  w h e r e  p > \ .  

The policy assumes that ever-increasing increments of capacity can be installed within the same lead time to 
keep pace with exponentially growing demand. This assumption is most reasonable in industries where capacity 
bottlenecks are caused by facilities subject to continuous technological improvement, such as those that rely on 
information and communications technology. However, it may hold in more traditional situations as well. For 
example, Lieberman [11] found that the Whitt-Luss policy provided the closest fit among several alternatives to 
the capacity utilization in an empirical study of the chemical product industry. Over at least two decades, total 
output grew by an average of 6.2% per year, and the mean size of expansion increments translated to a value of 
v = 1.09 at the plant level. 

Figures 1 and 2 illustrate the policy and potential shortages seen at the realized time tn ,  when demand first 
equals pKnA. The n" capacity expansion has just started. With this expansion, the total installed capacity will 
reach level K„ after the lead time L. As stated earlier, we model the situation wherein the manufacturer waits 
until certain amounts of capacity shortages are accumulated before starting the next expansion project. This 
"certain amount of shortages" is represented by the decision variable p,p> l. Hence, since the new capacity 

posit ion is  K„, the next expansion would start at  the t ime when the demand P(t) f irst  reaches the posit ion pK„. 
Since the demand process is stochastic, this time for starting the next expansion (T„+/) is a random variable. The 
second decision parameter is  the size of  each expansion v = Kn + 1 /Kn .  

Demand or 

Capacity 
P(t) S 

Shortage 

t  n  
/ I  !  

T„+j t„+L T„+]+L 

Figure 1. Capacity expansion policy when the expansion starts after the end of the current expansion cycle. 
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Kn +1 

pK„ 

K„ 

vK„. 

Kn-l 

Demand or 
Capacity 

^P(t) 

! / Shortage 

/ 

; ; 

I : 
t„+L T„+i T„+i+L 

Figure 2. Capacity expansion policy when the expansion starts before the end of the current expansion cycle. 

It is natural to define a cycle as the time interval from the end of one lead time to the end of the next, so that the 
actual capacity is constant over the cycle. For a generic cycle, we formulate a service measure akin to the fill 
rate used in periodic [12] and continuous review [8, 13], inventory models. The cycle length may be less than, 
equal to, or greater than L, depending on whether successive lead times overlap. At a generic expansion epoch 

tn, the decision maker knows P{t„) = pKn_x and wishes to predict the service level over the interval 

[zr, + L,T„.I + /,) • Schneider [9] defines the /? service level as the fraction of demand not being lost or 

backordered, which is relevant for lost sales or proportional backorder costs. Here, the proportion of demand 
that is satisfied is 

P = E  = 1 -E 
max[P(<)-A'„,0]dZ 

where the expectation is taken with respect to time t„. As is commonly done in inventory models [13, 14], we 
employ a series of approximations to obtain a tractable service measure. 

First, since the closest known value for demand during the cycle is p(Tn t l) = pKn> we approximate the 

denominator as Jp(t)dt ~ pK (T+l-t )• Second, we approximate the expected value of the ratio as the 

ratio of expected values: 

4r:rv[p(')-*„°]/*>]. (8) 

3. Mathematical Analysis 
As done in [2] for capacity utilization, our goal here is to express the average shortages in terms of the decision 
variables viz. the timing and size parameter. The expression can be used to obtain the values for the decision 
variables that achieve a given service level, or estimate the service level for given values of the decision 
parameters. 

From equation (8), the total expected shortage for the next cycle assuming that we know the demand and 
capacity at time t„ is (numerator of the equation (8)): 

I = £. f —(f(')-r.)i (PU)>K.) dt 
(9) 



133 

where lu) is indicator function such that lu) = 1 if jc is true and 

= 0 otherwise. 

The above integration can be solved by comparing the shortages to the barrier option scenario in the finance 
world - particularly, the up-and-out call option. Heynen and Kat [7] give the analytical equation for Up-and-Out 
Call option. After simplifications, the integral / of equation (9) becomes: 

where ¥(x^y^ P )  is the bivariate normal distribution function for variables X  and Y  with coefficient of 

correlation p. 
Hence, 

\ - P  =  —  -  =  —  
P e I t , M />ln[v] 

For complete mathematical treatment of the above equation please refer to the full version of this paper [15]. 

Unlike the timing policy in Theorem 1 of [6], the average shortage in our model depends on both decision 
variables, which is similar to the case in [2] where the capacity utilization was dependent on the timing and size 
parameters. 

4. Results 
In addition to the timing and size parameters, the average shortage (1-/J) also is affected by other parameters in 
the model, viz. length of the lead time, the drift and volatility factor of the demand process, etc. The following 
plots show the effect of each parameter on the average shortage. While analyzing the effect of any particular 
parameter on the shortages, the values of other parameters were kept constant. 

Figure 3 depicts the effect of the parameter p on the values of the average shortage, i.e., given the value of the 
variable p on the jc-axis; the plot gives the value of the corresponding shortages, for a given value of the size 
parameter (v). The values of the other parameters are v = 1.1, a= 15%, p. - 8%, and L = 2 years. As expected, 
to achieve the target of low average shortage during the expansion cycle, the manufacturer should start the 
expansion project with low initial shortages. Also the average shortages are reduced by increase in the volatility 
of the demand process. In contrast, an increase in the drift parameter of the demand process causes the average 
shortage to increase. It was also found that the average shortages increase with the length of the lead time. 
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Avg .Shortage 
0.4 

0.3 

2S 0.2 

i.5m 0.1 

p 
1.06 1.08 1.1 1.12 1.14 

Figure 3. Effects of p and other variables on the average shortage. 

Figure 4 tells the story of the second decision variable v and its relationship with our other decision variable p. 
In Figure 4, the values for the decision variable v, is plotted for different scenarios. For the base case, we 
assume that p = 1.05, O- 0.2, fJ = 0.08, L - 2 years and the average shortages are held at 5% of the current 
capacity level. If we delay the start of capacity expansion project (increase the value of p), then to maintain the 
same average shortage we have to increase the size of each expansion. Also, if the allowable shortages are 
increased, as expected, the required size of each expansion reduces. It was also seen that for increase in the 
volatility, the size parameter decreases for the same level of average shortage. Similarly, increase in lead time 
would force us to increase the size parameter to achieve the same target average shortage. 

V 

1.5 
99% 

1.4 

95% 1.3 

90% 1.2 

1.1 

P 
1.05 1.1 1.15 1.2 1.25 

Figure 4. Relationship between size and timing parameters. 

5. Conclusion 
Random demand combined with the presence of expansion lead times increase the criticality of the capacity 
expansion problem and this may lead to unavoidable initial capacity shortages. Another motivation to delay the 
expansion could be to allow additional observation of the uncertain demand before initiating the expansion. We 
have modeled one such case when capacity shortages were defined as a proportion of the existing capacity. 
Using the concepts from financial option pricing, an analytical expression for the capacity shortages was found 
in terms of the timing and size parameters of the expansion. We found out that as we allow more shortages, the 
size of each expansion project decreases; whereas if we delay the expansion project, the resulting size of 
expansion to maintain the specified level of shortages increases. 

References 
[1] Manne, A. S., 1961, "Capacity Expansion and Probabilistic Growth," Econometrica, 29(4), 632-649. 
[2] Whitt, W., 1981, "The Stationary Distribution of a Stochastic Clearing Process," Operations Research, 
29(2), 294-308. 
[3] Chaouch, A. B. and Buzacott, J. A., 1994, "The Effects of Lead Time on Plant Timing and Size," 
Production and Operations Management, 3(1), 38-54. 



135 

[4] Buzacott, J. A. and Chaouch, A. B., 1988, "Capacity Expansion with Interrupted Demand Growth," 
European Journal of Operational Research, 34(19-26. 
[5] Bean, J. C., Higle, J. L. and Smith, R. L., 1992, "Capacity Expansion under Stochastic Demands," 
Operations Research, 40(2), S210-S216. 
[6] Ryan, S. M„ 2004, "Capacity Expansion for Random Exponential Demand Growth with Lead Time," 
Management Science, 50(6), 740-748. 
[7] Heynen, R. C. and Kat, H. M., 1997, "Chapter 6: Barrier Options," appears in Exotic Options, 
Clewlow, L. and Strikland, C. (eds.), International Thompson Business Press, 125-138. 
[8] Klemm, H., 1971, "On the Operating Characteristic 'Service Level'," appears in Inventory Control and 
Water Storage, Prekopa, A. (eds.), North-Holland Publishing Company, Amsterdam, 169-178. 
[9] Schneider, H., 1981, "Effect of Service-Levels on Order-Points or Order-Levels in Inventory Models," 
International Journal of Production Research, 19(6), 615-631. 
[10] Marathe, R. R. and Ryan, S. M., 2005, "On the Validity of Geometric Brownian Motion Assumption, " 
Forthcoming in The Engineering Economist. 
[11] Lieberman, M. B., 1989, "Capacity Utilization: Theoretical Models and Empirical Tests," European 
Journal of Operations Research, 40(155-168. 
[12] Sobel, J. M., 2004, "Fill Rates of Single-Stage and Multistage Supply System," Manufacturing and 
Service Operations Management, 6(1), 41-52. 
[13] Hadley, G. and Whitin, T. M., 1963, Analysis of Inventory Systems, Prentice-Hall Inc Englewood 
Cliffs, New Jersey. 
[14] Janssen, F., Heuts, R. and de Kok, T., 1999, "The Impact of Data Collection on Fill Rate Performance 
in the (R, s, Q) Inventory Model," The Journal of the Operational Research Society, 50(1), 75-84. 
[15] Marathe, R. R. and Ryan, S. M., 2005, "Undercapacity as a Barrier Option: Evaluation of Service 
Level Constraint in Capacity Expansion," Working paper, Iowa State University Ames, Iowa USA. 



136 

Appendix IV: Mathematica 5.1 code 

Appendix 4A 

pi = 1. 227; vl = 1. 0017; £1 = -0.482; 

p2 = 1.0076; v2 = 1.01; f2 = -0.6893; 

p3 = 0.929; v3 = 1.029; £3 =-0.7603; 

p4 = 0.966; v4 = 1.0136; £4 = -0.7056; 

p5 = 0.9971; v5 = 1.0111; £5 = -0.67067; 

rotLnind.2e[{xl+ x2 + x3 +x4 + x5 + x6 + x7 + x8 + x9 + xlO, 

al+ pi all + vl al2 - (xl - x2) == £1, 

a2 + p2 a21 + v2 a22 - (x3 - x4) == £2, 

a3 + p3 a31 + v3 a32 - (x5 - x6) == £3, 

a4 + p4 a41 + v4 a42 - (x7 - x8) == £4, 

a5 + p5 a51 + v5 a52 - (x9 - xlO) == £5, 

-al - p2 all - v2 al2 + (x3 - x4) 5 -£2, 

-al - p3 all - v3 al2 + (x5 -x6) 5 -£3, 

-al - p4 all - v4 al2 + (x7 -x8) <. -£4, 

-al - p5 all - v5 al2 + (x9 - xlO) 5 -£5, 

-a2 - pla21 - vla22 + (xl - x2) <. -£1, 

-a2 - p3 a21 - v3 a22 + (x5 - x6) 5 -£3, 

-a2 -p4 a21-v4a22 + (x7 - x8) a -£4, 

-a2 - p5 a21 -v5 a22 t (x9 - xlO) a -£5, 

-a3 -pla31-vla32 + (xl - x2) s -£1, 

-a3 - p2 a31 - v2 a32 + (x3 - x4) <s -£2, 

-a3 - p4 a31 - v4 a32 + (x7 - x8) <. -£4, 

-a3 - p5 a31 - v5 a32 + (x9 - xlO) 5 -£5, 

-a4 - pla41 -vla42 + (xl - x2) a -£1, 

-a4 - p2 a41 -v2 a42 + (x3 - x4) <. -£2, 

-a4 - p3 a41 -v3 a42 + (x5 - x6) <. -£3, 

-a4 - p5 a41 - v5 a42 + (x9 - xlO) s -£5, 

-a5 - pla51 - vl a52 + (xl - x2) s -£1, 

-a5 - p2 a51 - v2 a52 + (x3 - x4) <. -£2, 

-a5 - p3 a51 - v3 a52 + (x5 -x6) 5 -f 3, 

-a5 - p4 a51 - v4 a52 + (x7 - x8) ± -£4, xl fc 0, x2 è 0, 

x3a0,x4 5:0,x5fc0,x6k0,x7fc0,x8fc0,x9 5:0, xlO iO}, 

{xl, x2, x3, x4, x5, x6, x7, x8, x9, xlO, al, a2, a3, 

a4, a5, all, al2, a21, a22, a31, a32, a41, a42, a51, a52}] 
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{0., {al-» 0., all->-0.392828, al2-» 0., 

a2-> -31.0758, a21 ->1.2472, a22-> 28.8414, a3-> 0., 

a31 -»• 0. 906762, a32-».-1.55751, a4-* -0.636283, 

a41 -> 1.03812, a42-+ -1.05776, a5-* 0., a51-> 0.906762, 

a 5 2  - >  - 1 .  5 5 7 5 1 ,  x l  - »  0 . ,  x l O  - »  0 . ,  x 2  - *  0 . ,  x 3  ̂  0 . ,  

x 4 - *  0 . ,  x 5  - »  0 . ,  x 6  - »  0 . ,  x 7  - *  0 . ,  x 8  - »  0 . ,  x 9  - >  0 . } }  

Appendix 4B: 

« Statistics ' Continue usDistriimtions " 

MVH[x_, mu_, var ] : = 

Module[{SSS=Inverse[var]}, 

(2 7t)( ) Det[SSS] \ c( f ) ) sss• ]. 

xvec = {xl, x2>; 

iraivec = {0, 0}; 

varcov = {(1, p>, {p, 1}}; 

nord : = HormalDistriJbution[0, 1] ; 

cdfirnc [x_] : = CDF[nord, x] ; 

£ = MVH[xvec, imivec, varcov] // Simplify; 

er2 

r = ti+ — ; 
2 

-Log[ — ]+(r+-Y")u 
hl[p_, v_, <r_, r , u_] := — ; 

a i/u 

Log[v] - (r + -2Î ) (u-L) 
tl[v_, ff_, r , u_] : = —— ; 

i •>/u -L 

2 Log[v] 
h2[p_, v_, or_, r , u_] : = hl[p, v, a, r, u] + 

a -/u 

—Log[v] — |r + — J (u — L) 
t2[v_, a , r , u ] : 2 ; 

<r *Ju-L 

-Log[^]+(r-^)u 

h3[p_, v_, w_, r , u] := — ; 
a - y u  

Log[v] - (r - -2Î) (u-L) 
t3[v_, <r_, r , u ] := 2 ; 

a -L 
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2 Log [vl 
M[p_, v_, a_, r_, u_] : = h3[p, v, a, r, u] + ; 

a v" 

-Log[v] - (r - — ) (u - L) 
t4[v_, <t_, r_, u ] := 2 ; 

a -*/u- L 

/ u-L 

P--1 — '' 

L = 2; 

f i =  0 . 0 2 ;  

a - 0.3; 

spec= 0.05; 

a = 0.99; 

to= 1.49192; 

Y=0.13; 

Fl[p_, v_, a_, r_, u_] : = 

«Integrate[£, {xl, -co, hl[p, v, a, r, u]>, 

{x2, -co, tl[v, a, r, u]>, AccuracyGoal ->4, 

PrecisionGoal -> 4, SingularityDepth-> 25, 

MaxRecursion->30]; 

F2[p_, v_, <J , r , u_] : = 

«Integrate[f, {xl, -co, h2[p, v, a, r, u]}, 

{x2, -oo, t2[v, a, r, u]>, AccuracyGoal _»4, 

PrecisionGoal -* 4, SingularityDepth-> 25, 

MaxRecursion -> 30] ; 

F3[p_, v_, a , r , u_] : = 

«Integrate[£, {xl, -oo, h3[p, v, <r, r, u]}, 

(x2, -oo, t3[v, a, r, u]}, AccuracyGoal-» 4, 

PrecisionGoal -» 4, SingularityDepth -> 25, 

Maadtecursion -» 30] ; 

F4[p_, v_, a , r , u_] : = 

«Integrate[£, {xl, -co, M[p, v, <r, r, u]}, 

{x2, -oo, t4[v, a, r, u]}, AccuracyGoal ->4, 

PrecisionGoal -» 4, SingularityDepth-> 25, 

MaxRecursion-+30]; 

F5[v_, o_, r , u_] : = cd£unc[tl[v, <r, r, u]]; 

F6[v_, o_, r , u ] : = cdfunc[t2[v, a, r, u]]; 
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ShortFun[p_, v_, <f_, r_, •*_] 

Hlntegrate[ 

l(! Fl[p, v, a, r, ul-vo2*1 ^jF2[p, v, a, r, 11] -

e'J:uF3[p, v, <r, r, u] + 

e^uv<r2 1^. j F4[p, v, <r, r, u] -

spec ( — J F5[v, a, r, u] + 

i j i  i i - . l  )  
spec| —Jv<R2 F6[V, CF, r, U] I, {U, L, OO>, 

AccuracyGoal -» 4, PrecisionGoal -» 4, 

SingularityDepth 25, MaxRecursion-> 30]; 

(v - l)a p^ 
TotC [p , v , a , b ] : — ; 

— — — — i _ v»-* 

ShortFun[0.99938, 1.0327, ff,r, y] 

TotC[0.99938, 1.0321,a, to] 

Hlntegrate : : nintp : Encountered the non-number 

3.33333 (-«20#- + «!*-) 
at {xl, x£) = (xl, xZ} . More... 

v^t 

N Integrate : : nintp : 

0.214512 3.33333 «1» («1» «1» 
Encountered, the non-number + 

'•/™u V~u 

at {xl, x2> = (x 1 f x2} . More... 

N Integrate : :nintp : 

0.214512 3.33333 «1» («1» «1» 
Encountered the non-number - — + . 

v~u vïï 
at {xl, x2> = {xl, x2) . More... 

General : : stop : Further output of NIntegrate : :nintp will 

be suppressed during this calculation. More... 

-0.00547128 

2.11412 


