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CHAPTER I: INTRODUCTION 

Capacity can be interpreted as some upper bounds on processing quantities. Capacity is the measure 

of processing abilities and limitations that stem from the scarcity of various processing resources and 

is represented as a vector of stocks for processing units (Van Mieghem, 2003). As seen from this 

definition, this capacity could be production or service capacity. Capacity expansion is the addition of 

facilities to serve some need. Capacity expansion decisions are made on daily basis by everybody - by 

various industries and businesses, governments, or by individuals. These decisions could require huge 

investments and time to finish. For example, in January 2005, the National Thermal Power 

Corporation of India decided to increase its electric power generation capacity by 5,600 MW in 

addition to the 7,790 MW expansion already underway (The Hindu, 2005). 

Failure to understand the criticality of the capacity expansion decisions could lead to 

disastrous results. One of the most infamous examples of the effects of inadequate capacity is the 

power failure in the Northeast region in August 2003. It is believed that the reasons for that were 

deficient transmission capacity and bottlenecks in the region. The experts were quoted as saying that 

there was enough generating capacity in the upstate New York region; however, there was no way to 

get the power generated to the New York city along the existing transmission lines. As per the report 

by U.S - Canada Power Outage Task Force (2004), the failure of the transmission lines caused due to 

the power surges was one of the major cause of the blackout. Hence, one can say that insufficient 

transmission capacity played a role in this power failure. 

1.1 General capacity expansion problem 

The primary components of the capacity expansion problem are the sizes of the facilities to be added 

and the times of these additions. Often the types of capacity added, and the location of the capacity to 

be added are also important. In addition to these primary decisions, there could be some secondary 
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decision variables like capacity utilization to be considered (Freidenfelds, 1981). To find the optimal 

capacity expansion policy (that is, to find the optimal values for the components of the capacity 

expansion problem), it is imperative that we have some idea about the demand for the various 

resources. In today's complex environment, it is almost impossible to know the exact demand for the 

resources needed in future times; however, various forecasting techniques could be used to estimate 

the future demand for capacity. Thus we can obtain the probability distribution of the demand at 

different time instances in the future. The implicit assumption in this process is that the demand can 

be forecasted without knowledge of the future capacity levels. 

Summing up, we can say that the basic capacity expansion problem is to find an optimal 

policy of expansion given a particular forecast demand pattern, assuming that the relevant cost and 

other expansion related factors are known. We use mathematical models for real life situations and 

then make simplifying assumptions to obtain models that can be analyzed readily. Likewise, although 

the real capacity expansion problems are invariably complex, we can develop mathematical models 

for these. In our case, this work analyzes one such model. 

Various environments exhibit the demand for resources with different patterns. For each, the 

capacity expansion problem can be solved by taking into consideration special properties of that 

demand pattern. As seen from the literature discussed in the next chapter, various capacity expansion 

models have been developed for different scenarios of demand patterns. In our model, we assume that 

demand for the resource follows a geometric Brownian motion (GBM) process. Modeling demand as 

a GBM process is justified because of two reasons: in many applications the demand does follow a 

GBM process (again, we refer to the literature discussed in the next chapter as well as the Appendix); 

and also because modeling with a GBM process allows the capacity shortage potential to be estimated 

using various financial options techniques by drawing on an analogy between the demand and the 

stock price (refer to Chapter 4 for details). 
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1.2 Problem definition 

We consider a manufacturer or a service provider with certain facilities having installed capacity to 

produce specific products or to provide certain services. We assume that this manufacturer or service 

provider has an obligation to meet a certain level of service. Also, we confine our attention to a single 

location capacity expansion problem for a single resource assuming that the demand for that resource 

follows a GBM process. The capacity added does not deteriorate; that is, once the capacity is 

installed, we assume that it is available for infinite time. This is in contrast to some models in the 

literature where the capacity is perishable. We also consider the effects of economies of scale while 

adding the capacities. This ensures that instead of adding capacities continuously, which may not be 

possible in some instances, we add capacities at discrete time epochs. In fact, discounting of the total 

cost of capacity expansion works against the economies of scale since discounting pushes larger 

expansions into the future and the presence of economies of scale calls for a bigger expansion now 

rather than having two separate expansion projects. Also in our model, there is a deterministic 

expansion lead time measured from the time the capacity expansion decision is made to the time 

when the added capacity is actually available to satisfy the demand. We keep the expansion lead time 

fixed so that the sole randomness in the model comes from the demand process. 

The majority of the models in the past have concentrated on the scenario when the capacity 

expansion project starts before (or immediately when) the demand for the resource reaches the 

capacity position. By capacity position, we mean the capacity that will be available after any current 

expansion project is completed. However, we envision cases where the service provider may want to 

start the capacity expansion after the demand for resource reaches the capacity position. This delay 

could occur because of the specific problem parameter values observed in particular industries. This 

delay could arise because the required service level is not very high. Also, this delay could give the 

service provider more time to observe the demand before committing to the capacity expansion. Thus, 

the delay in the start of an expansion project gives the service provider another choice that would be 
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made according to the tradeoff between the total cost of taking this option and subsequent capacity 

shortages incurred because of this choice. Hence, depending on the total cost incurred and the level of 

service achieved, the service provider has to make a decision of whether to start the capacity 

expansion before or after the current capacity position has been reached. As mentioned earlier, the 

recent models on capacity expansion concentrate on the former case where the expansion project 

starts before, or immediately when the demand reaches the capacity position, and minimize the total 

cost involved in the expansion. Our model formulates a more general situation, which not only 

includes the former case but also allows for the latter case. We find the total cost of capacity 

expansion when the expansion starts with certain shortages and then investigate the conditions under 

which this delay is suitable and economically favorable. We define the service level to be maintained 

by the service provider as a proportion of demand over each expansion cycle that is satisfied with the 

available capacity. This permits us to use the concepts of service level used in the inventory theory 

for various production systems. 

The goal, then, is to determine the optimal timing and sizes of the future capacity expansion 

projects that minimize the infinite time horizon total cost under the constraint that the service provider 

has to maintain a certain service level. 

1.3 Applications of the capacity expansion problem 

As mentioned earlier, decision makers in various fields are faced with the capacity expansion 

problem. As we see below, capacity expansion problems are encountered in the areas of personnel 

planning- staff hiring and training, where the resource for which we are expanding the capacity is the 

human resource; and in planning for natural resources like water. Capacity expansion issues are 

critical also in the high technology industry. In the succeeding sections we discuss some of these 

problems and present real life examples through published works in the respective areas. From the 
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discussion of these applications, we see that some of these problems are very similar to the one we are 

considering (Section 1.2). 

1.3.1 Capacity troubles in the high-technology industry 

Supply problems are not uncommon in the high-tech gear market. Numerous manufacturers are 

constantly vying for a limited number of components, such as display screens and memory. This 

makes it tough for manufacturers caught off guard by unexpected consumer demand to quickly 

increase production. 

The beginning of the 21st century saw slowing profit growth of the companies like Sony, 

Motorola, and HP. This slowdown was, in fact, not because of the reduction in the consumer and 

business demand for the mobile phones, personal computers and printers. These products remained 

the market favorites keeping the demand levels high. However, the ability of the companies like Sony 

and Motorola to produce these products was not enough to meet the demand (Shameen, 2000). 

A deep and prolonged chip shortage can push up production costs, which are eventually 

passed on to end-users. That could mean the end of the price advantage for the consumers. Examples 

of these could be seen in the 30% price increase by Japan's Sharp for the flash-memory chip that is 

used by the makers of the mobile phones, TV sets and personal digital assistants (PDAs). And these 

are not the only industries dependent on the chip: hand-held PCs, digital cameras, video-game 

consoles and other must-have digital products also need these flash-memory chips. 

In fact, it is not just the supply shortages that hurt the bottom line of any company in this 

field. Sometimes, there are excess capacities in the market forcing the chipmaker to sell the product at 

a price below its production cost. In the 1980s and '90s, DRAM (Dynamic Random Access Memory) 

overproduction hit the industry every three or four years. DRAM chips are used in computers. "This 

is such a cyclical business that few people can accurately predict when there will be a supply-demand 
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imbalance," said Jonathan Button of UBS Warburg Securities in Seoul (Shameen, 2000). It is known 

that the tech market is plagued by vicious boom-and-bust cycles. And the result is that the prices of 

the memory devices have been known to plunge by 75 percent or surge three-fold in just months 

(Kanellos, 2004). 

PalmOne's mobile phone model Treo 600 was facing shortages of liquid crystal displays 

(LCDs) (Shim, 2004). According to the analysts, there was enough glass supply in the market to meet 

demand, but supplies of components such as a backlight, color filters and drivers weren't as abundant. 

Also it was being predicted that this shortage could last as long as two years. Similar LCDs were used 

in the TV sets, which was much more lucrative market for the LCD screen manufacturer. This 

shortage in supply of the LCDs would result in shortages in supply of the Treo 600 leading to long 

waits for the customers of the Treo 600, which had received excellent reviews in the market. This also 

meant that there was a possibility of a competitor eating into the space of PalmOne. 

1.3.2 Water resource planning 

Similarly, the capacity expansion problem is encountered in the area of water management. Wollman 

(1976) presents a detailed review of various models dealing with the supply-demand problems of 

water resources. The models to which the paper refers not only account for the physical, biological 

and chemical requirements of the water management, but also focus on achieving economic 

optimization to the problem. In fact, various papers in the collection by Thrall (1976) give an 

interesting insight of mathematical models dealing the issue of water resources. Erlenkotter (1976) 

formulated a simple model for the water resource problem clearly demonstrating the close 

interrelationship between the scales and sequencing decisions for the water resource projects. The 

problem was solved using a simple formula for economies of scale and under the assumption that the 

water capacity could be added instantaneously. 
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In our capacity expansion model, we apply a similar approach, where we find the optimal size 

and timing factor for the expansion project that minimizes the total cost of capacity expansion. 

1.3.3 Workforce planning 

As stated earlier, capacity expansion means addition of resources to meet a particular need. That 

resource could be a physical product like the DRAM in the example from Section 1.3.1, or it could be 

human resource. Hence planning for human resources could be considered as a capacity expansion 

problem. There have been numerous models proposed for manpower planning. In their seminal book, 

Holt et al. (1963) presented the case for the importance of workforce planning in business decision

making. According to the authors, workforce planning was one of three ways of managing the 

stochastic nature of the demand; the other two being optimizing the production rate by changing 

hours of operations and optimizing inventories and backlogging. They also formulated a total cost 

minimization problem subject to the inventory balance constraints in each time period. Edwards and 

Morgan (1982) surveyed various manpower planning models- viz. Markov models, renewal models, 

etc., and applied optimal control theory to the general mathematical formulation for the problem. 

Young and Abodunde (1979) presented a linear programming model to investigate the consequences 

of controlling recruitment policies over fairly long periods of time. They assigned penalty costs for 

both under- and over-production to produce optimal long-term recruitment policies. Dellaert and de 

Kok (2004) considered a multi-stage periodic review made-to-stock assembly system with stationary 

stochastic demand. It was a capacity-planning problem where the capacity considered was the human 

capacity. They formulated a cost minimization problem where in addition to the inventory holding 

and penalty costs, relevant capacity costs were considered. The problem was solved under the 

constraint that the specified customer service level— in terms of the probability of no shortage- is to 

be achieved. The capacity was considered flexible in the sense of hiring temporary workers from an 
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external labor supply agency and/or subcontracting. In this model it was assumed that the temporary 

labor is available immediately. For both the push and pull types of production systems, two different 

approaches were tried. The paper first considered the resource and production separately and 

determined the order-up-to quantities and afterwards found the best mix of regular and temporary 

workforce. Also a second, integrated, approach was presented where these variables influence each 

other. We model the capacity expansion problem under a similarly broad perspective of minimizing 

the total cost of expansion under a service level constraint. Tan and Alp (2005) considered a similar 

periodic review made-to-stock production environment with non-stationary stochastic demand. A 

finite time horizon dynamic programming cost minimization problem was formulated where both the 

amount and capacity of production in each time period were decision variables. As with Dellaert and 

de Kok (2004), the capacity was considered in terms of human resources with the flexibility of 

temporary hiring. The authors note that changing the level of permanent capacity as a means of 

coping with demand fluctuations, such as hiring and firing of permanent workers, could be very 

costly. And in cases where the demand is highly volatile, it could have a very negative impact on the 

company. If the permanent capacity were increased following a number of high demand realizations, 

a stream of low demand realizations might result in a costly decrease in capacity. If this were 

followed by yet another stream of elevated demand, the result would be expanding the capacity that 

had been contracted. Hence, the authors consider flexible temporary capacity, in this case a temporary 

workforce, to meet the demand. The workforce shortage problem is encountered in the various areas, 

viz. airline pilot shortage, healthcare physician shortages, etc. 

1.3.3.1 Workforce planning: Healthcare 

Chan (2003) detailed a problem the Canadian healthcare medical establishment was facing. It was 

reported that the physician shortages were going to worsen because of the aging population and the 

retirement of 'baby-boomer' physicians. The report discussed the various assessment studies carried 
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out regarding the problem. One of the supply and demand studies included various approaches such 

as service level (productivity) achieved by the workforce, utilization analysis of the resource 

(physicians), etc. One of the solutions proposed was review of the International Medical Graduates 

(IMG) policy to meet the future demand of/need for physicians. Buchan and Edwards (2001) focused 

on the shortage of nurses in Britain. According to the authors, the main reasons of this shortage were 

not only demand increase, but also aging of the nurses and the dwindling pool of potential nurse 

'returners' (former nurses returning to paid employment). The authors proposed integration of efforts 

at various levels to better plan the workforce. Integration is required between workforce planning and 

operational planning; also amongst various groups of workers (nurses, doctors, and other medical 

employees). The paper also stressed the need for a new pay system to attract more employment. 

O'Brien-Pallas et al. (2001) also addressed issues of integration in healthcare workforce planning. 

This report mainly focuses on two strategies. First was the Integrated Healthcare Human Resource 

Planning (IHHRP) that determines the number, mix and distribution of health providers that would be 

required to meet population health needs. This type of planning was for a long range of time. The 

second strategy was service planning. This short-term planning was aimed at ensuring that resources 

of healthcare are allocated and managed in an efficient manner, and was concerned with the number 

and type of health resources allocated amongst different sectors and between human and physical 

capital. 

1.3.3.2 Workforce planning: Airline pilots 

Hopkins (2001) presented a chronological account of the airline pilot problem. According to Hopkins 

(2001), the pilot shortages could be attributed to several reasons, principal among them being: 

• The post-1993 economy boom, which caused huge growth in the air traffic, 

• Also because of regulations in the industry, the retirement of old pilots was peaking, 



• Amazing job growth in other sectors of economy siphoned off people who might otherwise 

have chosen flying careers, 

• Military downsizing, which began in the late 1980s and accelerated after the Gulf War, meant 

restricted pilot 'production.' 

Any shortage in the resources like pilots results in a response by the operators, which is to change 

the schedules, increase the ticket price, or increase block times between city-pairs (Donohue, 2000). 

And the results of these could be serious for passengers and industry in general— reduced access, 

increased prices, reduced convenience, and somewhat increased delay. This critical shortage of airline 

pilots had an adverse effect on the air service in rural areas such as Alaska and parts of the upper 

Midwest (Woerth, 2000). The effects of pilot shortages on the rural air service were studied in detail 

by Barker (2000). The authors found that: 

1. Emergency medical services use airplanes to fly doctors to some rural locations (like parts 

of Wyoming, and Colorado). Pilot shortage threatens this expansion of medical services to 

the rural parts. 

2. Commerce and economic viability of communities are dependent on the access to air 

transportation. A pilot shortage severs this link. 

3. Finally, the high value cargo, mail and express package services provided to the 

communities across the country are directly affected by the ability to have pilots able to 

safely operate the planes. 

There have been many solutions proposed to tackle this problem. Some of them are on the policy 

level and others are local operator level. Examples of some of policy level solutions include relaxing 

the Age 60 Rule, which would increase the mandatory retirement age of air carrier pilots from 60 to 

65; and changes in the flight and duty time regulations and reserve rest requirements, which would 

essentially reduce the time the pilots have for their rest (Woerth, 2000). As can be seen, there were 

inherent disadvantages associated with each of these suggestions. 
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Some of the local solutions proposed have been formulation of mathematical models at the 

operator level to reduce the risks of the pilot shortages, like the one proposed for Continental Airlines 

(Yu et al., 2004). Here, a new decision-support system called "Crew ResourceSolver" was developed 

to obtain an optimal solution for the large-scale pilot staffing and training problem. The system solves 

a mixed integer program for a total cost minimization problem under the constraints of capacity 

limitations on the training facility, pilot vacations, and maintaining pilot seniority. 

As seen in the next chapter, the deseasonalized total airline passenger enplanements in the US 

over the 20-year period from 1981 to 2001 have followed a GBM process. Hence planning for 

resources to fulfill the demands of airline industry could be considered as a typical example for the 

problem defined in Section 1.2. One of the important resources in meeting the enplanement service 

level is the total number of airline pilots hired by the industry. Therefore, an airline company that 

wants to meet the service level target of providing for the certain percentage of the total 

enplanements, will have to solve a capacity expansion problem similar to the one mentioned in 

Section 1.2. This problem for the airline company will be more specific in the sense that capacity 

expansion means hiring of new pilots. The lead time could then be considered as the training period 

for the pilots. And since the time required to train pilots would be the same regardless of the number 

hired if the training sessions were in a classroom environment, they can be assumed to be constant. 

The problem we are considering (in Section 1.2) is more restrictive than the pilot shortage problem in 

the sense that we are considering only hiring of the pilot and not firing them when the demand for the 

airline seats (characterized by enplanements) dips. Here, we also note that union contracts frequently 

limit airlines ability to lay off excess employees. In this scenario, the airline pilot shortage problem 

would serve as an ideal example for the capacity expansion problem considered in this dissertation. 
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1.4 Research objectives 

It is imperative that the optimization problems modeling critical issues of today be able to take care of 

the randomness of the today's market environment, because market volatility is going to affect the 

problem parameters and instead of ignoring this volatility, business decisions should be made 

considering this variability. In this dissertation, we are solving one such problem that deals with 

optimal planning of capacity where the demand for that capacity is stochastic. The presence of the 

expansion lead time further complicates our problem. The analysis of this capacity expansion 

problem demonstrates how the randomness of the demand process affects the optimal expansion 

policy for the service provider. The details of the problem, the assumptions and the constraints are 

described in Section 1.2 of this chapter. Our problem is broad enough that it can be applied to any 

industry as long as the demand for that industry follows a particular distribution, the expansion lead 

times are fixed and economies of scale exist. The decision variables of our problem are the timing and 

size of the future expansion projects. The research objectives then are as follows: 

• Express the objective function and the service level constraint in terms of decision variables. 

• Apply the financial option pricing theory to the service level expression to simplify the 

constraint and express it in terms of the timing and size variable. 

• Formulate the capacity planning optimization problem. 

• Find an optimization technique to solve the formulated optimization problem. 

• Perform numerical analysis and draw managerial insights from the optimal solution. 

• For given conditions, select the capacity planning policy parameters that minimize the total 

expansion cost. 

Our problem provides optimal policy parameters for a service provider so that the total 

expansion cost for the service provider is minimized. Using the parameter values for any particular 

case, the service provider can then find out optimal starting times of the future capacity expansion 
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projects and also the sizes for each of those projects. Using our model the service provider will be 

able to determine conditions under which different expansion policies are appropriate. 

1.5 Thesis organization 

In the next chapter, we review the relevant literature for our model. The actual model is discussed in 

detail in Chapter 3. Mathematical analysis of the model is conducted and relevant expressions derived 

in Chapter 4, based on which some of numerical results are obtained in the subsequent chapter 

(Chapter 5). We propose the future work regarding the model in the final chapter of the dissertation 

(Chapter 6). 
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CHAPTER II: LITERATURE REVIEW 

To begin with, we review the literature regarding the assumption of demand for capacity following a 

geometric Brownian motion (GBM) process. Later on in this chapter, we discuss various analytical 

models regarding the capacity expansion models in the literature and their relevance in our model. 

Since we use some concepts from financial option pricing and the production and inventory theory, 

we shall also discuss some of the important works from the literature regarding these respective 

fields. A cutting plane algorithm was used to numerically solve the capacity expansion optimization 

problem. We review the literature related to this important optimization technique. We conclude this 

chapter by summarizing the relationship between the literature discussed in this chapter and our 

model. 

2.1 Validity of the GBM process assumption 

Many recent engineering economic analyses have relied on an implicit or explicit assumption that 

some quantity that changes over time with uncertainty follows a GBM process. Below we briefly 

review a number of applications in different areas. The GBM process, also sometimes called a 

lognormal growth process, has gained wide acceptance as a valid model for the growth in the price of 

a stock over time. In fact, Hull (1999) refers to it as "the model for stock prices". Many recent 

examples of GBM models have arisen in real options analysis, in which the value of some 

"underlying asset" is assumed to evolve similarly to a stock price. In some cases, the GBM 

assumption is stated explicitly, while in others it is implicitly used when options are evaluated by the 

Black-Scholes formula. Nembhard et al. (2002) quantified the cost of applying quality control charts 

using real option pricing methods, where both the sales volume and the price of a product were 

assumed to follow GBM processes. Thorsen (1998) applied the real options theory to decisions of 

establishing a new forest stand and it is assumed that the future net prices of roundwood follow a 
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GBM process. The GBM model has also been used to represent future demand in capacity studies. 

Whitt (1981) studied capacity utilization over time assuming demand followed a GBM. An indirect 

validation of the assumption was provided by Lieberman (1989), which showed in an empirical study 

of the chemical industry that actual capacity utilization matched the predictions from the model 

proposed by Whitt (1981). Ryan (2004) assumed that the demand for services in rapidly growing 

industries follow a GBM and the expansion policy to minimize cost subject to a service level 

constraint was developed and analyzed. Marathe and Ryan (2005) verified empirically that the 

demand for electric utility in the US as well as the number of passenger enplanements in the airline 

industry follow a GBM process (also see the Appendix). 

2.2 Capacity expansion problem 

The capacity expansion problem is an extensively researched topic. As Van Mieghem (2003) 

mentions, there are over 15,000 articles with "capacity" in the title or keyword. Focusing primarily on 

the effects of resource scarcity and uncertainty over capacity decisions, Van Mieghem (2003) reviews 

the strategic capacity management literature concerned with determining the sizes, types, and timing 

of capacity investments and adjustments under uncertainty. 

Most of the models found in the capacity expansion literature aim at minimizing the total 

expected discounted cost over a finite or infinite time horizon. One of the seminal work in the area of 

mathematical modeling of the capacity expansion problem was by Manne (1961). He proposed a 

model to decide the expansion sizes in cases where the demand follows a linear deterministic or 

random-walk pattern; also, the effects of economies of scale and penalties for demand not being 

satisfied were considered. He also showed that the stochastic problem is equivalent to a deterministic 

problem with just a small adjustment in the interest rate value. Smith (1979) analyzed the addition of 

capacity from a finite set of available possible additions for a case of exponential demand. A turnpike 

theorem was developed which gives the structural characteristics of the optimal policy. Smith (1980) 
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also considered the problem with exponential demand growth. Here the author developed a general 

formulation of the deterministic capacity expansion problem and proved that capacity models found 

in literature like Manne (1961) is a special case of this general model. Whitt (1981) analyzed the 

capacity expansion problem from the perspective of estimating the capacity utilization. Using results 

for stochastic clearing processes he obtained the stationary distribution function for utilization under a 

particular expansion policy when demand follows a GBM process. The long-term expected utilization 

depends on both the size and timing parameters, as will be discussed further in Chapter 4. The effect 

of the study horizon length on the solution to the capacity expansion problem was considered by Bean 

and Smith (1985). They developed an algorithm to determine the length of the horizon needed to 

identify an optimal first facility to install. A generalization of Brownian motion demand was 

considered by Bean et al. (1992), where demand was assumed to be either a nonlinear Brownian 

motion process or a semi-Markovian birth and death process. Like Manne (1961), they showed that 

the problem can be transformed into an equivalent deterministic problem and that the effect of 

uncertainty in the demand is to reduce the interest rate. 

All of the preceding results relied on the absence of lead times to rule out unplanned 

shortages and obtain a regeneration point structure. In contrast, Davis et al. (1987) considered a 

capacity expansion problem to find optimal timing and sizes of future expansion where the demand 

was a random point process (that is, the demand increased by discrete amounts at random times). The 

lead time considered in this paper depended on the rate of investment. The authors applied stochastic 

control theory to find the optimal expansion policy. Buzacott and Chaouch (1988) examined the 

effects of demand plateaus on the capacity expansion problem. In their model, they assumed the 

demand process to be an alternating renewal process where a period of linear growth is interrupted by 

plateaus that occur at random times and last for an uncertain duration. However, they did not consider 

the effects of lead time. Chaouch and Buzacott (1994) examined the same problem including lead 

times and also considered two cases where the capacity addition started, respectively, before and after 
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the demand reached the current capacity. Assuming proportional shortage costs, they set up a total 

cost minimization problem resulting from an infinite horizon dynamic programming formulation. Our 

work is similar to theirs in the sense that we also consider initializing the capacity expansion after a 

certain deficit has been accumulated; however, the demand process considered in our model is 

different. Also we use a service level constraint rather than assigning a proportional shortage cost. 

Other work combining uncertain demand with lead times includes that of Cakanyildirim and Roundy 

(2002), who developed an expansion/contraction algorithm to compute the optimal capacity 

expansion and contraction times for situations when the demand first stochastically increases and later 

stochastically decreases. This type of model has applications in the semiconductor industry and the 

electric utility industry. Also, Angelus and Porteus (2003) considered the problem of deferring a 

capacity expansion project under the conditions of echelon capacity in a discrete time, finite horizon 

model and with multiple resources. 

Ryan (2004) considered a fixed lead time for expansion when demand followed a GBM 

process. A timing policy was developed to provide a specified level of service. It was shown how the 

parameter of the timing policy could be obtained numerically using some concepts from financial 

options pricing. Our work extends this model. While Ryan (2004) assumed that the next expansion 

starts before the current capacity position is reached, in this model we consider a case where the next 

expansion can also be started after the accumulation of some shortages relative to the capacity 

position. Pak et al. (2004) considered a capacity expansion problem for exponential demand and 

studied the effect of technology improvement on the optimal timing and sizes of the capacity 

expansions. They also considered a fixed expansion lead time in their capacity expansion model. 

2.3 Financial option pricing theory 

Application of the financial options theory to problems such as stochastic optimization is a relatively 

new field of research. A very good reference in this area is Birge (2000). In this paper the author 
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applied the basic principles of risk-neutral valuation to general forms of constrained resource 

problems, such as capacity planning. Using the results from options pricing theory, he showed that 

risk could be effectively accounted for in a wide range of operational planning models, particularly 

the linear capacity planning models. In our model, the potential for capacity shortages can be 

compared to the barrier options in finance, in particular, the up-and-out call option. As defined by 

Musiela and Rutkowski (1997), the generic term "barrier options" refers to the class of options whose 

payoff depends on whether or not the underlying prices hit a pre-specified barrier during the option's 

life. The idea of these options was discussed as early as the 1970's by Merton (1973), and Goldman et 

al. (1979), who analyzed "path dependent options". Rubinstein (1991), and Rubinstein and Reiner 

(1991) arrived at analytical formulas for various types of barrier options as a limiting case of a 

discrete time model. A unified and intuitive mathematical foundation for the barrier option pricing 

formulas was given by Rich (1994). This work not only included key results to analyze the barrier 

options but also gave all the necessary derivations. Ritchken (1995) gave the equations for barrier 

option pricing using the binomial and trinomial lattice model. The paper also included cases where 

the barrier is an exponential function of time. Carr (1995) discussed two different extensions of 

barrier option pricing, and derived an expression for the price of the barrier option. The price of the 

barrier option was found from the joint distribution of a Brownian motion and its maximum in 

Chuang (1996). This paper found the equation for the joint distribution of the Brownian motion and 

its maximum when the time intervals considered for the Brownian motion and its maximum are 

different. This result was then used to find the price of partial' barrier options (Musiela and 

Rutkowski, 1997) - that is, barrier options in which the underlying price is monitored for barrier hits 

only during a prespecified portion of the option's lifetime. The paper also included some remarks 

about reducing the numerical computations by a clever change of variables. Similar results about the 

partial barrier option were obtained by Heynen and Kat (1997). They gave analytical expressions for 

all cases of barrier options viz. cash or nothing, asset or nothing, etc. 
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2.4 Measures of service level 

In our model, we measure the service level in terms of the average proportion of demand that is 

satisfied over time. We aim to find the parameters for an assumed expansion policy that will achieve 

a specified level of service. This broad definition of 'service level', as we use it, has its roots in the 

continuous review inventory models. Hadley and Whitin (1963) presented an extensive work 

regarding the continuous review inventory models. All aspects of the various inventory models were 

discussed in detail and shortages were analyzed thoroughly. A study of service levels was carried out 

by Klemm (1971). Rigorous definitions for the three types of the service level, viz. a, /?, and /service 

levels were given for (s, S) and O, Q) type inventory models. The a service level is defined as the 

probability of not being out of stock at an arbitrary time. This service level is more common in cases 

where the time is measured in discrete time periods. However, with this service level one doesn't 

know how large a part (quantity) of the demand is expected to be satisfied. The service level is 

given as the fraction of demand not being satisfied per unit time. This definition of the service level is 

more suited for the capacity expansion problem we are considering. Lastly, we note that the definition 

of the 7service level is similar to that of the /? service level. The only difference between the /? and y 

service levels is that instead of considering just the unsatisfied demand per unit time, the y service 

level considers cumulative unsatisfied demand. Hence this service level is more relevant in case 

where backorders are being considered. Because services generally cannot be backordered, we use the 

/? service level in our formulation of capacity expansion problem. Further mathematical calculations 

for each type of service level and its effect on the order points in the various inventory models was 

done by Schneider (1981). In this work, the analysis of various service levels was carried out with 

equations for each given under the assumption that the demand follows a Poisson process. 
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2.5 Cutting plane algorithm 

Our capacity expansion problem is an infinite time horizon cost minimization problem under the 

service level constraint. In Chapter 3 we reduce it to a nonlinear optimization problem in two 

continuous variables. Because of the complexity of the service level constraint, we tried to solve the 

dual of the original capacity expansion problem. However, since this also proved to be difficult to 

solve, we solved the optimization problem using the cutting plane algorithm as an approximation to 

the dual problem. The cutting plane algorithms have proved to be computationally efficient and work 

under rather general assumptions (Kelley, 1960; Wolfe, 1961). Kelley ( 1960) is the premier reference 

on cutting plane algorithms applied to non-linear programming problems. Before this, Gomory (1963) 

had proposed a cutting plane method to solve integer programming problems. (We note that though 

Gomory's method originally appeared in 1959 as a Princeton-IBM Mathematical Research Project 

technical report, a formal paper in a technical journal appeared in 1963.) Wolfe (1961) proposed a 

different way of generating cuts than Kelley (1960), thereby improving the efficiency and ensuring 

faster convergence of the algorithm. The basic concepts and steps involved in implementing the 

cutting plane algorithm were described by Bazaraa et al. (1993). Zangwill (1969) proved the 

convergence of the cutting plane algorithm under various conditions. He also discussed the 

convergence of various versions of the cutting plane algorithm. Atlason et al. (2004) used the cutting 

plane algorithm to solve a call center staffing problem. As in our case, the optimization problem in 

their case was also constrained by the specified service level. They simulated the service level 

achieved by the different staffing plans. This paper proved the convergence of the cutting plane 

algorithm for a case where the constraint equation is obtained via simulation. Also, this paper 

proposed a convenient numerical method for checking convexity of a function. 



2.6 Summary 

From the literature discussed above, we found that there are very good mathematical models proposed 

for solving capacity planning problem under various scenarios. However, all of these models are 

different from the problem we are solving (described in Section 1.2 of Chapter 1). The demand 

process we are considering is similar to the one considered by Manne (1961) and Whitt (1981); where 

Manne (1961) considered a random-walk type of demand, Whitt (1981) considered exactly the same 

demand (GBM) process as in our model. However, neither of these models considered any expansion 

lead time. Moreover, Whitt (1981) assumed the demand to be following the GBM process under no 

explicitly stated reasons. We present cases where the demand for the capacity does follow the GBM 

process and also discuss a method to find whether the demand follows this assumption. Ryan (2004) 

proposed a capacity expansion model where the demand was assumed to follow a GBM process and 

where the effects of expansion lead time were considered. However, the new capacity expansion was 

initiated before (or immediately when) the demand hits the capacity position. Our model is broader in 

the sense that we keep the option of starting time of the expansion project open. Based on the trade

off between the service level achieved and the expansion cost incurred, the service provider in our 

model may initiate the new expansion project either before or after the demand reaches the capacity 

position. Chaouch and Buzacott (1994) considered both of these options in their capacity expansion 

model and proposed the conditions under which the service provider should adopt the policy of 

initiating the expansions either before or after the demand crosses the capacity position. However, in 

their model, the demand process considered was different than our assumption of the GBM process. 

They considered the linearly growing demand with plateaus occurring at, and for, random times. Like 

Ryan (2004), because of the assumption of the GBM process demand, the service level constraint in 

our model could be formulated using the financial option pricing theory. Where Ryan (2004) used the 

European call option price expression to formulate the service level constraint, we use the partial 

barrier call option price formula. In our study of the literature on applications of financial option 
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pricing theory to optimization problems, we could not find any other instance where the partial barrier 

option pricing concepts were used. Once the optimization problem for capacity planning has been 

formulated, it can be solved using various optimization techniques. Atlason et al. (2004) formulated a 

call center staffing problem under a service level constraint. As in our model they used the cutting 

plane algorithm to solve their problem. However, the service level expression in their model was 

evaluated by simulation of the demand process. In our case, we use financial option pricing theory to 

arrive at an analytical expression for our constraint. 

In the next chapter, we discuss the details of our capacity expansion model and formulate the 

optimization problem. 
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CHAPTER III: GBM ASSUMPTION AND THE MODEL FORMULATION 

The brief overview of the problem statement was presented in Chapter 1. In this chapter, we discuss 

the details of our capacity expansion model and the related assumptions. As discussed in Chapter 1, 

one of the major assumptions was that the demand for capacity faced by the service provider follows 

a GBM process. There are conditions under which this assumption could be justified. We begin this 

chapter with a discussion on the GBM process assumption. Later, with this assumption about the 

demand for the capacity, we detail the basic model environment and mathematical formulation. In 

this chapter, we formulate the service level constraint expression and the infinite time horizon 

expansion cost objective function for our optimization problem. 

3.1 GBM assumption 

Let B ( t )  be a Brownian motion having drift // and volatility <T with 6(0) = 0. The basic 

characteristics of a Brownian motion are discussed in details in Appendix I (Marathe and Ryan, 

2005). Demand for the product or service is given by the GBM process P(t) = P(0)eBU). We say that 

the variable P(t), 0 <t < follows a GBM (with drift parameter // and volatility parameter o) if, for 

P ( t  +  k )  
all nonnegative values of k  and r, the random variable p ( t )  >s independent of all values of the 

variable up to time t and if in addition, the log ratio 

r P ( t  +  k ) ^  

P{t) has a normal distribution 

with mean juk and variance a k, independent of t, where ju and crare constants. Define 7=as 

the mean (exponential) growth rate of the demand. This assumption that the demand for the services 

or product follows a GBM process may be checked using the procedure developed by Ross (1999) 

and discussed and applied by Marathe and Ryan (2005). 



The assumption of a GBM process for demand may be reasonable in cases where (a) the 

demand growth during a period, as a percentage of total demand, has a stationary lognormal 

distribution over time, and (b) successive growth percentages are independent. That is to say that, 

referring to the definition above, there are two assumptions to be satisfied for any time series data to 

follow the GBM process (Ross, 1999): 

-Normality of the log ratios (w(k)) with constant mean and variance, 

-Independence from previous data (log ratios independent of their past values). 

However, before we test the normality and independence of the log ratios, any seasonal 

variation should be removed from the data. Marathe and Ryan (2005) examined two ways of 

deseasonalizing the time series and found that the moving average method is an unbiased method. For 

details of the deseasonalization process and GBM process fit, see Appendix I, which includes the full 

Marathe and Ryan (2005) paper. 

Marathe and Ryan (2005) found that historical usage of electric power and airline travel met 

both conditions - of normality and independence of log ratios - after seasonal effects were removed. 

On the other hand, although data availability limited the statistical tests that could be applied, the 

conditions were not met by time series that could serve as proxies for the demand for Internet and 

mobile telephone service due to their declining growth rates. 

Summarizing, we can say that any demand data series needs to be tested before the GBM 

process assumption is made for the demand. Given a time series representing the demand for service 

or product, if the log ratios of the time series values are normally distributed and are independent of 

each other, then according to method prescribed by Ross (1999) and discussed by Marathe and Ryan 

(2005), the time series is consistent with observations of a GBM process. Our model can then be 

assumed to be applicable in such cases, where there is sufficient evidence of the demand being a 

GBM process. 
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3.2 Capacity expansion model and policy parameters 

We assume that capacity additions occur at discrete time points and that a fixed lead time of L time 

units is required to install new capacity. The problem is to choose a sequence {(Tn,Xn),n > 1}, 

where T„, the time when the nlh capacity expansion starts, is a stopping time with respect to the 

Brownian motion B(t) and X„ is the nth increase in capacity. For any realization (O of the Brownian 

motion B(t), let 1 n = Tn (CO). Let K„ be the installed capacity after n additions are completed, where 

the initial capacity is K0. Then, 

We assume that the policy proposed by Whitt and Luss (Whitt, 1981) for the same demand 

function is modified to account for the lead times and its parameters are adjusted to allow planned 

shortages to occur. Whitt (1981) showed that, without lead times, their policy results in a stationary 

distribution for the capacity utilization and provided a simple formula for its expected value. In the 

Whitt-Luss policy, each new expansion occurs when demand reaches some fixed proportion (p < 1) 

of current capacity, and after its instantaneous addition, the new capacity is a constant proportion of 

its previous value. Likewise, in our model, we assume that each expansion occurs when demand 

reaches some fixed proportion, p, of the capacity position, and that the new capacity is a certain 

proportion, v, of the old capacity: Kn — vKn ], where v > 1. Ryan (2004) showed that for P - ' with 

*„ = *„ +IX-

The installed capacity at time t is given by, 

The capacity position at time t is given by, 
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fixed lead times, the value of p to attain a specified service level can be found according to the Black-

Scholes formula for pricing a European call option. Moreover, assuming this timing policy is 

followed, the expansion size policy minimizes the infinite horizon discounted cost under a widely 

used expansion cost function that reflects economies of scale. In our model, we consider the case of 

P -1 , and also allow for the case where p > 1. According to our model, the IIth capacity expansion 

starts when the demand reaches the level pK„.i and the expansion takes the capacity position to the 

level of vK„.h 

The policy assumes that ever-increasing increments of capacity can be installed within the 

same lead time to keep pace with exponentially growing demand. This assumption is most reasonable 

in industries where capacity bottlenecks are caused by facilities subject to continuous technological 

improvement, such as those that rely on information and communications technology. However, it 

may hold in more traditional situations as well. For example, in an empirical study of the chemical 

product industry, Lieberman (1989) found that the Whitt-Luss policy provided the closest fit among 

several alternatives to the capacity utilization. Over at least two decades, total output grew by an 

average of 6.2% per year, and the mean size of expansion increments translated to a value of v = 1.09 

at the plant level. 

Figures 1,2,3 and 4 illustrate the policy and potential shortages seen at the realized time t n ,  

when demand first reaches the level pK„.|. The nth capacity expansion has just started. With this 

expansion, the total installed capacity will reach level Kn after the lead time L. As stated earlier, we 

model the situation wherein the manufacturer has a choice of waiting until certain amounts of 

capacity shortages are accumulated before starting the next expansion project. This "certain amount 

of shortages" is represented by the variable p, p>l, as in Figures 3 and 4. However, when we consider 

the other case, P -1 , as in Figures 1 and 2, the service provider starts the new capacity expansion 

before (or immediately when) the demand reaches the current capacity position. In our model this 
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parameter '/?' is a decision variable. By allowing it to take values either less than or greater than or 

equal to 1, we are keeping both the options open and making our model broader. Depending on the 

other model parameter values, the optimal p value could be greater than or less than one, thus 

indicating whether it is optimal to start the expansion after a certain amount of shortages have been 

accumulated, or whether to start the expansion project before the demand hits the capacity position. In 

either case, since the new capacity position is K„, the next expansion would start at the time when the 

demand P(t) first reaches the position pKn. Since the demand process is stochastic, this time for the 

start of the next expansion (7n+i) is a random variable. The second decision parameter is the size of 

the expansion v = Kn+]  j  Kn  .  

K, 
vKs 

K I 

Demand or 
Capacity 

/ 

Shortage 

P(t) 

/ 

#* tx + L Tx+1 J *+.' + L Time 

Figure 1. Capacity expansion policy when the expansion starts before the demand reaches the current capacity 

position (p < 1) but after the end of the current expansion cycle. 
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Figure 2. Capacity' expansion policy with p < 1 when the expansion starts before the end of the current 

expansion cycle 
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Figure 3. Capacity expansion policy when the expansion starts after some initial shortages (p > 1), but before 

the end of the current expansion cycle. 
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Figure 4. Capacity expansion policy with p > 1 when the expansion starts after the end of the current 

expansion cycle. 

Having decided on the desired service level, then the problem is to find the values of the two 

decision variables that minimize the infinite horizon discounted cost of maintaining it. 

3.3 Formulation of the service level expression 

It is natural to define a cycle as the time interval from the end of one lead time to the end of the next, 

so that the actual capacity is constant over the cycle. For a generic cycle, we formulate a service 

measure akin to the fill rate used in periodic Sobel (2004) and continuous review (Hadley and Whitin, 

1963; Klemm, 1971) inventory models. The cycle length may be longer than L if the current 

expansion is completed before the next one is needed, as in Figures 1 and 4, or less than L, if 

successive lead times overlap as in Figures 2 and 3. At a generic expansion epoch tn, the decision 
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maker knows P(t„) = pK,,./ and wishes to predict, in order to control, the service level over the 

interval [fn +L,7n+1 +L). For inventory management, Schneider defines the /? service level as the 

fraction of demand not being lost or backordered and identifies its relevance to lost sales or 

proportional backorder costs. In the capacity expansion problem, at time t„, the proportion of demand 

that is satisfied during the next cycle is 

which is a random quantity. This expression for the service level leads to the constraint that must be 

satisfied in our problem. Typically, the service provider will decide the desired service level and the 

numerical value of the expression in Equation (1) should then be greater than or equal to the specified 

service level. 

3.4 Formulation of the expansion cost expression 

While Whitt (1981) simply formulated the expression for the capacity utilization in terms of the 

policy parameters without any considerations of the cost of installing that capacity, we do realize that 

the optimal values of the policy parameters would be the ones that minimize the cost the capacity 

expansion. To formulate the objective function of our problem, we consider the infinite horizon cost 

of expansion for installing these capacity units at different time instances in the future. The capacity 

expansion problem is very commonly modeled as an infinite horizon expansion cost minimization 

problem (for example, see Chaouch and Buzacott, 1994; Ryan, 2004 etc.). 

We assume an economies of scale regime, under which the cost of installing capacity of size 

X is given by: 

ir[p(/)'K»idt max[p(o-~\dt 

(1) 

C,(X) = tX", (2) 

where k is a constant and a < < 1) is the economies of scale parameter. 
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Similar to these models, for the given capacity level of K, let V,(K) be the minimum expected cost, 

discounted to time t, of expanding capacity over infinite horizon while satisfying the service level 

constraint. Then for re > 1 (see Figures 1-4 for chronology), 

where s is the desired service level, K„ = K„.i + X„, and C„(X) is the expansion cost for the wth cycle. 

Hence the problem is to find policy parameters that give the minimum valued infinite time 

horizon expansion cost discounted to time 0, given that the service level in each expansion cycle is 

met: 

Therefore, the capacity expansion problem essentially reduces to solving the dynamic 

problem with the given service level constraint to find optimal values for the timing and size 

parameters for the expansion of the capacity. In the next chapter we simplify the expression for the 

service level using the concepts of the up-and-out barrier option; and the infinite horizon dynamic 

iterations to a simplified nonlinear expression for the expansion cost in terms of the policy 

parameters. 

As shown in Appendix, the airline passenger enplanement data for a period of 20 years from 

1981 to 2001 indicate that the demand for airline seats has followed a GBM process. Hence, if we 

consider an airline operator who has some restriction on the minimum service level achieved and who 

is planning on hiring pilots to increase the human resource capacity, then our capacity expansion 

model can be applicable in this scenario. 

(*._,)= mm + ^ UV 
n+lL "+1 

subject to E [ f i n ] > £  

(3) 
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CHAPTER IV: MATHEMATICAL ANALYSIS 

Having explained the model environment and discussed the policy parameters in chapter 3, we now 

analyze the mathematical model in detail. The service level expression arrived at in Equation (1) is 

expanded such that the expected shortage during an expansion cycle does not exceed the specified 

limit. We use the results from financial option pricing theory- particularly, the Up-and-Out barrier 

call option price equation— to model the service level constraint. The infinite time horizon expansion 

cost equation (3) is also analyzed in this chapter so that we obtain a telescoping series, which is then 

simplified to obtain the total cost objective function in terms of the policy parameters. 

4.1 Analysis of the service level constraint 

At an expansion epoch, in order to meet a specified service level, we can control both the size of the 

current expansion and a criterion for choosing the time of the next expansion. Note that under the 

assumed expansion policy, this is just a question of finding p and v. In view of our policy, our first 

goal is to obtain an expression for the service level, in terms of our decision variables (the timing 

variable p and the size variable v), that is valid for any expansion epoch. This expression then can be 

solved to obtain the unknown; viz. obtaining the values for the decision variables to achieve a given 

service level, or estimating the service level for the given values of decision parameters. 

From the previous chapter, Equation ( 1 ) gives the service level over the next cycle from the 

perspective of time t„. So from Equation (1), the shortage during the /2th cycle, as a proportion of the 

total demand during the cycle, is a random quantity given by: 

Tn+i;L 

| Max[P(t)-Kn,0\dt 

' 

J P(0dt 
t„ + L 
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The service provider has an upper bound on the shortages. That is, the shortages in any 

expansion cycle have to be less than or equal to some specified limit. Let this specified shortage limit 

be 8 (= 1 -£"). 

We define a shortage constraint violation function as a random quantity: 

Tn+,+i Tn^L 

G(p,v)= j Max [P(t)~ Kn,0]dt - S j P(t)dt. 
t n +L t n +L 

We note that although our decision variables (p, v) do not appear in the right hand side of this 

equation and the index n does, our goal in this section is to obtain an expression for the service level 

constraint in terms of the decision variables that is valid for each expansion cycle. Hence, denoting 

the shortage constraint violation function as G(p, v) will seem logical by the end of this section. 

Taking expectations, the service level constraint requires that the expected shortage function is less 

than or equal to 0. 

g(p,v) = E[G(p,v)] = E 
Tn+1+L 

j Max(P(t) - Kn, 0)dt 
t„+L 

-SE 
Tn+SL 

J P(t)dt 
t„+L 

<0, 
(4) 

where the expectations are taken with respect to time t„. 

We now simplify each of the terms on the right hand side of Equation (4) to obtain the 

service level constraint expression in terms of the decision variables, p and v. The first of these terms 

is equal to: 

7 '»=£/„ ) [P(t)-K„}\\P{t)>Kn}dt 
t „+L  

(5) 

where 1{jc} is an indicator function such that 1 {jc} = 1 if x is true and 0 otherwise. In the above 

integration the upper limit of the integration Tn+]+L is a random term because T„+] is the time 

(unknown at time tn) at which the demand will hit the value of pK„ for the first time. 
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To obtain deterministic integration limits in we introduce an indicator function 

l{r < 7„+l + L )  a n d  r e m o v e  t h e  u p p e r  l i m i t  o f  i n t e g r a t i o n .  T h i s  s t e p  i s  j u s t i f i e d  b e c a u s e  f o r  t > t n + L ,  

r<7i+1 +L<=>r-L<min|z>0: P(t) = />£„}<=> P(s)< pKn,^s<t-L. 

Therefore, \{t<Tn+l +L] = l{maxP(s)< pKn :0<s<t-L), and 

/ ' „  =  |  E t ^ P ( t ) -  K n } \ { P ( t )  > A*„}l{max P ( s ) <  p K n \ 0< s <t-L}^dt. 
TN+L 

(6) 

Next, given knowledge of events up to time tn, using the Markov property we can shift the 

origin to time t„ and find the expected value in terms of a translated Brownian motion. 

Writing Equation (6) in terms of the underlying standard Brownian motion, 

K_ 
l'n ~ J Et„ 

i „+L  

[ P i O - K ^ U B i t )  >  In 
vP(0)/ 

In ;f < s <t-L\ dt 
J. 

!-l|max B(s)< In 

Let A s ln ( •Kn1 P(0) ) and A2 =ln( pKn / P(0) ). Then^ 

I\ = J Etn +tn) > A}l{max B(s)< ^;rn < s <t-L}~\dt. 
f„+L 
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Figure 5. Important time instances of the P(t) process 

Tx+i+L 

Define a new Brownian motion M» (r ) = B(t + („)- B(t„ ) ? which has the same drift and volatility 

as B(t) (Karlin and Taylor, 1975). In terms of the process W„(t), Equation (7) becomes: 

I'„ = ] Ej\p(OeW»u-'°}-K, , ] l {Wn(t-tn) >A|-B(fn)}l{maxW„a)< 4-#J:0< k < t - L - t n }  
L+L LL J 

dt, 

since P ( t )  =  P ( 0 ) e  =  P ( t n ) e  has the same distribution as P ( t n ) e  '  given P(tn). 

Define Ô„(t) = P(t„)e ' as a GBM with respect to the Brownian motion Wn(t). Also we 

define a new variable, u = t — tn, and finally after discounting all the shortage to the origin (at the 

time tn), Equation (7) can be written as: 

/ ' „  =  $ e - r u E [ [ Q n ( u ) - K „ ] \ { Q n ( u )  >  /£„}!{max<2n(s) < pKn :0< s <u-L}\du. (8) 

The integral in this equation can be evaluated by simplifying the joint probability of the 

Brownian motion and its maximum over different time periods. Chuang (1996) first presented this 
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joint probability distribution, and then used this distribution to value the knock-out barrier options, 

particularly the down-and-out call option. Appropriate changes could be made for the up-and-out call 

option. 

4.1.1 Application of partial barrier call option value 

A barrier option is a path dependent option where the payoff depends not only on the final price of the 

underlying asset but also on whether or not the underlying asset has reached some other "barrier" 

price during the life of the option (Rubinstein and Reiner, 1991). Barrier options are classified as in 

options or out options (Rich, 1994) where the out feature causes the option to terminate immediately 

if the underlying asset reaches the specified barrier price. In addition, if the initial price of the asset is 

below the barrier price, it is called an up option. Hence the up-and-out option is worthless if the asset 

price rises to the barrier. Heynen and Kat (1997) give an explicit analytical equation for the up-and-

out call option value. Notations used by them are specified here. It can be shown that the results 

obtained by using Chuang (1996) are exactly the same as in Heynen and Kat (1997). For the up-and-

out option, define 

S0: Initial price of the stock, 

t\: Arbitrary time before the expiration when the monitoring ends 

T: Expiration time 

K: Strike price 

H: Barrier price 

/j: Drift parameter 

<y. Volatility parameter 

y: Growth rate 
<t2X 

7 = M + — 
v 1 y 
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Then assuming the stock price follows a GBM process with drift [l and volatility <7, the price 

of the up-and-out call option is given by: 

E[(ST  -  K)[{ST  > K,  max S, <  H,0< t < f,}] 

Z 

v 1 y 

H 

V ^ o  J  
V 

\ / 

+e~yrK 
( H )  
— V 
A y 

V f 2 i  e  2 ' 
(9) 

Here, y / ( x , y , p )  is the cumulative distribution function of the standard bivariate normal 

distribution with correlation coefficient p. And, 

-In 
d, =- v^o y 

+  ( y +  a 2 1 2 ) T  

-In 
z / / x  

V^„y 

a j f  

+  ( y + a 2  / 2 ) r ,  

<7^ 

d^ — J. —<y~Jr 

e2 =ex-aJT, 

2 In 
v^o y 

" 2 e 1 ^ 

—In 
/,=• v^o y 

+ 21n 
z / / x  

v^o y 

crVf 

+ (y+cr !2)T 

With respect to Equation (8), the terms defined by Heynen and Kat (1997) have following 

correspondence: 

ST Qn(u)\ K^>Kn\ H pKn\ t]<rJ>u — L', T «; S0 <-> P(tn). 
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The expansion policy specifies v ^ as the ratio of successive capacity levels. We also know that 

P(tn) = pK„ i, because t„ is the expansion epoch determined by demand reaching the level of pKn_,. 

Hence exploiting the correspondence between the Equations (8) and (9), we have that: 

er" ( 1 yf 

-In + (7+ ? )" In (v) - (7+ —)(« - L) 

a-Ju T-JU - L 

u — L 

-ln| — J + 21n(v) + (7+-y)w 

<7 Vu 
u - L  

a^lu - L ' V « 

-In - + (/-—)« in(v)-(Z-—-)(t,-L) 

(tVM O y j u - L  
u - L  

¥ 

-In 
er 

+ 2ln(v) + (y-~)u _ln _ (j,_ —)(« - L) 

O-Ju O s j u - L  
u - L  du. 

(10) 

Now, going back to Equation (4), we evaluate the second term of the right hand side of 

Equation (4) in a way similar to above. We have that, 

/: = E 
Tn+l+L 

J P{t)dt 
t„+L 

After similar steps as for /'„, we have that, 

je ™ Qn(u)\{max Qn(s) < pKn, 0 <s<u- L}du 

= je ru E^Qn{u)\{max Q„(s) < pKn,0< s < u-L]\du 

Once again we use Heynen and Kat (1997), and find that the above expression is equal to: 
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I n  ( v ) - ( y + ^ - ) ( u - L )  

V 

^Z+1 / \ 

z. W 

( ID 

V J 

where <p( ) is the standard normal distribution function. 

The final service level constraint in Equation (4) is now expressed as: 

g(p,v) = (expected unmet demand during expansion cycle) 

— S(expected total demand during expansion cycle) < 0 (12) 

where the first term is /'„ which is evaluated using Equation (10) and the second term (total demand 

during the expansion cycle) is 12„ which is evaluated using Equation (11). 

As seen from Equations (10) and (11), the value for the service level does not depend on the 

value of n. Hence the expression for the service level constraint is the same for all the expansion 

cycles. The expected shortage in our model depends on both the decision variables. In fact, this is 

consistent with the expression for the capacity utilization without lead times Whitt (1981), which 

involves both the timing and the size parameter of the expansion policy. 

4.2 Analysis of the infinite time horizon expansion cost 

Now that the expression for the service level constraint is obtained in terms of the policy parameters 

(i.e., the timing and size parameters), in this section, we will derive the expression for the infinite 

time horizon expansion cost in terms of the same decision variables. Starting from the problem 

defined in Equation (3), we will analyze the expression for the expansion cost. In finding this 

expansion cost, the implicit assumption made is that the total cost of expansion is incurred at the 

beginning of the expansion project. Hence if the n"1 capacity expansion starts at time tn, then the total 
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cost of this nh expansion occurs at time t„, and since our assumption is that the expansion lead time is 

fixed, this is not a critical assumption. 

Now at time Th the total costs (TC) incurred are the actual cost of expansion (from the initial 

capacity position of K0 to the new capacity position of Kj), because of the start of the expansion 

project; and the total cost of all the future expansion discounted to time Th 

TC = E[e'rT^TCT 

= E[e~rT> ]{kX[' + Eh [e-r<T^' )]TCT } , 

where is the total cost from the first expansion onwards with the future costs discounted to 

time T,- X, is the size of the capacity expansion; and the cost of second capacity expansion is first 

discounted to time T, and then the total cost at time 7, including the cost of expansion is discounted 

to time 0 (zero). Also, = _^o ~ 

Now the infinite cost from time T2 can also be expanded in terms of cost of expansion at time 

T 2  and the further infinite horizon cost, so that ~~ ^ X 2  
+ Et: Ie 3 \TCr Then the expression 

for the expansion cost can be written as an infinite telescoping series of costs: 

TC = E[e~r'^ ] jfcX," + + E, + EL [e^-'^kx: +...}}}j. (B) 

4.2.1 The discount factor 

The stochastic component in Equation (13) is the Laplace transform for the hitting time of the GBM. 

However, for each expansion project, the time basis for the expected value of the hitting time for the 

GBM is shifted to the (known) time when the current expansion project started. For each of these 

expected values of the exponential of the hitting time, the time 0 (zero) value of the GBM process is 

pKn., and the hitting time is the time for the process to hit the value of pKn for the first time. This 
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expected value of the exponential of the hitting time can be simplified using a similar technique used 

during the analysis of the service level constraint. There, whenever we shifted the time basis (the 

origin) of the GBM process to a new time, we defined a new Brownian motion, which had the same 

drift and volatility as the original Brownian motion. 

For example, consider the start of the first capacity expansion project (refer to Figures 1- 4). 

We are at time tj, where the value of the GBM has just hit pK„ and has triggered the first capacity 

expansion. From t,, the time until the next capacity expansion starts is equal to T2-th and hence the 

discount factor for the second capacity expansion cost has this time factor. Here T2 is the start of the 

next capacity expansion- it is the time when the GBM process hits the value pK}. In effect, the time 

difference between the successive starting points of expansion projects is the time it takes for the 

GBM process to go from pK0 to pKh 

However, for discounting the cost of second expansion, our time origin is t,. So we define a 

new Brownian motion process that starts at time t, with initial value such that the corresponding 

GBM has the value of pK0. For the new GBM (corresponding to the new Brownian motion), the time 

to hit pK, is a hitting time which is same as 7V//. And for this new Brownian motion, the expression 

for the Laplace transform of the hitting time is given by (Karlin and Taylor, 1975; and Borodin and 

Salminen, 2002): 

Similarly, consider the cost of the third expansion being discounted to time t2. The discount 

factor for that could be calculated using the method described above. At time t2, the GBM process has 

a value of pK,. We want to find the discount factor for the cost of third expansion that will be 

incurred at time 7?, the start of the third expansion. Once again we define a new Brownian motion 

E  e  r T ( p K ^ ]  \ p { t ] )  =  p < ( 0 )  =  p K t  
Of 

y p K j  W 

where A 
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starting at time t2, with an initial value such that the corresponding GBM process has a value of pKh 

and find the Laplace transform of the hitting time: the time required for the new GBM (which is 

derived from the newly defined Brownian motion) to reach the value of pK2. Once again, we have: 

'pK, ̂  

y p K 2  j  

f j 

In fact, using the same technique we can see that all these expected values of the exponential 

of the difference between the hitting time and the known time, which are the discount factors for the 

successive capacity expansions, are in fact the same. That is to say that, 

E,[E ]  =  EL :  [G- 'W] = EL  [E"N ,^ 'V ] . . .  =  
r(7W3)i 

(14) 

4.2.2 The expansion cost 

Now that we have the expression for the discount factor in terms of the policy parameters (Equation 

(14)), we attempt the same for the actual cost of expansion. As described earlier, because of 

economies of scale costing, the cost of expansion is given by Equation (2). We also know that 

•^l = - ~ *o(v ~ 1) . Similarly the sizes of successive expansions are given by: 

X2  — K2  ~ = vKt - AT, = V 2 K0 -  V Kq = K0v(v -1). 

X3 = K3  -  K2  = ̂ 0v2(v-l). 

X4  = K4  — K3  = A^0v3(v —1). 

= V'(v-U;»> 1 

Hence, the cost of the zi'h expansion will be 
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And the total cost from the first expansion onwards, given by Equation (13), discounted to time T, 

can then be written as: 

TCt =kX: +Etyr(T^)]![kX^ +ElJe-ra^)]\[kX% +El%[e'riT^)]{kX'; +E, [e 

=  k ( K 0 v ~ ] ( v - 1 ) )  +  

EJe-^-^]{t(%y-'(y-l))" + 

+ 

Etn[e-riT»-'")]... + }}} }. 

And applying Equation (14), the above equation becomes: 

/>-!))"+|1 TCt - k ( K 0 v  '(v — 1)) +|—j { k ^ K 0 v ~  1 (v — 1)) +|—j {/.(A^v3 1 (v — 1)) + 

j {^(^0
v41 (v — i)) + +|— U'(Vnl(v-D) •••+ }}} } 

= g Wo(v-nrK'T. 
n = 0 

We can see that the above expression converges only if a < A, which is always satisfied (for 

any r>0, A> I ; also a</, so the condition a < A is always true). Here we note that for A>1, we must 

have r>y(Karlin and Taylor, 1975). So now we have a geometric series. Hence the above expected 

total cost equation becomes: 

TCT = 
r !  l - v " ~ À  

In fact, this equation of the expected total cost is same as the infinite horizon cost obtained by 

Bean et al. ( 1992), and also by Ryan (2004), even though the former model did not consider the lead 

time and the latter model restricted p<\. Our equation was derived independently of these two 
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models. And since we consider the case of p > 1 also, we have in effect generalized the cost equation 

to the unrestricted p case. 

Lastly, the simplified expression for the term 1 ] could be found using the fact that this 

is just the Laplace transform of the hitting time for a GBM process starting at time 0 (zero) with value 

K0, and is the time needed for the process to hit the value pK0 for the first time (this is the time for the 

first capacity expansion to start, T,). Hence this expression is given by: 

E[e~rT>] = E[e-rn»K°]  \ P(0) = K0] = K0 
P~* 

Going back to the Equation (13), the final expression, in terms of our policy parameters, is: 

As discussed in the Chapter 1, this expression of the infinite time horizon total cost of 

expansion is our objective function for the non-linear program in terms of the policy parameters, p 

and v. The optimal values of the policy parameters must minimize this total cost of expansion and 

also must satisfy the constraint of maintaining the service level. The expression for the service level 

in terms of the policy parameters was found in Equation (12). Therefore, the optimization problem for 

our capacity expansion policy becomes: 

Min f ( P , v )  

subject to 

g ( p , v > < 0  

v > 1, p > 0. 

Here, the expression for the infinite time horizon expansion cost objective function is 

obtained from Equation (15) and the service level constraint expression is obtained from Equation 

(12). As explained earlier, the constraint P - ®  is more general in the sense that when p>l, then it 

means that the service provider has to start the next expansion project with some initial shortages; 
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however when P -1 , then the next expansion project is started no later than when the demand hits the 

current capacity position. Also, since we are considering only the capacity 'expansions', we allow 

v a l u e s  o f  s i z e  p a r a m e t e r  v  s u c h  t h a t  v > l .  
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CHAPTER V: SOLUTION METHODOLOGY AND NUMERICAL RESULTS 

In the last section of the previous chapter, we formulated our optimization problem. Equation (16) 

mathematically states the capacity expansion problem we are solving. The objective function is the 

infinite time horizon cost of expansion (indicated by the function f(p, v)). The main constraint of the 

problem is the service level limit in each expansion cycle. We want the shortages in each expansion 

cycle to be less than or equal to some specified value (which was finally converted to the expression 

g(p, v)). Our decision variables are the timing variable (p), which indicates when to initiate the next 

expansion project (as described in Chapter 3, the expansion project is initiated when the demand hits 

some proportion 'p' of the current capacity position) and the size variable (v), which indicates by how 

much to increase the capacity (recall that the new capacity will be some proportion 'v' (> 1) of the 

current capacity position). Moreover, as seen from Equations (15) and (12), both the objective 

function and the constraint equation are functions of the decision variables. The complexity of the 

problem in Equation (16) is evident from the fact that it is a non-linear optimization problem with a 

rather difficult constraint expression. In this chapter, we discuss the solution methodology used to 

solve the problem. We look into the steps involved in optimally finding the values of our decision 

variables. Also, we numerically solve this optimization problem under various conditions of the other 

problem parameters and discuss the results. 

5.1 Optimization technique- Cutting plane algorithm 

We used the well-known cutting plane algorithm to solve the optimization problem in Equation (16). 

As seen from Equation (12), the constraint equation involves integrals of bivariate normal distribution 

functions, and hence finding the partial derivatives of the constraint equation is difficult. Since we are 

using the financial option pricing theory to model the constraint equation, we might have used what 

are called 'Greeks' (Rubinstein and Reiner, 1991) to find the gradients of the constraint equations. 
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'Greeks' are the partial derivatives of the financial option price with respect to option parameters such 

as the stock price, volatility etc. These 'Greek' letters are defined and their expression found to a 

great detail for the regular 'vanilla' options. However, for exotic financial option like the partial 

barrier option we are using in our model, we could not find any published work about the Greek 

letters. And since the gradient of the constraint equation could not be found readily, the usual 

gradient-based optimization methods could not be used for our problem. We then tried solving the 

Lagrangean dual of the original optimization problem of Equation (16). However, once again because 

of the complexity of the constraint equation, the dual problem could not be solved. Hence to 

approximate the Lagrangean dual problem, we used the cutting plane algorithm (which Zangwill 

(1969) calls the 'dual cutting plane algorithm'), which bypasses finding feasible directions at each 

step of the problem (Bazaraa et al., 1993). This algorithm just cuts off infeasible solutions in each cut 

and converges to the optimal solution (Kelley, 1960). Via the proof by Zangwill (1969) of the 

convergence of this algorithm, which assumes convexity, the optimality of the solution found by this 

algorithm is guaranteed. 

5.1.1 Convexity 

One of the primary requirements for the convergence of the cutting plane algorithm for a 

minimization problem is the convexity of the objective function and the constraint expression. We 

were able to find evidence only of pseudo-convexity of the objective function. The details are 

included here: 

Definition'. Let S be a non-empty open set in E„, and let/: S Eh be differentiable on 5. The function/ 

is said to be pseudoconvex if for each xt, x2 in S, with Y/"(4)' (*2 
- xi ) - 0 , we have f(x2 )-/(•*i X or 

equivalently, i f f ( x 2 ) <  f i x i ) ,  then V/(%,)'(x2-%,)<0 (Bazaraaet al., 1993). 

For the objective function given in Equation (15) we have: 
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a(v-l) \d—i \ 

Sf -Ap-*-\v-\y 

1 - V 

Sp 1 —v° 2 

Let point X; = (p,, v,j and x2 = O2, v2j and suppose that/fx2j< f(xj). 

V/(p,v)' = 

r a y )  

Sp => V/Cx,)' = Sp 

Sf 
=> V/Cx,)' = 

Sf 

V Sv ) I Sv , 

Then, V/ (jc, )' (x2 - x, ) = 
Sf 

Pi 

dp 
1 

-J 

0>2 -Pl)+ 
8f_ 

Sv 
(v? -V,) 

-A(p2 - p,) ( A  — a )  

(v,-l) 

This expression is negative if 

1 

(v,-1) 

(A — a) 

( ] - V , y  

A 

\ A+\ ( v ,  -V . )  

(v2 -v,)< — (p2 -/?,) 
Pi (17) 

/-1 'j 1 , —> 0, that is : a 5 >0. Tf , , . , 
Consider the case where (1 - v, )( v, -1) If v2 > v, (this means that 

the left hand side of the inequality is positive), then f(x2)< f(xj) implies that p2 » pi and the 

inequality (17) holds. Even with v, > v2 (the left hand side of the inequality is then negative), to 

satisfy the condition that f(x2)< f(xj), although we need p: > p2, numerically, for the values of 

parameters tested, the inequality (17) holds. In this numerical analysis, we sampled some numerical 

values of the parameters and tested the inequality (17) for each set of values. We found that the 

inequality (17) holds for each of the sampled numerical values. The range of parameter values from 

which this sample was taken: the economies of scale parameter (a) varied between 0.7 toi, A from 

1.01 to 3, p from 0.001 to 5 and v from 1 to 10. 
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so for pi = p2, v2 - v/ > 0, and the inequality holds. For the case where Now consider gv 

the p values are not the same for the two points, we once again sampled numerical values for the 

parameters from the range mentioned above and found, numerically, that the inequality holds for all 

the parameter values tested. Hence we have some evidence of the pseudoconvexity of the objective 

function. We note that the partial derivatives of the objective function with respect to the decision 

variables are complex and hence no conclusions could be drawn analytically. 

Once again, owing to the complexity of the constraint equation, analytical proof of convexity 

is difficult. Atlason et al. (2004) discussed a numerical method for checking whether a function is 

concave. Via Theorem 9 of their work, they proposed solving a relatively simple linear program (LP) 

to check for concavity of any function. So this method can be used to check convexity of a function 

by just a change of sign. 

The idea behind this method is that if a one-dimensional function is concave then it is 

possible to set a ruler above each point and rotate until the function completely lies below the ruler. 

This can also be done when dealing with functions of higher dimensions- then the ruler takes the form 

of a plane (for two dimensions) or hyperplane (for higher dimensions). This idea is illustrated in 

Figure 6 below. 

Figure 6. Hyperplanes below which a concave function lies (here x = (p, v)). 



50 

The LP proposed by Atlason et al. (2004) changes given function values so that a supporting 

hyperplane for the convex hull of the points can be fitted through each point. The objective of this LP 

is to minimize the change in the function values that needs to be made to accomplish this goal. The 

LP to test the convexity of the service level constraint expression of our problem is formulated as 

(Atlason et al., 2004): 

min £| b{  | 
J=1 

subject to 

a0i+(a')[p' v'f =-g(p',v') + b i  Vie{l,.i) 

a0i+(a')[pJ vJf =-g(pJ ,vJ) + bj V z'e {I,..!}, Vy'e {1,.. . k } , j * i  

Here, k is the number of sampled points. To linearize the objective function, the standard 

trick of writing bi = b* - b~ can be adopted and then we have 

IA 1= + b, , where bj and bT are non negative. The decision variables are: 

a0i  G R, i G {1 ,...k} : intercepts of the hyperplane, 

a' G R2,iG {l,...k} : slopes of the hyperplane and 

b f , b f  e R,ig {1 ,...k} : change in the function values. 

Atlason et al. (2004) also proved that when the optimal objective value of the LP is 0, then 

there exists a concave function such that it has the same value as the function in question at all the 

points sampled. 

Atlason et al. (2004) solved a call center staffing problem using cutting plane algorithm. The 

authors proposed solving the linear program after each of the iterations of the cutting plane algorithm 

to check for concavity. We applied this method to our objective function and constraint equation after 

changing sign of the value of the equations. As proposed by Atlason et al., after each iteration of the 

cutting plane algorithm the solution of that iteration was included in the set of points at which the 

linear program was tested. The solution of that linear program was zero, so according to Theorem 9 
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and the succeeding corollary of Atlason et al. (2004), there exists a concave function that has the 

same value as the function in question at all the sampled points. At every instance, the constraint 

function and the objective function for our problem passed this test of convexity. A sample of the 

linear program used to prove this concavity is included in Appendix IV. The linear program verified 

the concavity of the function based on five sampled points for one instance of the problem. 

5.1.2 Steps involved in the cutting plane algorithm 

Bazaraa et al. (1993) discussed the dual cutting plane algorithm for non-linear convex programming 

problems and proposed the following steps involved in the same. Following Bazaraa et al. (1993), the 

steps of the dual cutting plane algorithm as it applies to our problem are as follows: 

Initialization step: Select an initial feasible point (Po'vo)-

For each iteration k, solve the Master Problem for z and u, which is given as: 

Maximize z 

s.t. z< f(Pj,Vj) + ug(pj,Vj) for y = 0...k -1 

u  > 0  

Let ( z k ,  u k )  be the optimal solution. 

Now using the optimal value of the penalty variable uk, solve the Sub Problem: 

Minimize f(p,v) + ukg(p,v) 

s.t. p> 0,v>I. 

Let (Pk'vk ) be the optimal solution for the sub problem. 

Let 0(uk) = f(Pk>vk) + uk8(Pk>vky 
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If zk @(uk ) then stop. Otherwise continue with the Master Problem with added constraint: 

Figure 7. Cutting plane algorithm steps. 

As with our problem, the feasible set of a nonlinear program may sometimes be difficult to 

handle. The cutting plane algorithm, instead of attacking the feasible set directly, start with a simpler 

set that approximates the feasible set. From this feasible set, a point is selected (which, in our case, is 

the optimal solution to the master problem). If this point lies in the original feasible set, the algorithm 

stops and we have found the optimal solution to the original problem. To test whether the point lies in 

the feasible region, a solution test is performed, which corresponds to checking the equality of Sub 

Problem solution and the Master Problem solution of that iteration ( zk ~ ®(uk ) ). If the solution test 

fails, indicating that the current solution does not lie in the feasible region, this point is cut off from 

the set that approximates the feasible region (hence the name, cutting plane algorithm). This is 

achieved by adding the constraint z - f  ( P k ' v k ) +  u 8 ( P k > v k )  to the Master Problem. This gives a 

new approximation of the feasible region, which does not contain the previous infeasible solution. 

The algorithm continues until a point is found which passes the solution test. 

From Figure 7, we notice that the Master Problem is a linear program the solution for which 

gives an upper bound for the solution to the Sub Problems. Moreover, the Sub Problem constraints 

are linear with a non-linear objective function. Hence the total computation time to solve these Sub 

Problems is less than that for the original problem. Finally, Zangwill (1969) provides a proof of the 

convergence of the cutting plane algorithm, which means that the optimal solution to the original 

problem in Equation (16) will eventually be found, provided that the problem is feasible. 
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Using the cutting plane algorithm described in Figure 7, we solved the non-linear program of 

Equation (16). In the next section, we present some of the numerical results based on various problem 

parameter values. 

5.2 Numerical results 

We start with a numerical analysis of the service level constraint formulated in Equation (12). Later 

on we apply the cutting plane algorithm described in the previous section to the problem defined in 

Equation (16). We show how the cutting plane algorithm converges for our problem instance. 

The software package Mathematica 5.1 (Wolfram Research Inc, 2004) was used to obtain 

numerical results for the model. Evaluating Equation (12) involves integrating the bivariate normal 

distribution functions over infinite regions. Initially troubles were encountered when the built-in 

functions for evaluating the bivariate normal distribution were used. Also, the method of directly 

evaluating the integrals involved in the bivariate normal distribution failed for our model. Finally the 

method prescribed by Rose and Smith (1996) was used. In this method, the authors define the 

multivariate normal distribution function in terms of matrices for mean and variance. This method is 

more general than using the built-in bivariate normal distribution function because using this we can 

in fact model the multivariate case. The authors define a function 'A/VW which constructs the 

probability density function of a multivariate standard normal distribution using the mean vector and 

variance-covariance matrix. The authors proceed by setting up a function MVN[x, fj, var] to calculate 

the «-dimensional multivariate normal distribution for the vector x = [xh ...x„] defined everywhere in 

the M-dimensional real space, the mean vector |i = [/// //„], and a symmetric positive-definite 

variance-covariance matrix var: 

, I 7" I—(x-n).var~'.(x-|i)] 
MVN[ x ,  fi,var] = 2n \JDet[\ar ]*e 2 
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Then for a standard normal bivariate normal density function (x = [xh x2\, n = 2), with zero mean 

vector, variance elements unity, and correlation coefficient 77, the MVN function returns: 

U ]2-2^1a2+.V2
2 Mat;/2-!)) 1 

V 1 -772 
MV7V[x, mu, var] = 

2 n 

This density function can then be integrated to find the probability distribution function. This 

method was found to be more efficient than the built-in procedure in Mathematica 5.1 (Wolfram 

Research Inc, 2004), specifically when integration of the multivariate normal distribution function is 

involved. While solving the iterations of the cutting plane algorithm, the Master Problem was solved 

using the software package UNDO. We note that since the Master Problem is a linear program with 

finite number of constraints, it can be solved using any software package available. 

5.2.1 Results regarding the constraint equation 

We first examine the effect of the timing and size parameters on the service level constraint. We 

know that, as the value of timing parameter p increases, we are in effect delaying the start of 

expansion project further and further. Hence intuitively, the shortage violation function g(p, v) should 

become less and less negative and in fact become positive corresponding to constraint violation for 

large values of the timing parameter. Similarly, as the value of size parameter v increases, since we 

are having larger expansions each time, we expect the g(p, v) to become more and more negative 

(hence, more and more favorable). From Figure 8 (a and b) below, we see the quantitative behavior of 

our service level constraint equation. 
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Figure 8a: Relationship between timing parameter and the amount of constraint violation. Parameter values: 

size factor (v) = 6, drift (fi) = 8%, volatility (a) - 20%, lead time (L) = 2 years, interest rate (r) = 11%. 
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Figure 8b: Relationship between size parameter and the amount of constraint violation. Parameter values: time 

factor (p) = 1.001, drift (/u) = 8%, volatility (a) - 20%, lead time (L) - 2 years, interest rate (r) = 11% 

As seen from these two figures, numerically the constraint equation behaves the way it is 

expected to. Hence, we have that the constraint equation becomes more negative with decreasing 

values of timing parameter and/or with increasing values of size parameter. However, from Equation 

(15), we see that the infinite time horizon expansion cost decreases with higher values of timing 

parameter and lower values of size parameter. This is shown in Figures 9 (a and b). The pull in 
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opposite direction for the values of timing and size parameter is what sets up an interesting 

optimization problem. 
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Figure 9a: Relationship between timing parameter and the infinite time horizon cost of expansion. 

Parameter values: size factor (v) - 1.5, drift (/J) - 8%, volatility ( G) — 20%, lead time (L) = 2 years, interest 

rate (r) = 11%. 
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Figure 9b: Relationship between size parameter and the infinite time horizon cost of expansion. 

Parameter values: time factor (p) = 1.5, drift (fi) = 8%, volatility (a) = 20%, lead time (L) = 2 years, interest 

rate (r) = 11%. 

Because of the complexity of the constraint equation, we could not obtain the contour plots 

for the relationship between the two decision variables for a given value of the constraint violation. In 

the next section, we discuss the application of the cutting plane algorithm to the problem defined in 

Equation (16). 
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5.2.2 Optimization results 

We applied the dual cutting plane algorithm described in Section 5.1 to our capacity expansion 

problem (Equation (16)). While solving the Sub Problems of Figure 7, we added a dummy constraint 

of P - 2 for each of the iterations. This was done to reduce the number of iterations required for 

convergence of the cutting plane algorithm. As seen from the Table 1 below, the first iteration of 

algorithm minimizes the total cost (Equation (15)) subject to the constraints on the decision variables 

(  p<2 ,p>0 ,v>] .  ) Here, with the dummy constraint, the optimal timing variable value of this 

iteration is limited to 2 and hence faster convergence is achieved. The other parameter values used for 

this instance of the problem were: drift (//) = 0.08, volatility ( a) = 0.2, lead time (L) = 2 years, interest 

rate (r) = 0.13 and economies of scale parameter (a) = 0.99. These values were selected 

hypothetically. The first two parameters described the demand process. It means that the demand for 

the capacity has a drift rate of 8%, and the volatility of that process is 20%. To maintain the condition 

that the interest rate be larger than the growth rate (see Chapter 4), we have chosen an interest rate of 

13%. Lastly, the economies of scale parameter value of 0.99 means that there is little cost incentive in 

having larger size capacity additions (refer Equation (2)). The initial feasible point was (p0, v0) = (1.4, 

3.4). The successive iterations and the convergence of the cutting plane algorithm are summarized in 

Table 1. The level of accuracy used for all the numerical studies was up to 3 decimal places. Since the 

Master Problem is a simple linear program, the optimal solution to that is obtained nearly 

instantaneously. However, as the Sub Problem at each iteration involves the expression g(p, v), which 

includes integration of bivariate normal distribution functions, the average computational time 

required to solve each Sub Problem is approximately 2 hours on a Intel© Pentium IV personal 

computer with Windows XP operating system and 1 gigabyte of memory. And as seen from Table 1, 

we solved 8 Sub Problems for this instance of the problem. 
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Table 1. Results of the cutting plane algorithm applied to the capacity expansion problem. 

Iteration Constraint Added Master problem Sub-problem solution 

solution (z, u) ip, v), 6 

1 z < 5.94 - 0.064m (5.94,0) (2, 1.009), 1.782 

2 Z< 1.782 + 1.127k (5.74,3.1) (1.23, 1.008), 3.85 

3 Z< 3.24+ 0.1 96m (5.27,10.348) (0.98, 1.01), 4.21 

4 z< 4.27-0.0054M (4.29, 5.12) (1.1, 1.009), 4.1 

5 z < 3.74 + 0.07» (4.23, 7.017) (1.04, 1.009), 4.19 

6 ;< 3.99 +0.027m (4.228, 8.35) (1.018, 1.007), 4.21 

7 z< 4.12 + 0.01 Iw (4.223, 9.017) (1.06, 1.01), 4.216 

8 z <4.196 +0.002m (4.218, 10) (0.989, 1.016), 4.218 

As seen from Table 1, at the end of the 8th iteration, the optimal objective function value of 

the Master Problem is equal to that of the Sub Problem; hence, we stop and say that the cutting plane 

algorithm has converged. The optimal solution in this instance is the solution to the Sub Problem in 

the last iteration that is, p* = 0.989, v* = 1.01. This means that the service provider should start the 

new capacity expansion project when the demand hits 98.9% of the current capacity position and the 

expansion should be such that after the project is completed, the capacity available is 101% of the 

current capacity position. The optimal value of the objective function f(p*, v*) is found to be 4.26 and 

the value of shortage violation expression g(p*, v*) is -0.0004. 

In a similar fashion the cutting plane algorithm was implemented for different values of the 

problem parameters and the results of these tests are summarized below. Here, we discuss the effects 
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of problem parameters on the optimal timing variable (p )  and not on the optimal size variable (v). 

This is so because there was no clear trend for the optimal size parameter as we varied other problem 

parameters one at a time. We observe that at the convergence of the cutting plane algorithm, the 

shortage violation equation is not satisfied to the same extent in each problem instance. In some cases 

the numerical value of the g(p, v) is -0.02, and in other case it is -4.5e-5, the reason for which is 

unclear to us at this point. 

Effect of the drift parameter on optimal timing factor 

To test how the decision regarding the timing of the new expansions is affected due to change 

in the drift parameter of the demand process, the default parameters values were: volatility ( o) = 20%, 

lead time (L) = 2 years, interest rate (r) = 13%, and economies of scale parameter (a) = 0.99. The 

service level was assumed to be 95%, meaning that the shortages were limited to 5% of the total 

demand during the expansion cycle (S = 0.05). Then values of drift parameter were tested in the 

cutting plane algorithm and optimal values of timing and size parameters were obtained. 

1.5 

S 

0.9 1 1 1 1 1 1 

0 0 02 0.04 0.06 0.08 0.1 0.12 

drift 

Figure 10: Effect of demand drift on optimal timing parameter 
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Table 2: Effect of demand drift on optimal decision variables 

M Optimal p* Optimal v* Zip*, gfp* 

0.02 1.44 2.05 0.892 -0.002 

0.05 1.08 1.363 1.9056 -0.037 

0.08 0.989 1.01 4.218 -0.0004 

0.1 0.956 1.632 17.23 -0.087 

From Figure 10, we can see that as the drift for the demand process increases, it prompts 

earlier initiation of next expansion project. From Table 2, we also observe that the value of the 

objective function, which is the total cost of expansion, also increases as the drift parameter increases. 

This is because of the fact that the infinite time horizon cost of expansion increases with decreasing 

timing variable (p). Higher drift values for the demand process implies a high growth industry. 

Hence, we can see that for high growth industries the optimal timing parameter values get smaller and 

smaller. Here, also we see that it is more and more expensive to meet the service level constraint for a 

demand that is growing fast. 

Effect of demand volatility on the optimal timing parameter 

In the real world, demand fluctuations are common and hence it is critical to study the effects 

of this demand volatility on the decision variables of our capacity expansion problem. Here, the 

numerical values of the parameters used were: drift (//) = 2%, lead time (L) = 2 years, interest rate (r) 

= 13%, and economies of scale parameter (a) = 0.99. The results are indicated in Figure 11. 
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Figure 11: Effect of demand volatility on optimal timing parameter 

Table 3: Effect of demand volatility on optimal decision variables 

O Optimal p* Optimal v* f(p* v*) g(p* 

0.1 2 3.32 0.217 -0.0129 

0.2 1.44 2.05 0.892 -0.002 

0.25 1.135 1.347 1.3968 -0.0093 

0.3 1 1.032 2.114 -0.005 

From Figure 11 and Table 3, we can see that as the volatility of the demand process increases, 

it forces the service provider to initiate the expansion earlier and earlier and also the optimal size of 

the future expansions gets smaller and smaller. Hence for an industry where the demand experienced 

is highly fluctuating, it is optimal to start the newer capacity expansions earlier and not wait for initial 

shortages to accumulate. We also observe that the optimal expansion cost grows along with the 

demand volatility. 

Effect of lead time length on the optimal timing parameter 
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We also studied the effects of the length of the expansion lead time on the optimal starting 

time of the expansion project. Once again, the parameter values used to test this relationship are: drift 

(jj) - 2%, volatility (a) = 20%, interest rate (r) = 13%, and economies of scale parameter (a) = 0.99. 

0.95 ' ' ' ' ' 1 

0 1 2 3 4 5 6 

Lead time (L) 

Figure 12: Effect of expansion lead time on optimal timing parameter 

Table 4: Effect of expansion lead time on optimal decision variables 

L Optimal p* Optimal v* f(P* v*) g(p* y*) 

1 1.477 1.82 0.747 -0.02 

2 1.44 2.05 0.892 -0.002 

2.5 1.13 1.41 1.006 -0.025 

4 1.0 1.008 0.963 -0.0013 

5 0.99 1.004 0.962 -4.5e-5 

From Figure 12, we can see that as it takes longer and longer to complete a given expansion 

project, it is optimal to initiate the expansion project with smaller and smaller initial shortage, in order 

to maintain the given service level. 
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Effect of the allowed shortage on the optimal timing variable 

Lastly, we observe the effect of allowed shortage value (S) on the optimal values of decision 

variables, more particularly, the optimal value of the timing variable. The numerical values for the 

other problem parameters used to study this case were: drift (//) = 5%, volatility (o) = 20%, interest 

rate (r) = 10%, lead time (L) = 0.5, and economies of scale parameter (a) = 0.9. These numerical 

values were selected from the Ryan (2004) numerical analysis. We find that as we allow more and 

more shortage during the expansion cycle, the optimal timing variable value increases. Results are 

indicated in Figure 13. A similar trend was observed in Ryan (2004) though we note that the service 

level equation in Ryan (2004) is different than ours. In Ryan (2004), the service level was defined as 

the total unsatisfied demand per unit of capacity over an expansion cycle. With notation similar to 

our model, for tn + L<t<tn+l + L, the shortage at time t as a proportion of installed capacity was 

defined as: 

r.(f) max[P(0-A"„0] 
K„ 

And from this definition, the service level constraint was formulated as: 

E, 
T,,+] +L J S"(u)du 

max(z„+Z.,r„+l) 

where £ was the specified shortage limit. We also note that because of this definition of the service 

level, the timing policy could be separated from the increment policy. That is, the timing parameter p 

could be optimally evaluated for, independent of the size parameter v, via setting up correspondence 

between this expression for the service level and that for the price of a European call option. 

In our case, we define the service level as the ratio of the total unsatisfied demand over the 

total demand during the expansion cycle (refer Equation (1)). 
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Figure 13: Effect of allowable shortage on optimal timing parameter 

Table 5: Effect of allowable shortage on optimal decision variables 

ô Optimal p* Optimal v* f(P* v*j g(p*, v*) 

0.01 1.36 1.77 2.52 -0.023 

0.02 1.44 2.05 2.517 -0.0635 

0.03 1.447 1.856 2.381 -0.0327 

0.04 1.483 1.8486 2.30 -0.0318 

We note that the convergence of the cutting plane algorithm to an optimal solution is 

dependent on the modeling of the service level equation. We refer to Marathe and Ryan (2006), 

where the service level equation (Equation (1)) was modeled using some approximations. In this 

approach, starting from Equation (1), the numerator was evaluated using the same approach 

mentioned in Chapter 4 for expressing /'„ in terms of decision variables. Hence, after taking 

expectation we have the service level as, 
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P = E 
j',,| min[/>(/),K(l]dt 

= l-£ 

However, an approximation was made for the total demand during the expansion cycle. We first 

approximated the expectation of the ratio as the ratio of expectation and then approximated the total 

demand during an expansion cycle by a term pK„E[Tn+1 - t,J. The service level, after these 

approximations was: 

/V 
pEK,  -/„] 

Then the service level constraint was set up directly such the calculated shortage is less than or equal 

to some specified limit. So instead of having the shortage violation equation g(p, v), we directly had 

the approximated shortage equation. The results from the optimization problem using this direct 

shortage constraint indicated an unbounded solution. By unbounded solution we mean that minimum 

expansion cost was achieved with acceptable service level with unlimited initial shortages, which 

seems unrealistic. Simulation of the GBM demand process was also tried. In this approach, instead of 

analytically finding the service level value via the financial option pricing method, it was found 

through simulation of the demand process. With that scenario, too, we encountered unbounded 

solutions. A complete copy of the said paper (Marathe and Ryan, 2006) is included in Appendix II. 

Finally, having known the trend of optimal solutions vis-à-vis the values of the other 

parameters, we are in a position to draw rich managerial insights from our model. These conclusions 

are discussed in the next chapter. Also in the next chapter we discuss future extensions of our 

capacity expansion model. 
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CHAPTER VI: CONCLUSION AND FUTURE WORK 

Based on the work discussed in the previous chapters, now are ready to draw conclusions for our 

capacity expansion model. The problem parameters and the basic conditions under which we 

formulated the problem were discussed in Chapter 1. Our initial task was to find examples of 

industries where the demand for the capacity follows a GBM process assumption. Towards this, a 

method for checking the GBM fit was discussed in Chapter 2, where we also discussed the case 

where the data series for the observed demand over time has seasonal effects. From the description of 

the problem conditions, we mathematically formulated the infinite time horizon expression cost 

expression (Equation (15)), which was used as the objective function in the optimization problem. 

The service provider for the capacity we are considering in our problem has an obligation to maintain 

a certain level of service. This means that the shortages during any expansion cycle cannot be greater 

than the allowable limit. This service level constraint was formulated using the financial option 

pricing theory (specifically, the Up-and-Out partial barrier call option price) in Equation (12). This 

optimization problem (defined in Equation (16)) was found to be difficult to solve, hence an 

approximation of its dual problem using the cutting plane algorithm was solved, which was discussed 

in Chapter 5. Using the cutting plane algorithm, optimal solutions to our problem were found for 

some instances of the parameter values. The trends observed in these optimal solutions were 

discussed in the last section of Chapter 5. In this chapter, we provide managerial insights based on 

these results. 

6.1 GBM assumption 

Given a data series representing demand values over a period of time for any particular capacity, we 

can check whether this data series satisfies the assumptions of the GBM process. The procedure 

discussed in Ross (1999) achieves this by checking for normality and independence of the log ratios 



(refer Section 3.1). However, this process is complicated when the demand data series has seasonal 

variation. In this case, the seasonal effect needs to be removed before we check the data series for the 

GBM fit. We found that the moving average method for removing the seasonal effects is well suited 

when the data series is to be checked for the assumptions of the GBM process (Marathe and Ryan, 

2005). We then applied this method of deseasonalization and subsequent checking of the GBM fit to 

some actual data series. However, since obtaining data values for the 'actual' demand for capacity is 

difficult, we surrogated that with data values for actual usage (or sale). For example, to check the 

demand data for the electric utility industry, we worked with the monthly consumption data. Out of 

the four data series analyzed, we found that the one characterizing demand values for electric utilities 

in the USA and also the one representing the demand for airline seats (airline passenger 

enplanements) followed the GBM process. The two data series corresponding to the number of the 

registered Internet hubs (to indicate the growth of Internet) and the revenue from the cellular phone 

industry over a period of 15 years (from 1986 to 2001) failed on either the normality test or the 

independence test and hence we could not conclude that these data series' agreed with the GBM 

assumptions. One important reason for the last two data series failing the normality of independence 

test was an insufficient number of data points. Since there were not enough data values the statistical 

tests to confirm the GBM assumptions were not statistically significant. Based on this work, we now 

have a method to check the GBM fit, which works in cases where the demand data series has seasonal 

variation. With deseasonalization of the data series, we smooth out the data series and take away the 

seasonal changes in the values. While planning for capacity over a longer time horizon, this 

deseasonalization is a better technique because the irregularities because of seasonal changes are 

ironed out. This is true because over a longer time horizon (and we are considering an infinite time 

horizon for capacity planning), we don't want our capacity expansion policy to fluctuate with every 

seasonal variation. We are planning for strategic decisions where the seasonal effects from the 

demand has been removed. 
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6.2 Capacity expansion problem 

Focusing on the numerical results obtained in the previous chapter regarding the actual capacity 

expansion problem in this section we discuss the trends in the optimal solution to the problem. In the 

last chapter, we studied the behavior of the optimal solution as we change the values of the other 

parameters one after the other. 

First, we studied the effect of drift parameter of the demand process on the optimal solution 

to the capacity expansion problem. From Figure 10 and Table 2, we found that as the drift parameter 

inc reases ,  t he  op t ima l  va lue  o f  t he  t iming  va r i ab le  (p )  dec reases .  We  reca l l  t ha t  t he  dec i s ion  va r i ab le  p  

represents the initiation of the expansion project in the sense that we initiate the (n+lf expansion 

project when the demand process hits the value pKm where K„ was the capacity position after n 

expansions. This means that the increase in drift is prompting earlier initiation of the new expansion 

project. In fact, at higher values of the drift parameter, the optimal value of the timing variable falls 

below one, indicating that the new expansion is to be initiated before the demand hits the capacity 

position. A higher drift value for the demand indicates a high growth industry. Hence, we can 

conclude that for a high growth industry, the service provider should not wait till there is an initial 

accumulation of shortage before the next expansion project is started. On the other hand, for a low 

growth industry the service provider has more time before the next expansion project is started and 

the expansion could optimally be delayed such that by the time when the next project starts, there 

already is some shortage accumulated. From the data observed for the passenger enplanements in the 

airline industry, we found that the drift parameter for the observed demand was 3.3%; hence the 

airline industry, in terms of passenger enplanements, can be characterized as a low growth industry. 

So for an airline operator following the capacity expansion policy similar to our model, it may be 

optimal to delay the expansion. We note that a similar trend was not observed for the size of the 

expansions. 



The random demand process also implies that demand volatility and its effect on the 

expansion policy are critical. We found that (refer Figure 11 and Table 3), for a highly volatile 

demand the optimal value for the timing variable (p) is smaller than that for the less volatile demand. 

Hence, similar to the discussion above, we can say that for a highly volatile industry (industry where 

the demand for the capacity fluctuates to a greater degree), it is optimal to initiate the next expansions 

even before the demand reaches the current capacity position. A service provider in a more stable 

industry, however, has the luxury of delaying the expansion and can in fact tolerate initial shortages 

before the start of the expansion project. This trend of the optimal solution, though, is the opposite of 

what is observed in the financial options theory where the volatility of the stock price is considered 

favorable and can be exploited by the writer of the option. 

Also from the values of expansion costs optimally incurred (from Table 2 and 3), we can 

conclude that it is more expensive for the service provider to maintain the service level above some 

specified limit in cases where the demand is growing at a faster rate or where the demand is highly 

volatile. 

We also observed the effect of the expansion lead time durations on the expansion policy 

decision variables (Figure 12 and Table 4). It was observed that for industries where it takes a longer 

time to finish expansion projects, the future expansion projects should be started at earlier times 

without any initial shortages. However, for industries where the expansion projects can be completed 

in less time duration, the service provider can afford some initial shortages. 

Lastly we quantified the effects of the service level limit itself on the expansion policy and 

found that more tighter service level goal requires the future expansions to be started early, before the 

time the demand hits the capacity position; moreover, it also incurs higher expansion costs. On the 

other hand, when the service provider can allow larger total shortages during the expansion cycle, 

then the newer expansions could be started later. For a more relaxed service level goal, the expansion 

cost optimally needed is less than the one for the higher service level case. 
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We can clearly see that all these results are intuitively logical. We expected that when the 

lead times are larger, and the probability of higher shortages during the expansion cycle is bigger, the 

service provider would want to start the expansions earlier. And this is what we found from the 

numerical study. Similarly, when the service provider can tolerate lower values of achieved service 

level, we expected the timing variable value to be larger indicating a delayed expansion. Delaying this 

expansion would reduce the total expansion cost because of the discounting effect and although this 

delay would reduce the service level, and this would not be a big concern because the service 

provider can afford that. Once again, our numerical studies confirm this behavior. 

Hence we can see that using our capacity expansion model, the service provider can 

optimally choose an expansion policy, which would be based on the numerical values of the 

parameters observed in the industry in which the service provider operates. This model takes into 

effect the uncertainty caused because of the stochastic nature of the demand and still optimally finds 

the policy parameters for the concerned planner of the capacity. 

In the next section, we discuss some of extensions to our current model. 

6.3 Future extensions 

The current formulation of the capacity planning model works under the conditions mentioned in this 

dissertation. During these stated assumptions, this model helps the service provider in developing an 

optimal capacity expansion policy that will minimize the total cost of expansion. However, we can 

envision multiple directions in which this basic model can be extended to make it more realistic. 

Some of these directions are discussed in this section. 

In our model, we assumed that the demand for the capacity follows a GBM process where the 

drift and volatility parameter of the process remain constant throughout the period of analysis. In 

many industries, this assumption may not be satisfied. Returning to the case of the airline industry, 

we saw that during the initial years of this century, the demand for airline seats actually was very low 
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after the incidents following 9/11 terrorist attack. Only during recent years has the demand started to 

rise. To realistically consider a situation like this, one may consider a demand process that can model 

certain jumps during the time of analysis. One example of such a demand process would be a GBM 

process with jumps. The capacity expansion model then can be modified to consider properties of this 

different process. Considering a different distribution function for demand may mean that we cannot 

use the financial option pricing theory to model the service level and have relatively simpler 

expression for the infinite time horizon expansion cost. However, since many authors have 

formulated capacity expansion models using different demand processes, we expect this extension to 

be a relatively easy one. 

Secondly, in the current model, we are considering only capacity expansions. This means for 

the airline industry where we are planning for the number of airline pilots, we are currently 

considering only hiring of new pilots. In the current formulation we are deciding when to hire these 

new pilots and how many to hire. However, for a situation described above, where the demand for the 

airline seats have a downward trend for considerable time, the service provider may want to cut costs 

by laying off some of the pilots and reducing the manpower. This cannot be achieved with the current 

problem. Hence in the future the definition of size parameter (v) can be modified to reflect firing of 

pilots as an admissible policy and/or consider attrition due to retirement of pilots. Retiring part of 

capacity over a period of time has been considered in some capacity expansion models. In fact, this 

could mean that we have to move away from the stationary expansion policy considered in our 

current model, because the service provider may want to hire pilots during some expansion cycles and 

may want to lay off pilots during some expansion cycles when the demand has been low. This would 

make the model considerably more difficult to formulate. 

In our model, we have ignored the impact of price elasticity through our assumption that 

demand grows independently of capacity. This is true for some industries such as electric utility. 

However, for some industries, the demand is dependent on the available capacity and hence the price. 



In the future, this price elasticity could be included in the model. Inclusion of this will change the 

demand distribution to an extent. And since we use the properties of the demand distribution to arrive 

at analytical expressions for the service level and the expansion costs, this extension to the model 

could lead to substantial complications in the current analysis. 

Lastly, for the model described in this dissertation, we considered that the expansion lead 

time remains constant. This was done to transfer all the uncertainty to the demand process. In the 

future, to include the uncertainty effects due to the lead time, a random lead time could be considered. 

Specifically, an exponentially distributed expansion lead time that is independent of the demand 

process could be considered for the capacity expansion model. We think that this could be easily 

accomplished. Also, in reality, because of production limitations or other reasons, the lead time may 

depend on the size of expansion. The current expansion problem does not consider this case. Making 

the lead time dependent on the size of the expansion can be interesting and more realistic. This would 

change the expression for the service level because of the change in the integration limits. We think 

that this change would not be very difficult to incorporate in the model. However, this would be 

harder than making the lead time exponentially distributed. 



73 

REFERENCES 

1. Angélus, A. and E. L. Porteus, (2003)."On capacity expansions and deferrals." Working 
Paper, Graduate School of Business, Stanford University. 

2. Atlason, J., M. A. Epelman and S. G. Henderson, (2004). "Call center staffing with 
simulation and cutting plane methods." Annals of Operations Research 127, 333-358. 

3. Barker, L., (2000). "Pilot shortages: How to reduce their Impact on rural and smaller market." 
Committee on Commerce, Science and Transportation, Subcommittee on Aviation and Aeronautics 
(Viewed June, 2005) http://commerce.senate/gov/hearings/0725bar.pdf. 

4. Bazaraa, M. S., H. D. Sherali and C. M. Shetty (1993). Nonlinear programming: Theory and 
algorithm. New York, John Wiley and Sons. 

5. Bean, J. C., J. L. Higle and R. L. Smith, (1992). "Capacity expansion under stochastic 
demands." Operations Research 40(2), S210-S216. 

6. Bean, J. C. and R. L. Smith, (1985). "Optimal capacity expansion over an infinite horizon." 
Management Science 31(12), 1523-1532. 

7. Birge, J. R., (2000). "Options methods for incorporating risk into linear capacity planning 
models." Manufacturing and Service Operations Management 2(1), 19-31. 

8. Borodin, A. N. and P. Salminen (2002). Handbook of Brownian motion: facts and formulae. 
Basel, Boston, Birkhàuser. 

9. Buchan, J. and N. Edwards, (2001). "Nursing numbers in Britain: The argument for 
workforce planning." British Medical Journal 320, 1067-1070. 

10. Buzacott, J. A. and A. B. Chaouch, (1988). "Capacity expansion with interrupted demand 
growth." European Journal of Operational Research 34, 19-26. 

11. Cakanyildirim, M. and R. O. Roundy, (2002)."Capacity expansion and contraction under 
demand uncertainty." Technical paper, School of Management, University of Texas at Dallas. 

12. Carr, P., (1995). "Two extensions to barrier options pricing." Applied Mathematical Finance 
2(4), 1-39. 

13. Chan, B., (2003). "Physician workforce planning: What have we learned? Lessons for 
planning medical school capacity and IMG policies. The Canadian perspective". International 
Medical Workforce Conference, Oxford, UK. 

14. Chaouch, A. B. and J. A. Buzacott, (1994). "The effects of lead time on plant timing and 
size." Production and Operations Management 3(1), 38-54. 

15. Chuang, C. S., (1996). "Joint distribution of Brownian motion and its maximum, with a 
generalization to correlated BM and applications to barrier options." Statistics and Probability Letters 
28, 81-90. 

http://commerce.senate/gov/hearings/0725bar.pdf


74 

16. Davis, M. H. A., M. A. H. Dempster, S. P. Sethi and D. Vermes, (1987). "Optimal capacity 
expansion under uncertainty." Advances in Applied Probability 19, 156- 176. 

17. Dellaert, N. and T. de Kok, (2004). "Integrating resource and production decisions in a 
simple multi-stage assembly system." International Journal of Production Economics 90, 281-294. 

18. Donohue, G. L., (2000). "Testimony before the House of Representatives." Committee on 
Science, Subcommittee on Space and Aeronautics (Viewed June, 2005) 
http://house.gov/science/donohue. 

19. Edwards, J. S. and R. W. Morgan, (1982). "Chapter 4: Optimal control models in manpower 
planning". Optimisation and Control of Dynamic Operational Research Models. Ed. Tzafestas. 
North-Holland Amsterdam. 

20. Erlenkotter, D., (1976). "Coordinating scale and sequencing decisions for water resources 
projects". Economic Modeling for Water Policy Evaluation. Ed. R. M. Thrall. North-Holland 
Amsterdam. 

21. Freidenfelds, J. (1981). Capacity expansion: analysis of simple models with application. New 
York, North Holland. 

22. Goldman, B. M., H. B. Sosin and M. A. Gatto, (1979). "Path dependent options: buy at the 
low; sell at the high." The Journal of Finance XXXIV(5), 1111-1127. 

23. Gomory, R. E., ( 1963). "An algorithm for integer solutions to linear programs". Recent 
advances in mathematical programming. Ed. R. L. Graves and P. Wolfe. McGraw- Hill Book 
Company, Inc. New York. 

24. Hadley, G. and T. M. Whitin (1963). Analysis of inventory systems. New Jersey, Prentice-
Hall Inc Englewood Cliffs. 

25. Heynen, R. C. and H. M. Kat, (1997). "Barrier options". Exotic Options. Ed. L. Clewlow and 
C. Strikland. International Thompson Business Press: 125-138. 

26. Holt, C. C., F. Mondigliani, J. F. Muth and H. A. Simon (1963). Planning production, 
inventories, and workforce. Englewood Cliffs, NJ, Prentice-Hall Inc. 

27. Hopkins, G. E., (2001). "A short history of pilot shortages." Air Line Pilot February 2001. 

28. Hull, J. C. (1999). Futures, and other derivatives. New Jersey, Prentice Hall. 

29. Kanellos, M., (2004) "Take 2 for PC memory." CNET News.com, (Viewed, June 2006) 
http://news.com.com/Take+2+for+PC+memorv/2100-1004 3-5190234.html 

30. Karlin, S. and H. M. Taylor (1975). A first course in stochastic processes. New York, 
Academic Press. 

http://house.gov/science/donohue


75 

31. Kelley, J. E., (1960). "The cutting plane method for solving convex programs." Journal of 
Society of Industrial Applications of Mathematics 8(4), 703-712. 

32. Kelley Jr., J. E., (1960). "The cutting plane method for solving convex programs." Journal of 
Society of Industrial Applications of Mathematics 8(4), 703-712. 

33. Klemm, H., (1971). "On the operating characteristic 'service level'". Inventory Control and 
Water Storage. North-Holland Publishing Company Amsterdam: 169-178. 

34. Lieberman, M. B., (1989). "Capacity utilization: theoretical models and empirical tests." 
European Journal of Operations Research 40, 155-168. 

35. Manne, A. S., (1961). "Capacity expansion and probabilistic growth." Econometrica 29(4), 
632-649. 

36. Marathe, R. R. and S. M. Ryan, (2005). "On the validity of geometric Brownian motion 
assumption." The Engineering Economist 50(2), 159-192. 

37. Marathe, R. R. and S. M. Ryan, (2006). "Optimal solution to a capacity expansion problem". 
HE Annual Research Conference, Orlando, FL. 

38. Merton, R., (1973). "Theory of rational pricing." Bell Journal of Economics and Management 
Science 4(1), 141-183. 

39. Musiela, M. and M. Rutkowski (1997). Martingale methods in financial modeling, Springer. 

40. Nembhard, H. B., L. Shi and M. Aktan, (2002). "A Real options design for quality control 
charts." The Engineering Economist 47( 1 ), 28-50. 

41. O'Brien- Pallas, L., S. Birch, A. Baumann and G. T. Murphy, (2001). "Integrating workforce 
planning, human resources, and service planning". World Health Organization, Department of Health 
Services Delivery, Workshop on Global Health Workforce Strategy, Annecy, France. 

42. Pak, D., N. Pomsalnuwat and S. M. Ryan, (2004). "The effect of technological improvement 
on capacity expansion for uncertain exponential demand with lead time." The Engineering Economist 
49(2), 95- 118. 

43. Rich, D. R., (1994). "The mathematical foundations of barrier option-pricing theory." 
Advances in Futures and Operations Research 7, 267-311. 

44. Ritchken, P., (1995). "On pricing barrier options." The Journal of Derivatives 3, 19-28. 

45. Rose, C. and M. D. Smith, (1996). "The multivariate normal distribution." The Mathematica 
Journal 6(1), 32-37. 

46. Ross, S. M. (1999). An introduction to mathematical finance. Cambridge, UK, New York, 
Cambridge University Press. 



76 

47. Rubinstein, M., (1991)."Exotic options." Unpublished Manuscript, University of California at 
Berkeley. 

48. Rubinstein, M. and E. Reiner (1991). "Breaking down the barriers." Risk 4, 28-35. 

49. Ryan, S. M., (2004). "Capacity expansion for random exponential demand growth with lead 
time." Management Science 50(6), 740-748. 

50. Schneider, H., (1981). "Effect of service-levels on order-points or order-levels in inventory 
models." International Journal of Production Research 19(6), 615-631. 

51. Shameen, A., (2000). "Too much of a good thing? Red-hot demand raises fears of chip 
shortages." 26(20). (Retrieved July, 2006), from 
http://www.asiaweek.com/asiaweek/magazine/2000/0526/biz.semi.html. 

52. Shim, R., (2004) "Parts shortages could hang up Treo 600 sales." CNET News.com, (Viewed 
July, 2006) 
http://news.com.com/Parts+shortage+could+hang-t-up+Treo+600+sales/2100-1041 3-5187602.html 

53. Smith, R. L., (1979). "Turnpike results for single location capacity expansion." Management 
Science 25(5), 474-484. 

54. Smith, R. L., (1980). "Optimal expansion policies for the deterministic capacity problem." 
Engineering Economist 25(3), 149-160. 

55. Sobel, J. M., (2004). "Fill rates of single-stage and multistage supply system." Manufacturing 
and Service Operations Management 6(1), 41-52. 

56. Tan, T. and O. Alp, (2005). "An integrated approach to inventory and flexible capacity 
management under non-stationary stochastic demand and set-up cost". The Fifth International 
Conference on Analysis of Manufacturing Systems- Production Management, Zakynthos Island, 
Greece. 

57. The Hindu, (2005). "NTPC revises capacity expansion target upwards for the Eleventh Plan." 
(Retrieved July, 2006), from 
http://www.thehindubusinessline.com/2005/01/26/stories/200501260234Q200.htm. 

58. Thorsen, B. J., (1998). "Afforestation as a real option: some policy implications." Forest 
Science 45(2), 171-178. 

59. Thrall, R. M., (1976). "Economic modeling for water policy evaluation. Ed. R. M. Thrall. 
North-Holland Amsterdam. 

60. U.S - Canada Power Outage Task Force, (2004). "Final Report on the August 14, 2003 
Blackout in the United States and Canada- Causes and Recommendations " (Viewed July, 2006) 
https ://reports .energy .gov. 

61. Van Mieghem, J. A., (2003). "Capacity management, investment, and hedging: review and 
recent developments." Manufacturing and Service Operations Management 5(4), 269-302. 

http://www.asiaweek.com/asiaweek/magazine/2000/0526/biz.semi.html
http://www.thehindubusinessline.com/2005/01/26/stories/200501260234Q200.htm


77 

62. Whitt, W., (1981). "The stationary distribution of a stochastic clearing process." Operations 
Research 29(2), 294-308. 

63. Woerth, D. E., (2000). "Statement of Captain Duane E. Woerth, President, Air Line Pilots 
Association." Subcommittee on Aviation, Committee on Commerce, Science, and Transportation, 
United State Senate, On the Pilot Shortages and Effects on Rural Air Service (Viewed July, 2006) 
http://cf.alpa.org/Internet/TM/tm072500.htm. 

64. Wolfe, P., (1961). "Accelerating the cutting plane method for nonlinear programming." 
Journal of Society of Industrial Applications of Mathematics 9(3), 481-488. 

65. Wolfram Research Inc, (2004). Mathematica 5.1, http://www.wolfram.com/ 

66. Wollman, N., (1976). "Water resource models: A historical summary". Economic Modeling 
for Water Policy Evaluation Ed. R. M. Thrall. North-Holland Amsterdam. 

67. Young, A. and T. Abodunde, (1979). "Personnel recruitment policies and long-term 
production planning." Journal of the Operational Research Society 30(3), 225-236. 

68. Yu, G., J. Pachon, B. Thengvall, D. Chandler and A. Wilson, (2004). "Optimizing pilot 
planning and training for continental airlines." Interfaces 34(4), 253-264. 

69. Zangwill, W. I. (1969). Nonlinear programming: a unified approach. Englewood Cliffs, New 
Jersey, Prentice Hall. 

http://cf.alpa.org/Internet/TM/tm072500.htm


78 

APPENDICES 

Appendix I: Marathe, R.R., and S.M. Ryan, (2005). "On the validity of the GBM assumption," The 

Engineering Economist, 50(2), 159- 192. 

Appendix II: Marathe, R.R., and S.M. Ryan, (2006). "Optimal solution to a capacity expansion 

problem," Proceedings of the 15th Annual HE Research Conference, May 20- 24, 2006, Orlando 

Florida. 

Appendix III: Marathe, R.R., and S.M. Ryan, (2005), "Capacity expansion for uncertain demand with 

initial shortages," Proceedings of the 14th Annual IIE Research Conference, May 14-18, 2005, 

Atlanta, Georgia. 

Appendix IV : Mathematica Code 

4A- LP for checking the concavity of a function. 

4B- Optimization code representing the service level expression. 



79 

Appendix I: On the Validity of the Geometric Brownian Motion Assumption 

Rahul R. Marathe 
Department of Industrial and Manufacturing Systems Engineering 

Iowa State University 
Ames, LA 50011-2164 

Sarah M. Ryan* 
Department of Industrial and Manufacturing Systems Engineering 

Iowa State University 
Ames, LA 50011-2164 

Corresponding author: smrvan@iastate.edu Phone: 515-294-4347 



80 

On the Validity of the Geometric Brownian Motion Assumption 

Abstract 

The geometric Brownian motion (GBM) process is frequently invoked as a model for such diverse quantities as 

stock prices, natural resource prices, and the growth in demand for products or services. We discuss a process 

for checking whether a given time series follows the GBM process. Methods to remove seasonal variation from 

such a time series are also analyzed. Of four industries studied, the historical time series for usage of established 

services meet the criteria for a GBM, however the data for growth of emergent services do not. 
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I. Introduction 

Many recent engineering economic analyses have relied on an implicit or explicit assumption that 

some quantity that changes over time with uncertainty follows a geometric Brownian motion (GBM) process. 

Below we briefly review a number of applications in different areas. The GBM process, also sometimes called a 

lognormal growth process, has gained wide acceptance as a valid model for the growth in the price of a stock 

over time. In fact, [9] refers to it as "the model for stock prices". Under this model, the Black-Scholes formulas 

for pricing European call and put options, as well as their variations for a few of the more complex derivatives, 

provide relatively simple analytical evaluation of asymmetric risks. The increasingly numerous and varied 

applications of the GBM model to processes other than the stock price motivate this paper: to review the 

assumptions underlying the GBM model, outline established statistical procedures for checking these 

assumptions, and illustrate their applications to actual data series. 

Many recent examples of GBM models have arisen in real options analysis, in which the value of some 

"underlying asset" is assumed to evolve similarly to a stock price. In some cases, the GBM assumption is stated 

explicitly, while in others it is implicitly used when options are evaluated by the Black-Scholes formula. In [17], 

the cost of applying quality control charts was quantified using real option pricing methods, where both the 

sales volume and the price of a product were assumed to follow GBM processes. The same authors discussed 

the problem of product outsourcing as a real options problem in [18]. Here, three variables are supposed to 

follow the GBM process; viz. the unit cost of internally producing the item, the unit outsourcing cost of the 

item, and the unit delivery cost of outsourced items during the time interval. The GBM process has been also 

assumed in problems related to natural resources. In [25] the real options theory is applied to decisions of 

establishing a new forest stand and it is assumed that the future net prices of roundwood follow a GBM process. 

In [2], the Black-Scholes option pricing formula is applied to the capital allocation for investment. For the 

machine replacement problem considered in the paper, the present value of the machine cash flows is modeled 

as a GBM process. The options value of expansion flexibility in evaluating manufacturing investment is studied 

in [13], wherein the authors use sequential exchange options to value expansion flexibility in justifying the 

investment. In valuing flexibility an initial investment is considered as being analogous to purchasing an option 

to exchange one risky asset (subsequent investment, called the delivery asset) for another risky asset (returns 
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accruing from the subsequent asset, called the optioned asset) within a time period from the initial investment. 

The prices for both of the assets are assumed to follow the GBM. 

The GBM model has also been used to represent future demand in capacity studies. In [28], the authors 

studied capacity utilization over time assuming demand followed a GBM. An indirect validation of the 

assumption was provided by [14], which showed in an empirical study of the chemical industry that actual 

capacity utilization matched the predictions from the model in [28]. In [22] demand for services in rapidly 

growing industries was assumed to follow a GBM and the expansion policy to minimize cost subject to a 

service level constraint was developed and analyzed. In this paper, we analyze data to test whether the GBM 

model is valid for demand; however, the methods we employ are applicable to any data series. Our approach is 

motivated by Ross [20], who analyzed data for crude oil prices and found that they were inconsistent with a key 

assumption of the GBM model. In this paper we also consider seasonal effects and show how to remove them 

before testing for the GBM characteristics. The effect of seasonality may be overcome in financial markets: 

Samuelson [23] proved that, even when spot prices have systematic seasonal variation, futures prices will not. 

However, in the demand series we examine in this paper, there are no quantities analogous to futures prices. As 

pointed out in [25], the GBM process assumption must be subject to test. Where significant financial impacts 

may result from the decision, it is of utmost importance to verify that a time series follows the GBM process, 

before relying on the result of such an assumption. 

The next section discusses the theory of the GBM process and the parameters involved. The definitions 

and concepts of the Brownian motion used in the paper are explained in this section. Some data series may 

contain seasonal variation in addition to exponential growth with uncertainty. Hence before testing the GBM 

assumption the data series must be deseasonalized. In Section III, two methods of removing the seasonal indices 

are studied and the unbiased method is selected. Finally, the theory and methods developed in sections II and III 

are applied to real-life time series in Section IV. The data analyzed in this paper are from varied industries. As 

the cellular phone industry has been growing multi-fold over short recent intervals, it makes an interesting case 

to be considered as a GBM process. Also analyzed are airline passenger enplanements, electric power 

consumption and the growth of the Internet. Finally the results obtained from the data are discussed and 

summarized. We have our concluding remarks and plan for future work in the last section. 
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II. Geometric Brownian Motion (GBM) Process 

2.1 Preliminaries 

A Markov process is a particular type of stochastic process where only the present value of a variable 

is relevant for predicting the future. The past history of the variable and the way that the present has emerged 

from the past are irrelevant. A Wiener process is a type of Markov stochastic process in which the mean change 

in the value of the variable is zero with the variance of change equal to one per unit time. The Wiener process 

was first applied in physics to describe the motion of a particle that is subject to a large number of small 

molecular shocks and was called Brownian motion [9], The mathematical description of the process was later 

developed by Wiener [20]. 

If a stochastic process ^ 0} follows a Brownian motion process, it exhibits the following two 

properties. 

• Property I: The change in the value of z, Az , over a time interval of length A? js proportional to the 

square root of At where the multiplier is random; specifically, Az = z(t+At)-z(t)-£4Ât, where fis a 

standard normal random variable. Hence values of Az follow a normal distribution with mean 0 and 

variance equal to the change in time (At) over which Az is measured. 

• Property II: The changes in the value of z(t) for any two non-overlapping intervals of time are 
independent. 

Using the principles of ordinary calculus where it is usual to proceed from small changes to the limit as 

the small changes becomes closer to zero, the Wiener process is the limit as A z —> 0 of the process described 

above for z(t). 

A Wiener process is not differentiate with respect to time [15] as seen from the fact that: 

z ( s ) - z ( t )  ' - -» °=, as s  - 1  — » 0. 
s - t  J ( s - t ) 2  s - t  

However, it is useful to define a term for the expression dz/dt. A term commonly used in engineering 

to denote this quantity is white noise. The white noise process is the derivative of the Brownian motion process, 

which does not exist in the normal sense. 
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The standard Brownian motion process has a drift rate of zero and a variance of one. The drift rate of 

zero means that the expected value of z at any future time is equal to the current value. The variance of one 

means that variance of the change in z in a time interval of length T is equal to T. The Brownian motion process 

is the basis for a collection of more general processes. These generalizations are obtained by inserting white 

noise in an ordinary differential equation. 

A generalized Brownian motion process is of the type: d x  =  a d i  +  b d z , where a  and b  are constants and 

z is a Brownian motion process. To understand the equation, each of the components is considered separately. 

The  f irs t  t erm impl ies  that  x  has  an  expected  dr i f t  ra te  o f  a  per  t ime  uni t ,  whereas  the  second term invo lv ing  d z  

can be regarded as adding noise or variability to the path followed by x. The amount of this noise is b times the 

d i f ferent ia l  o f  the  Brownian  mot ion  process .  Hence  for  a  smal l  in terva l  o f  t ime ,  the  change  in  the  va lue  o f  x ,  

Ax , is given by 

Ax = a A t  +  b e y f K t  .  

Thus Ax: has a normal distribution with mean a&' and variance b2At . 

Further generalization of the Wiener process yields the Ito process, where the constants a  and b  may depend on 

the values of x and t. The Ito process is of the form [9]: 

d x  =  a ( x , l ) d t  +  b ( x , t ) d z  .  

2.2 Definition of Geometric Brownian Motion Process 

The case of stock prices is slightly different from the generalized Brownian motion process. In the case 

of the Brownian motion process, a constant drift rate was assumed. However, in the case of stock prices, it is 

not the drift rate that is constant. For stock prices, the return on investment is assumed to be constant, where the 

rate of return at a given time is the ratio of the drift rate to the value of the stock at that time. Hence the constant 

expected drift-rate assumption in the case of Brownian motion process is inappropriate and needs to be replaced 

by an assumption of constant expected rate of return [9]. 

Let Y be the price of the stock at time t and assume the expected drift rate is fiY for some constant ju. 

This means that in a short interval of time Az , the expected increase in Y  is The constant parameter j u  is 
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the expected rate of return. If the volatility of the stock price is zero, then the model implies that AK - piY At _ 

and when the limit is taken as Af —> 0 , the expected stock price at time T finally becomes 1= , where 

Y0 is the original value. 

However, the stock prices do have volatility. Hence taking that into consideration, the above model can 

be written as 

A Y I— 
dY = fiYdt + (JYd:., or — = /zAz + ae^jAt . 

The first term of the second equation above is the expected value of the return provided by the stock 

for a time period of At and the second term is the stochastic component of the return. Here a is the volatility 

rate. Taking limits as At —> 0, we have 

l/VH )T 

Geometric Brownian motion is useful in modeling stock prices over time when one believes that the 

percentage changes over equal length, non-overlapping intervals are independent and identically distributed. For 

example, if Y„ is the price of the stock at time n = 0, 1,2... then it is reasonable to suppose that the ratios 

K + ,  n  > 1, are independent and identically distributed [21]. Let "» ~~Y~ ' After taking the log of both 

sides and rearranging, we have, ) = ln(%, ) + ln(w„ ) . Now let w(n) = ln(w„ ), that is w(/z) = ln(X„+i  ) - ln(y„ ) , 

If M") for n > 1 arc independent and are identically distributed normal random variables with mean 

A and variance ° , it can be said that the variable u„ will have a lognormal distribution [15]. The successive 

prices can be found to be [15] K ~ ut-iui-i ' ' ' "oV Taking the natural log of this equation, we have 

ln[y, ] = ln[K0] + X ln[i/, ] = ln[y„] + £ w(i) 
i=0 1=0 

The term ln[Y0] is constant, and the w(i)'s are each normal random variables. Since the sum of normal variables 

is a normal random variable, it follows that ln[YJ is a normal random variable. Hence the stock price Y, has a 

lognormal distribution, with 



86 

Thus, it can be seen that the ratio ^ 

zv 
v n  y  has distribution approaching that of a normal random 

variable with mean gt and variance (ft. 

The Geometric Brownian Motion process can formally be defined as follows [20]: 

We say that the variable Yk, 0 < k < •», follows a GBM (with drift parameter |i and volatility parameter 

2k 
a) if, for all nonnegative values of k and t, the random variable y is independent of all values of the variable 

up to time k and if in addition, 
In 
zv 
\ Y k  J  has a normal distribution with mean |lt and variance a2t, independent 

of k, where g and o are constants. 

2.3 Checking for GBM Process Fit 

After any seasonal variation is removed from the data, the data can be tested for the GBM process. 

Referring to the analysis above, there are two assumptions to be satisfied [20]: 

1. Normality of the log ratios (w(k)) with constant mean and variance 

2. Independence from previous data (log ratios independent of their past values). 

2.3.1 Normality: 

The simplest (however not very accurate) way to check for normality is to plot a histogram of the log 

ratios and compare it to a normal distribution plot. Another graphical method of testing the normality 

assumption is to examine the normal probability plot. A normal probability plot, also known as a normal Q-Q 

plot or normal quantile-quantile plot, is the plot of the ordered data values against the associated quantiles of the 

normal distribution. For data from a normal distribution, the points of the plot should lie close to a straight line. 
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The statistical tests of normality can be conducted in many ways by using any of the goodness-of-fit 

tests on the w(k) values. One way is to run a chi-square test for goodness-of-fit. Another goodness-of-fit test is 

the Shapiro-Wilk W Test [24]. This is the test used in the statistical package IMP for n < 2000 [12]. In this 

test, the hypothesis set is: 

H„: The distribution is normal, against 

Ha: The distribution is not normal. 

The test gives the value of the statistic 'W' and the corresponding p-value. The p-value is compared to 

the specified level of significance a. If the observed p-value is greater than the level of significance the test 

statistic is not in the rejection region and the null hypothesis of a normal distribution cannot be rejected. Note 

that a large p-value does not definitively identify the data as normally distributed; it only means that the data 

could plausibly have been generated by a normal distribution. 

2.3.2 Independence from the past data: 

To test the serial independence of the w(k), the chi-square test on two-way tables [3] can be used. 

The chi-square test provides a method for testing the association between the row and column variables in a 

two-way table. The null hypothesis is 

H0: There is no association between the variables (in other words, one variable does not vary according 

to the other variable), while the alternative hypothesis is 

HA: Some association does exist. (The alternative hypothesis does not specify the type of association; 

close attention to the data is required to interpret the information provided by the test.) 

The chi-square test is based on a test statistic that measures the divergence of the observed data from 

the values that would be expected under the null hypothesis of no association. 

To test serial independence of the w(k) values, the two variables in the chi-square test are w(k) and 

w(k+l) for each k. To carry out the test the log ratios are segregated into different groups (or intervals) 

depending on the number of data points and the range of data values. These groups or intervals of the log ratios 

are formed in such a way that number of observed values in each of the intervals is approximately equal. The 

two way table is formulated on the concept that the probability of w(k) being in state j (interval j) now after 
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being in state i (interval i) in the last period is equal for all j. Equivalently, if a daily data series follows a GBM 

process, then tomorrow's state will not depend on today's state. One way to verify that is to see the proportion 

of time that an observation in state i is followed by a state j observation [20]. Thus the two way table is 

constructed with rows of state i and columns of state j. Under the GBM process model, tomorrow's change 

would be unaffected by today's change and so the theoretically expected percentages in the two-way table 

would be same for all rows. The expected value for each cell in a two-way table is equal to 

(row total)* (col, total) ^ w^ere n js the total number of observations included in the table, row total is the total 
n 

number of data points in state i, and column total is the total number of data points in state j. Once the expected 

values have been computed, the chi-square test statistic is computed as y? — y (observed - expected) whe.rc 
expected frequency 

the square of the differences between the observed and expected values in each cell, divided by the expected 

value, are added across all of the cells in the table. 

The distribution of the statistic X2 is chi-square with (r-l)(c-l) degrees of freedom, where r represents 

the number of rows in the two-way table and c represents the number of columns. The p-value for the chi-

square test is P(JC2>X2), the probability of observing a value at least as extreme as the test statistic for a chi-

square distribution with (r-l)(c-l) degrees of freedom. A small p-value indicates support for the alternative 

hypothesis; in our case suggesting that successive log ratios are not independent. Note once again that a p-value 

greater than the chosen level of significance does not positively confirm that the log ratios are serially 

independent, but it indicates that the data do not contradict that assumption. 

III. Seasonality 

As mentioned above, the data from various industries were considered for their fit to the GBM process. 

In some cases the time series exhibited trend and/or seasonal patterns. The usual assumption is that four 

separate components - trend, cyclical, seasonal and irregular - combine to provide specific values for the time 

series data [1], The GBM process can account for exponential trend via the drift term and irregularity in terms 

of the white noise process; however, it does not include cyclical or seasonal effects. In this paper, we neglect the 

cyclic variation and consider the component of the time series that represents the variability in the data due to 
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seasonal influences. It is usual to consider the seasonal movement to be occurring annually, however it should 

be noted that the season could also be different from a year. 

Two common models for decomposing a time series, which aim to isolate each component of the 

series as accurately as possible, are the additive model and the multiplicative model. 

Suppose X, is the time series value at period t, S, is the seasonal index at period t, T, is the trend-cycle 

component at period t, and E, is the irregular component at period r, 

The additive model has the form = +Tt +£, _ That is, the seasonal, trend, and irregular 

components are added together to give the observed series. In the additive model, the seasonal indices over the 

periods of a particular season add up to zero [4], 

Alternatively, the multiplicative decomposition has the form = S,T,Et Here, the seasonal, trend-

cycle and irregular components are multiplied to give the observed series [16]. In multiplicative model, the 

average seasonal index for a season is unity [1], 

An additive model is used if the magnitude of the seasonal fluctuations does not vary with the level of 

the series. However, if the seasonal fluctuation increases or decreases in the level of the series, then a 

multiplicative model is more appropriate. As seen from the data analysis, for the data series considered in this 

paper, the magnitude of seasonal variation increases with time (please refer to Figures 1 and 6 in Section IV). 

Hence a multiplicative model is used. Often the transformed series can be modeled additively, when the original 

data are not additive. Logarithms, in particular, turn a multiplicative relationship into an additive relationship 

[16], since 

X, =S,T,E, =>ln[X,] = ln[S,] + ln[7;] + ln[£,] 

Suppose we have observations Xh X2... XTof a process; in particular, for our model, or 

ln[X,] = ln[>;] + ln[S,] (1) 

where Y, are observations at discrete time points of a GBM process and S, is the seasonal factor. 

The observations of the process can also be recorded in terms of the seasons and periods. Let Xy be the 

observation corresponding to the j th period of the i th season, where i = l...m and j — that is, we have 

data for m seasons, with each season having p periods in it and T - mp. Correspondingly, let Y,j be the 
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observation of the j th period of the i th season of a GBM process; and let .S',; be the seasonal index for period j 

of season i, where ^ = $, > for each i. Then, = . Hence Equation ( 1 ) can be written as: 

ln[X. ] = ln[ï^] + ln[S.] (2) 

where in Equation (1), ' = (, -l)P +j . 

In the following, we treat this as a usual additive model, the only difference being that we are using log 

values, instead of the actual values. 

Our goal is to remove the seasonal effects from the time series. This process is referred to as 

deseasonalization [1], The first step in deseasonalization is to estimate the values of the seasonal indices for 

each period. And once the estimates sj of the seasonal variation for each period j are found out, the lognormal 

variable Y can be estimated using the equation 

ln[yi] = ln[X,J]-ln[5,] (3) 

In the additive model, two estimation methods have been proposed. The analysis of both the methods with 

respect to the GBM model that is to be tested is included in the following sections. The two methods are 

compared on the basis of bias and the unbiased one selected. The first method uses moving averages of the 

consecutive data values [4], [16] and the second one uses averages of all the data values corresponding to each 

period of the season in turn [8]. In this paper we examine the estimates of the seasonal indices obtained from the 

series in Equation ( 1 ) or (2) using both the methods to see whether the estimates add up to zero and are free of 

bias. 

3.1 Method I [3], [4], [16] 

Here, we use the arithmetic centered moving average. The arithmetic moving average of (2f+l) data 

(Lk-t +Lk-v+1 +• •• •+Lk -+Lk+t) 
points centered at k is calculated by 2; +1 where {L:: i = 1, 2, 3...} is the series of 

data points. The moving averages isolate the seasonal components, which then can be estimated in the case of 

the additive model by subtracting the moving average from the corresponding data series value. The values thus 

found are estimates of the seasonal indices for those periods. Hence, first we make sure that these estimated 
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seasonal indices for any season add up to zero in case of additive model, that is 2^ ^-l1 - 0 . Secondly, we 

prove that these calculated values are unbiased estimators of the actual seasonal index. That is, £[^] = s, . 

Now, since Y, follows a GBM process, continuing from the Section 2.2, from the properties of 

lognormal distribution [15], given Yh we have, 

E[\nY,]= E [In r, ] + // + — (?-!)= £ [in K, ]+ <5(f - l), where S = jt + 
-> \ 

2  y  

o" 

2 

So, if we let Y !, be the first value of the series, 

£[ln7,] - £[ln Y u ]  +  S ( t - \ ) ,  where t  =  ( i - \ ) p +  j  ( 4 )  

Let Pjj represent the arithmetic moving average for the j th period of the i th season (year, for example). 

Let m denote the smallest integer that is greater than or equal to jc, and |_*j denote the largest integer that is 

less than or equal to x. 

From [4], [16], for our model, the centered moving average P,y when p is odd will be given by 

p = (lnX,_Lf,/2j+...lnX, +-lnX^/^where^(/_1)p+ • 

P 

And when the number of periods p is even, the centered moving average is calculated as [16]: 

, where t = (i-\)p + j . 
i' 

0.5 In X „ + In X n +... + In X n + 0.5 In X 
V (5) 

After calculating the values of centered moving average, we compute the deviation, ^ ~ 'n ̂ , 

to estimate the log of the seasonal index for the period j based on season i. The log of the estimated seasonal 

index for a period is calculated as a simple arithmetic average of log of all the seasonal indices for that 

particular period from all the seasons. That is, 

£ K] = è î £ [ | n i «] '  m 7=1 ' " -1 (6) 

In particular, for an odd number of periods p, 
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In S  j =— £lnS.., for j  =  \ p !  2 ~ \  
m ,=i 

In Sj = —!— £ln S» - for 7 = 1 to |_p / 2 J 
m — 1 ,=2 

1 m-l - -, 
In S j  = X In S,,, for j  =  \  p / 2 ]  +  \  t o  p  

When p is even, the corresponding equations are given as; 

In S j  =  — f> S , j f o r j  =1 t o  
m — 11=2 2. 

— 1 ~ n 
ln5; = rEln5,7/0''7 = (— + !) top 

77? — 1 ,=| 2 

Lemma 1: For the model in Equation (2), using Method I, the estimates of the logs of the seasonal indices add 

toO. That is, Z£Hn5.] = 0 

Proof: See Appendix A. 

Lemma 2: For Method I, the expected value of the log of the estimate of the seasonal index for a particular 

period is equal to the log of the seasonal index for the period. That is, Sj ] = In Sy 

Proof: See Appendix B. 

Theorem 1: The expected value of the log of a variable following the GBM process for a particular period, 

obtained from subtracting the corresponding expected log of the seasonal factor from the log of the observation, 

is an unbiased estimator of the actual log of that variable. That is filing] = £[in Ylt]. 

Proof: From Equation (3), ^ ancj taking expectation of both sides, 

4 ln^]=4 ln*,]-4 ln^] 

However, from Lemma 2, we have ^t'n ^13 = 'n ̂ i . 
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The above equation becomes, £ [ln £ [ln ]- ln sj . Hence from Equation (2) we can see 

that, y In K, 1= /-'[In X I . 

3.2 Method II [8] 

In the previous method, the moving average was used. Here the simple arithmetic average of the log 

values across seasons [8] is examined as an alternative method of deseasonalization. Let P, denote the average 

value for the j th period, that is, the average of all the period j values over all m seasons. 

- 1 p 
The overall average for the season is the average of all the periods of the season, p ~ ^ 

Now the seasonal indices for each period can be calculated by the equation ln [^y ] = Pi i • 

Using this method, the sum of the estimated logs of the seasonal indices of all the periods of the season 

p 

is zero. That is, 0 However, the expected value of the ratio of the X variable and the estimated 

seasonal index for the particular period is not the actual Y variable for the period, as obtained in the previous 

method. This method can be shown to overestimate the Yy values by the factor e (Note that this 

factor is greater than 1 for j<JL^ and less than 1 for j>£y- ; see Figure 2). 

We conclude that the method of using moving average (with additive model of log of parameters) is 

better than the one using simple average. Hence we use Method I to analyze the numerical data. 

IV. Data Analysis 

The purpose of fitting a model to historical data is to help predict the future, assuming that past and 

current trends will continue. In trying to fit and forecast demand for services, two difficulties immediately arise. 

First, the demand will depend on price to varying extents depending on the level of necessity of service and the 

availability of alternatives for meeting the same need. Secondly, without extensive consumer surveys, the only 
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way to measure past demand is by actual usage, which was limited by the available supply of the service. As a 

surrogate for the actual demand data, we collected usage data for publicly available sources in the energy, 

transportation and telecommunication sectors, the analysis for which is given in the succeeding sections. 

4.1 Electric Power Consumption 

The data were collected from the U.S. Department of Energy's Office of Scientific and Technical 

Information, which provides access to energy, science, and technology research and development information 

[7]. The data represent the total monthly sales by electric utilities to all the sectors (namely, residential, 

commercial, industrial and others). The monthly consumption (in million kilo-watt-hours) for electric power 

was recorded for each month for 8 years (from 1993 to 2002). Hence the total of 120 data points were used for 

the analysis of the electric power consumption. 

First, the seasonal variation was removed from the data. For this the two methods described in Section 

III were tested. The results are shown in Table 1, which gives the value for the seasonal index for each month 

using each of the methods. 

Table 1 here 

Figure 1 here 

The difference between the two methods of evaluating of seasonal variation is seen in Table 1 and 

Figure 1. For the detailed difference, Figure 2 compares the values before and after deseasonalization by both 

methods for a representative year, 1998. The deseasonalized values obtained by Method I are seen to have more 

of an upward trend over the year. 

Figure 2 here 

The deseasonalized data obtained from Method I were analyzed to check the normality of the log ratios 

and also their independence. 

Even before the normality test, as a visual check for the independence of the log ratios, we observe a 

scatter plot of log ratios in Figure 3. As there is no apparent pattern to the w(k) values for the data points, we 

may tentatively say that the w(k) values are independent, which will be examined analytically in the chi-square 

test of independence. The plot also indicates the plausibility of a constant mean and variance of the w(k) values. 



95 

Figure 3 here 

Figure 4 shows the histogram and normal probability plot of the log ratios with fitted mean and 

variance. Since the Shapiro-Wilk test statistic is 0.9844 and the corresponding p value is 0.768, we fail to reject 

the null hypothesis that the distribution of the log ratios is normal. Hence we can conclude that the data are 

consistent with the lognormal aspect of GBM. 

Figure 4 here 

The remaining key characteristic of the GBM process is independent increments. Figure 5 plots the 

deseasonalized log ratios for years 1994, 1997, 1999, and 2001. The lack of any visible pattern in values for any 

given year indicates the independence of the successive ratios. 

Figure 5 here 

Next the independence of the log ratios is checked using a two-way chi-square test. The w(k) values 

were divided into 4 categories as shown in Table 2 and the two way table chi-square test resulted in a p-value 

for the test of 0.319. The null hypothesis that the variables are independent cannot be rejected. 

Table 2 here 

Hence we conclude that overall the data are consistent with the periodic observations from a GBM 

process. The mean log ratio was 0.0025 with a standard deviation of 0.02, indicating the mean growth rate of 

3% per annum. 

The importance of removing the seasonal variation prior to checking for the normality and 

independence is stressed from the fact that, for the original time series (before the deseasonalization) the 

normality test for the log ratios failed (with p-value 0.0004, rejecting the null hypothesis that the distribution for 

log ratios is normal); also these log ratios were not found to be independent. In fact, the two-way chi-square test 

on these log ratios gave a p-value of 0.001, indicating that we reject the null hypothesis of independence of the 

variables. The same fact could also be observed from the scatter plot of log ratios with respect to the prior 

values (see Figure 6). If the log ratios had been independent, the points of the scatter plot would not have had 

any trend. 

Figure 6 here 
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4.2 Airline Passenger Enplanement 

We collected the historical monthly data on U.S. Revenue Passenger Enplanements for the years 1981 

through 2001 from the U.S. Aeronautical Board [26]. Revenue Passenger Enplanement can be defined as the 

number of paying passengers boarding a flight, including origination, stopovers and connections. It should be 

noted that each connecting flight between origination point and destination counts as one enplanement. 

While analyzing the passenger data, a seasonal trend was observed for which the moving average 

(Method I) was applied to deseasonalize the log ratios. The final seasonal indices were as given in Table 3. 

Table 3 here 

The variation in the data values with respect to time is given in Figure 7. It can be seen that as the time 

increases, the amount of seasonal variation increases (observing the original data); motivating the use of the 

multiplicative model described in Section 3.1. 

Figure 7 here 

Figure 8 plots the corresponding log ratios over time. From the plot, it can be seen that there is no 

visible pattern in the values of log ratios, which indicates their distribution is stationary, and suggests serial 

independence. 

Figure 8 here 

The histogram and normal probability plot for the normality test for the passenger data are given in 

Figure 9. As the p-value of the Shapiro-Wilk test is 0.4416 (greater than 0.05), we cannot reject the hypothesis 

that the log ratios are normally distributed. 

Figure 9 here 

Again, as with the electric utility data, the random nature of the deseasonalized w(k) values can be 

visually inspected by the graphs of w(k) values given in Figure 10. Here, the changes in w(k) values appear to be 

independent over time, as seen from the randomness of the w(k) values for various years. Hence it can be 

tentatively concluded that the w(k) values are independent of each other. 

Figure 10 here 

To more rigorously test independence by the chi-square test, four intervals of w(k) values were selected 

as shown in Table 4. 
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Table 4 here 

The p-value for the test was found to be 0.058, so we cannot reject the null hypothesis that the w(k) 

values are independent at a 5% significance level. 

Once again, as done in the electric demand case, the importance of removing the seasonality factors 

before checking normality and independence of log ratios is confirmed by performing similar tests with the 

original log ratios (obtained from the time series without deseasonalization). The normality of the log ratios 

could not be confirmed (the p-value of the normality test is 0.0001); also the chi-square test gives a p-value, 

which is very close to zero, forcing the rejection of null hypothesis of the independence test. Hence prior to the 

deseasonalization, the log ratios are not independent. The same fact could be observed by inspecting the scatter 

plot of these log ratios with respect to the prior values (Figure 11), which indicates clear trend in the values. 

Figure 11 here 

Thus, we can conclude that the lognormal ratios after deseasonalization are independent; however, a 

higher significance level could lead to the opposite conclusion. Hence, the independence test is not as 

convincing as for the electric power data. The mean log ratio was found to be 0.00271 with a standard deviation 

of 0.029, and hence the average growth rate was calculated to be 3.3% per annum. 

4.3 Cell Phone Revenue 

Usage of mobile phone service might be measured by minutes of usage, total connections made, or 

even the number of handsets sold. Because of the lack of available data on these quantities, the revenue 

collected from the cellular phone subscribers was analyzed for the period of January 1985 to June 2002, with 

data collected every 6 months [5]. 

First of all, the plot given in Figure 12 of log ratios over time was observed. It is seen that there is a 

decreasing trend in both the mean and the variance of log ratios. Hence visual inspection reveals that the w(k) 

variable may be neither stationary nor independent. Note that, since revenue is the product of sales volume and 

price, the downward trend could be attributed to price drops rather than flattening growth in demand. 

Figure 12 here 
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The normality test, which includes the histogram of the log ratios and the normal probability plot, is 

given in Figure 13. From the Shapiro-Wilk test, the p-value is 0.0003, proving that the log ratios are not 

normally distributed. 

Figure 13 here 

The result could be influenced by the fact that the number of data points available was only 35. 

However, the Chi-square test did show independence of the w(k) values. The p-value for the independence test 

is 0.3735. Hence the null hypothesis that the log ratios are independent cannot be rejected. For this 

independence test the intervals of w(k) values used are given in Table 5. 

Table 5 here 

4.4 Internet Hosts 

Internet growth can be measured by changes in either the number of users or number of hosts 

connected to the network. A host used to be a single machine on the net. However, the definition of a host has 

changed in recent years due to virtual hosting, where a single machine acts like multiple systems (and has 

multiple domain names and IP addresses) [11]. Typically, multiple users are connected to a host and the hosts 

are connected to the network. Since there is no central mechanism for tracking the number of users connected to 

the network [19], we use number of hosts as a measure of Internet size. In an attempt to gauge the growth of the 

Internet over the years, The Internet Software Consortium [11] conducted a survey called 'The Domain Survey' 

and measured the number of hosts. This survey was used in conjunction with the data in [19] to obtain a time 

series of the number of Internet hosts from 1982 to 2003 with data points recorded every six months. As before, 

w(k) values for the data are calculated and tested for normality and independence. 

Figure 14 indicates the values of log ratios over time. It is seen again that the values do not appear to 

be random. There is visible downward trend in the values of w(k), indicating that the values may not be 

stationary. One can also observe possible cyclical behavior. 

Figure 14 here 

The plots for the test of normality are given in Figure 15. The p-value for the Shapiro-Wilk test of 

normality is less than 0.001; hence the null hypothesis that the log ratios are normal is rejected. 
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Figure 15 here 

To test the independence of w(k) values, the Chi-square test cannot be used as before, because the 

number of data points is too small to create cells such that each holds a positive number of observed values as 

required by the chi-square test. Hence the w(k) scatter plot is analyzed visually to determine the independence 

of w(k). 

From the plot in Figure 16, it can be seen that the w(k) values are not random, but rather large (small) 

log ratios tend to be immediately followed by other large (small) values. Hence we can say that the w(k) values 

are not independent of each other. 

Figure 16 here 

4.5 Summary of Results 

The results of the data analysis for different industries are summarized in Table 6. 

Table 6 here 

Hence it can be seen that data related to service consumption from different sectors of industry may or 

may not meet the criteria for the GBM process. Among the services examined, the ones that fail one test or 

another are in newer industries that perhaps can still be considered emergent. Data on the usage of these 

services are also less direct and more difficult to obtain. The older and more established services of electric 

power and airline travel exhibit a better fit to the GBM assumption after deseasonalization. Having ascertained 

the model's fit to the deseasonalized data, a forecast of future demand can be obtained from the GBM model 

with the fitted parameters by re-inserting the seasonal factors. How the seasonal patterns would affect decision

making depends on the application, for example, capacity decisions typically consider the peak demand in a 

season. 

We caution that, even when a model appears to closely fit historical data, extrapolation into the future 

does not carry any guarantee of accuracy. In 1995, logistic growth models showed a very good fit to historical 

data on the number of cell phone subscribers [27]. Extrapolation suggested that the number of U.S. subscribers 

would level out close to 80 million early in the 21st century. As of December 2004, however, the Cellular 
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Telecommunications and Internet Association reported over 173 million current U.S. wireless subscribers [5], 

The fit of a model to historical data is a necessary but not sufficient condition for the credibility of its forecasts. 

V. Conclusion 

From the theory of the Brownian motion discussed in the paper and the subsequent analysis, it can be 

concluded that the structure for the analysis to check whether a particular time series data follows a Geometric 

Brownian motion process or not can be applied to varied data types. The result may be different for different 

data types; for some of the data sets, the GBM process may be appropriate, based on the criteria of normality 

and independence (for example, electric utility data and passenger data); however for some of the data sets, the 

assumption of GBM process distribution may not be appropriate (example, cell-phone revenue data and Internet 

host data). Hence in any given model, caution should be taken before assuming that the particular data set 

follows the GBM process. It was observed during the analysis of Cellular phone data and the Internet host data 

that the number of data points may affect the analysis results. Hence attempts need to be made to collect more 

data points for the given example type. 

For cell phone revenue data and Internet hosts' data, it was observed that the log ratios decrease over 

time. It could be possible that the drift for those time series is dependent on time and the level of the time series. 

Hence the criteria for the GBM (with assumption of constant drift and volatility) were not being followed in 

these cases. For these data not following the GBM process, the data can be analyzed for other stochastic 

diffusion processes [6], Also to incorporate the dynamic nature of drift (and possibly volatility) parameter, the 

Ito process for the stock prices can be used. More generalized models can also be studied. In [10], authors 

discuss some of the extended one-state-variable interest-rate models that involve time dependent parameters. 

The data for the cell phone revenue and Internet hosts might be analyzed using models similar to the ones given 

in that paper. 
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Appendix A: Proof of Lemma 1 

We consider the case where the number of seasons m is even and number of periods p is odd. 

tE[lnS,]=E[lnSr„2l]+ i2JE[l„S,]+ £ E[taSj] 
>1 L i u  J = ]  l j m+|-/)/2-| 

= E 
1 m 

—Z ln  5,i m ,=i fp'21 j=1 

1 

m-1 ,= 
+ i e 

_m+|>/2] 
^ I'm4 

m -1 j= 

-In 5 
m fp ' 2 l  

l/>'2j 

p p — —i ffi i / \ 
z<l-s,] = ie -(1-

y=l i=2 ^r,nS-

/> m-1 
+ Z 

;=!+("/»/ 2] z-1 m — 1 
-In 5, 

z z £  - I I e 
;=i+[p/2] i=i m-1 

where Pjj is the arithmetic moving average, as defined earlier. 

Substituting values of P,j, we have that 

y=i i=2 
1 1 ) $4 

• p(m-\) mpj S L ip//U^ /Xzn-1), 
p-» + ^ u__jzzl 

tfpi2iV "P P(m-l) 
£k,] 

l/"2j 
+i 

j=1 
p-1 i i~2 

p{m-l) rrp p(m-1) 
£[h^.] 

Now we have from Equation (2), ] - lnl^, 1 + 'nIS, ] . Substituting this for each of the X l p  we cancel out the 

seasonal indices 5} from the above equation. To evaluate the Ytj terms, we use Equation (4) and write all the K,, 

in terms of Yu and solve the equation. We get 

é£[lnsj] = 0 
j=i 

For the case where the number of season m is odd, and the periods p is also odd, the condition can be found out 

as: 
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b'2J 
Z<lny= t 
H M 

l 0-1) 

rrp p(m-l) 
— £[lnXly]+£[lnXf;,/2l+lnXfw2l] 

p-1 Lp/2J 
pm pijn-1) 

+ I 
P-1 1 7-2 

/xw-1) wp /xw-1) 

>1 i=-

1 

p(m-l) mpj 
+ z 

1 (7-1) 

mp p(m-1) 

+ 
l«y_£-i—i—tlw,„xj 
>i l/Xm-1) z?p P(M-l)J 

The case when the number of periods p is even is also similar to the one formulated above, using Equation (5), 

which had to be centered because of the even number of periods [5], 

Hence, the sum of estimated log of seasonal indices for a season is: 

E[lnS,.] = Z 
j=1 

where u, -

27-1 

And wj 

m-1 2(m-l)p 

0 for j < p/2 

1 for j> p/2 

1  f o r  j <  p / 2  

0  f o r  j  >  p / 2  

E [  I n X . ^  +  J  
w. 1 P - J  

j=Atn — 1 2(m-l)p (m-l)p 
E [ \ n X m j ] ,  

which, when we use Equation (2) for ln[X,y] and subsequently Equation (4) for ln[Y,,] as before, comes to zero. 
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Appendix B: Proof of Lemma 2 

To show ^['n Sj ] - In Sj ^ for any j 

We have, 

£[ln5,] = £[lnX,-/>] 

= E 
i '+L' , /2J 

In Xjj Z lnX, 
P i='-Lp'2J 

wheret  =  ( i - l ) p +  j ,  therefore 

£[lnStf] = £ ^lnx,-l'+lfjlnxt 
P P k=l-[p/2J 

k*t 

Since In X t ]  = In StJ + In Ytj, we have 

£[ln5#] = £ ^-lln^.-1'^ln^ 
P p i"=/-L/>/2j 

+ E -ink -1 ,+l£j lny, 
P t='-Lp'2J 

k*l 

p '+[/>/2j 
We know that £In5. = 0,hence £ In5, = -in S. 

;=1 A-i-[/i/2j 

£[lnSff] = £ •^lns.y™hn5.y) + E ^-i|nk,-i,+lfjlnn 
P P /r=r~|_p/2j 

k*t 

= E 
-—instf (-in) + zzlg[,ny,]-1 T  e[,nyj 

P  P k —  [ P l 2 i  

n — 1 1 ,+L/ , /2J 
= In S,y + ——{£,[lnl/

11] + <î(r-l)} 2 £[ln F,, ] +  < ? ( £ - 1 ) ,  w h e r e  t  =  ( i - \ ) p  +  j  
P k=i-[pl 2j 

k*t 

which gives, 

f[ln Siy J = In S y + 0 = In S,.. 

From the above equation: 
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From Equation (6), 

£[lnS ] = —]TlnS.. =—['«• (In )] 
L J m m mL J 

because we know that, In SjJ = In S,, V j 

Hence £[ln5; j = lnS; . 

In the case where the number of periods p  is even, the calculations are similar except for the fact that again 

Equation (4) for the centered moving average is used instead of the simple moving average. Hence, the values 

obtained after substituting respective values in the equation £[ln^o] = £[ln xu ~ change accordingly, 

however the concept is similar; and it gives a similar result. 
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Figure 9. Distributions of w(k) for airline passenger enplanement data 
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Normal Quantile Plot 

Figure 13. Distributions of w(k) for cell phone revenue data 
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Figure 14. w(k) values for data points for internet host data 
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Normal Quantile Plot 

Figure 15. Distributions of w(k) for Internet host data 
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Table 1. Seasonal Indices for electric power consumption data from two different methods 

Month Method I Method II 

January 1.0469 1.0372 

February 0.9560 0.9507 

March 0.9459 0.9458 

April 0.8957 0.8952 

May 0.9274 0.9244 

June 1.0275 1.0288 

July 1.1328 1.1396 

August 1.1524 1.1594 

September 1.0576 1.0649 

October 0.9597 0.9686 

November 0.9202 0.9269 

December 0.9872 0.9971 

Sum of Log -0.00232 0 

Table 2. Categories of w(k) values for the independence test 

Categories w(k) ranges 

1 From -0.05 to -0.02 

2 From -0.02 to 0 

3 From 0 to 0.02 

4 From 0 to 0.05 
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Table 3. Seasonal indices for airline passenger data using moving average method 

Month Sea. Index 

January 0.8928 

February 0.8686 

March 1.0545 

April 1.0073 

May 1.0203 

June 1.0704 

July 1.1095 

August 1.1361 

September 0.9335 

October 0.9962 

November 0.9368 

December 0.9664 

Sum of Log 
-0.00381 

Table 4. Categories of w(k) used for airline passenger data 

Categories w(k) ranges 

1 w(k) >0.04 

2 w(k) from 0.04 to 0.01 

3 w(k) from 0.01 to -0.03 

4 w(k) from -0.08 to -0.03 
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Table 5. Categories of w(k) values used for cell-phone revenue data 

Categories w(k) range 

1 from -0.02 to 0.085 

2 from 0.085 to 0.16 

3 from 0.16 to 0.25 

4 from 0.25 to 0.6 

Table 6. Summary of results of the various data sets 

Data Set Time Series Normality Independence Remarks 

Electric Utility Electric 

Consumption data 

Yes 

p = 0.768 

Yes 

p — 0.319 

Log ratios stationary and 

independent 

Airline Revenue Passenger 

Enplanement 

Yes 

p = 0.4416 

Yes 

p = 0.058 

Log ratios stationary and 

independent 

Cell phone Revenue from 

Consumer 

Subscription 

No 

p = 0.0003 

Yes 

p = 0.3735 

Independence test not 

credible because of fewer 

data points 

(Downward trend in log 

ratios over time) 

Internet 

Industry 

Number of Internet 

Hosts 

No 

p < 0.001 

No (No chi-square, 

just scatter plot) 

Few Data Points, hence 

Chi-square independence 

test cannot be carried out 

(Downward trend in log 

ratios over time) 
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Appendix II: Optimal Solution to a Capacity Expansion Problem 

Rahul R. Marathe and Sarah M. Ryan; Department of Industrial & Manufacturing Systems 
Engineering; Iowa State University; Ames, IA 50011-2164, USA. 

Abstract 

For a service provider, stochastic demand growth along with expansion lead times and economies of scale may 
encourage delaying the start of expansion until after some shortages have been accumulated. Assuming demand 
follows a geometric Brownian motion, we define the service level in terms of the proportion of demand 
satisfied, which is then analytically evaluated using financial option pricing theory. Under a stationary 
expansion policy, an infinite time horizon discounted expansion cost is minimized under the service level 
constraint, where the expansion timing and size parameters are the decision variables. With the current 
formulation, the problem seems to be unbounded. 

Keywords 
Capacity expansion, service level, barrier option pricing, cutting plane algorithm 

1. Introduction 
Capacity expansion problems arise in numerous applications varying from communications networks to 
manufacturing facilities. The problem is to find an optimal policy of expansion given a particular forecasted 
demand pattern, assuming that the costs and lead times of expansion are known. 

We consider a service provider having certain facilities with installed capacity to provide certain services. We 
consider a single location and single resource assuming that the demand for that resource follows a geometric 
Brownian motion (GBM) process. The capacity added does not deteriorate; that is, once the capacity is 
installed, we assume that it is available forever. Expansion costs exhibit economies of scale and there is a 
deterministic expansion lead time from the time the capacity expansion decision is made to the time when the 
added capacity is actually available to satisfy the demand. 

Modeling demand as a GBM process may be justified when empirical data show that demand growth in a 
period is on average a constant percentage of demand at the beginning of the period, and periods of higher or 
lower than average demand occur at random. Marathe and Ryan [1] verified empirically that the historical usage 
of electric power in the US as well as the number of passenger enplanements in the airline industry each 
followed a GBM process. 

The capacity expansion literature is richly stocked. Manne [2] considered a random-walk pattern demand and 
proposed the optimal size of the capacity expansion when there were economies of scale available. Whitt [3] 
considered the utilization aspect of the capacity expansion and found the stationary distribution for the capacity 
utilization under a simple policy that we adapt in this paper. Chaouch and Buzacott [4] considered the demand 
with plateaus and formulated the capacity expansion for two cases, viz., when the expansion starts with some 
initial shortages and when it starts before the demand reaches the current capacity. Our model is similar to this 
case, with our demand being GBM process driven. Bean et al. [5] considered demand to be following either a 
transformed Brownian motion process or a semi-Markovian birth and death process. They showed that the 
problem can be transformed into an equivalent deterministic problem and that the effect of the probabilistic 
nature of demand is to reduce the interest rate. This result was used by Ryan [6] wherein the effect of a fixed 
lead time was also considered. Financial option pricing theory was used to develop a stationary expansion 
policy so that the specified service level is met when the expansion started before the demand reaches the 
current capacity position. Our model is further extension of Ryan [6] in the sense that we consider the case 
where the expansion starts when the demand has already crossed the current capacity position. 
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Our parameter definitions are similar to Ryan [6]; and most of the details may be found in Marathe and Ryan [7, 
8]. We briefly summarize the model and definitions in section 2; the service level and the expansion cost 
analyses are carried out in section 3. We present a numerical example in section 4 and conclude the paper with 
section 5. 

2. Model 
Demand for the service is given by the GBM process P(t) = P(0)eB i" - where B(t) is a Brownian motion with 

2 t2 
drift //and variance cr. Define y=M+ — as the mean (exponential) growth rate of the demand. 

We assume that capacity additions occur at discrete time points and that a fixed lead time of L time units is 
required to install new capacity. The problem is to choose a sequence{(Tn, xn),n >1}> where T„, the time when 

the n"1 capacity expansion starts, is a stopping time with respect to the Brownian motion B(t) and X„ is the n* 
increase in capacity. For any realization to of the Brownian motion B(t), let tn = Tn (a>). Let K„ be the installed 

capacity after n additions are completed, where the initial capacity is K0 .  The capacity position includes 
capacity on order (being constructed or installed) in addition to the installed capacity. 

We describe the model by quoting directly from Marathe and Ryan [7, 8], We follow the Whitt-Luss policy 
from Whitt [3], where each new expansion starts when demand reaches some fixed proportion (say, '/>') of 
current capacity position, and after its addition at the end of the lead-time, the new capacity is a constant 
proportion of its previous value. That is K„ - vKn.h where v > 1. For the case of p < 1 Ryan [6] used financial 
option pricing theory to find optimal stationary expansion policy (that is, the values of parameters p and v). In 
t h i s  p a p e r ,  w e  c o n s i d e r  t h e  c a s e  w h e r e  p > \ .  

Figure 1 illustrates the policy and potential shortages seen at the realized time t„, when demand first equals pKn .  
] .  The n"1  capacity expansion has just  started.  With this  expansion,  the total  installed capacity wil l  reach level  K„ 
after the lead time L. As stated earlier, we model the situation wherein the service provider waits until certain 
amounts of initial capacity shortages are accumulated before starting the next expansion project. Hence, since 
the new capacity position is Kn, the next expansion would start at the time when the demand Pit) first reaches 
the position pK„. Since the demand process is stochastic, this time for starting the next expansion (Tn+I) is a 
random variable. The goal, then, is to find the optimal initial shortage that will trigger the start of capacity 
expansion (the parameter p), and the optimal size of each expansion (the parameter v). Figure 1 shows a non-
overlapping expansion cycle where the capacity being built is already available before we begin the next 
expansion. It is also possible for expansion cycles to overlap. 

Demand or 
P(t) 

Capacity 

Shortage 



124 

Figure 1. Capacity expansion policy when the expansion starts after the end of the current expansion cycle. 

As explained in Marathe and Ryan [7], the service level in the expansion cycle [tn+LJ '„+, +L) 's defined as: 

P  =  E  

After approximations, the above equation becomes: 

= 1 - E  
\P{t)-Ka ,0]dt 

P ( p  ,v) = l — : 

(1) 

(2) 
pE[Tn t l->„) 

We note that the service level is the same for each expansion cycle and a function only of the policy parameters 
p and v. 

3. Analysis of Service Level and Expansion Cost 
By comparing the numerator of Equation (2) with the up-and-out barrier option and also simplifying the 
denominator, we have the capacity shortage equation as: 

1 -J3(p,v) = I _ If  
PE[T , ,*i pln[v] 

, where 

I = je i r- r )" f i r  

_lnlpj+(r+T)" H*)-(r+Y){u-L) ^ 

-'-v— CTx/m ayJu-L 

-ln^j + 2|n(v) + (r + ̂  -ln(v) + (z+—)(m-Z.) r^[ 

"  •  v t ~  0\!u-L 

-e'Vyr 
"'"i pj + (r_^)m ln(v)-(7-yx«-d r^r-

~'\~V o4u aJu-L 

+ e ^v"'  ( — I\jf  
_ln[ —J+21n(v) + (7——)« -ln(v) + (7-^-)(H-L) 

a sfu CTVÎ 
'~Y )(u-L) I^< 
TT ' V « 

du. 
(3) 

and V(x>yiP) is the bivariate normal distribution function evaluated at (x, y) with correlation coefficient p. 

To evaluate the infinite time horizon total cost of expansion, let V,(K) be the minimum expected cost, at time t  
with capacity position K, of expanding capacity over infinite horizon while satisfying the service level 
constraint. Let the rate at which future costs are discounted be r. Referring to Figure 1, at time when the 
expansion has just been initiated, our goal is to find the timing (p) and size (v) parameters for the next 
expansion. We assume an economies of scale regime, under which cost of installing capacity of size X is given 

by C ( X )  =  k X "  ;  where k is a constant and a (< 7J is the economies of scale parameter. Hence, C„ = kX" is the 

cost of expansion of size X„, and, for the nth expansion, 

(4) 
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Now at time T/, the total costs (TC) incurred are the actual cost of expansion (from initial capacity position of 
K0 to the new capacity position of K:), because of start of the expansion project; and the total cost of all the 
future expansion discounted at t ime T t .  

TC = E[e- r T \VT(KQ) 

=E[e~ r T<]{kXï + E, [e~ r" r ' , )~\VT  ()],  (5) 

where *1 = K, -K, =K , , ( v -l) js the size of the first capacity expansion; and cost of continuing from the second 

capacity expansion is first discounted to time T, and then the total cost at time T, including the cost of 
expansion is discounted to time zero. In Equation (5), we note that the expected discount factor can be 
evaluated independently of V,(K) is possible because of the underlying independent increments in the demand 
model. Now, if we keep expanding the V,(K) term in Equation (5) using Equation (4), then the expression for 
the expansion cost can be written as a telescoping infinite series of costs: 

TC = E[e~ r T i  ]|jkX,e + Eh  [e"rr/2-'i,]{^« + Eh  [e"r(r'"'2)]{to3
a + Eu+ £, [e 

r(7;'•>]...})jj 

Now it can be shown that the total cost equation is equivalent to: 

f(p,v) = TC- ;—— ,wh erep-J—+ —. (6) 

Hence, the optimization problem is to find the minimum infinite horizon cost of expansion given by Equation 
(6), under the constraint that the capacity shortages (from Equation (3)) in the expansion cycle cannot exceed a 
certain specified limit. The decision variables are the timing and the size factors of expansion, as explained 
earlier. The problem is formulated as: 

min f  ( P , v )  =  -
1-V" " 

(7) 

p , v >V x r  \ - v " - p  

subject to: 

g(p,v) = l-/]{p,v)<£ 

4. Solution Methodology 
The non-linear program (7) is inherently difficult because of the complex constraint expression. Since the 
constraint inequality involves integration of bivariate normal density functions, it is very difficult to apply the 
commonly used gradient-based solution methods. Hence, a derivative-free cutting plane algorithm (Bazaraa et 
al. [9]) was used for the problem. Important steps of the cutting plane algorithm as it applies to our problem 
instance are described here: 

Initialization step: Select an initial feasible point -to = <Po- v'o )• 

For each iteration, solve the Master Problem, which is given as 

Maximize z 

s.t .  z< f(Pj,Vj) + ug(ppv• ) for; = 0. . .k -1 

u > 0 

Let (zb uk) be the optimal solution. Now using the optimal value of the penalty variable uh  solve the sub-
problem: 

Minimize f{p,v) + ukg(p,v) : p , v  >  1 .  

Let xk = (Pt<vk> be the optimal solution for the sub problem. Let ) = f ipk ,vk  ) + iikg(pk ,vk).  

If Zi = 0("n) then stop. Otherwise continue with the master problem with added constraint: 

Z <  f (p k , v k )  + ug(p k , v k ) .  
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Figure 2. Cutting plane algorithm steps. 

Zangwill [10] proved the convergence of this algorithm in a finite number of steps. 

5. Numerical Results 
The capacity expansion problem (CEP) in Equation (7) was solved using the cutting plane method with the 

parameter values as: drift of 8%, volatility of 20%, discount rate of 15%, economies of scale parameter of 0.9, 
and lead-time of 1 year, with the specified service level of 95%. The initial feasible point was taken to be (1.01, 
1.01984). Initial numerical runs of the algorithm indicated an unbounded solution. Hence to test convergence of 
the algorithm in Figure 2, we added an artificial constraint p 5 2 to each sub-problem. The successive iterations 

and the convergence of the cutting plane algorithm are summarized in Table 1. 

Table 1. Results of the cutting plane algorithm applied to CEP. 
Iteration Constraint Added Master problem Sub-problem Sub-problem 

solution (z, u) solution (p, v) optimal value 6 
1 Z < 3.0156-0.001(7 (3.0156, 0) (2, 1.15272) 1.04207 
2 Z <1.04272 + 3.57%/ (2.88, 5.1455) (2, 2.08893) 1.39851 
3 Z <1.35628 + 0.0083(7 (1.762, 48.94) (1, 1.29867) 0.0331 
4 Z< 2.7977 - 0.0564(7 (1.539,22.32) (2,3.177) 1.0751 
5 Z <1.7725-0.0367(7 (1.431,9.307) (2,2.34) 1.40 
6 Z <1.4543-0.0073(7 (1.4075,6.45) (2, 2.22) 1.403 
7 Z< 1.407-0.00072(7 (1.403,5.974) (2, 2.17) 1.4027 
8 Z <1.387 + 0.00265(7 (1.4031,6.16) (2, 2.186) 1.4031 

As seen from Table 1, the minimum cost for the CEP is achieved at decision variable values (p, v) = (2, 2.186). 

Since our feasible region was l s p < 2, l < v, we see that the optimal solution is reached at the artificially 

imposed boundary level of one of the decision variables— indicating an unbounded solution to the CEP. 

To explore whether the unboundedness was caused by the approximations used to transform Equation (1) to 

Equation (2), the same capacity expansion problem was solved using simulation to evaluate the constraint in 

Equation (1). That is, instead of using the analytical expression of the service level developed through the 
approximations and use of barrier option valuation formulas, the service level was directly computed by 
simulation of the GBM process using Matlab. The expression for the infinite time horizon expansion cost was 
the same as that was used in the analytical solution (Equation (6)). The graphical solution for the CEP is given 
below: 
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Figure 3. Graphical solution for the CEP via simulation for a 95% service level. 

The feasible region is the area below the curve for the service level. The p-v cost contours are also plotted. As 
we see from Figure 3, we can go on decreasing the cost as we move away from the origin along the p-v curve 
for the service level. The simulation result was tested over wide range of parameter values, and every time we 
obtained similar plots. This leads us to believe that the problem under the current formulation is unbounded. 

6. Conclusions and Future Work 
From the formulation of the CEP and the numerical solution in section 5, we can conclude that if the service 
provider wants to start the capacity expansion when the demand has already crossed the current capacity 
position, he can do so by starting with any amount of initial shortage, provided that at each expansion the 
capacity increment is subsequently matched to satisfy the service level. In other words, if the service provider 
wants to start with a higher level of initial shortage, all that needs to be adjusted is the size of the capacity 
expansion so that the specified level of service is achieved (which can be accomplished by manipulating the 
constraint equation); moreover, this can be done without losing the minimum cost advantage (because, although 
the expansion cost increases in expansion size, the higher initial shortage will always pull it down). Simulation 
of the service level, instead of using analytical expectation, also leads to similar conclusions. 

The possibility of achieving minimal cost with an acceptable service level by an unbounded initial shortage 
seems counter-intuitive. Hence, currently a reworking of the service level constraint is underway. Instead of 
considering the total shortages during the expansion cycle of random length, the distribution of instantaneous 
capacity shortage (in the same expansion cycle) is being considered. 
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Appendix III: Capacity Expansion for Uncertain Demand with Initial Shortages 

Rahul R. Marathe and Sarah M. Ryan; Department of Industrial & Manufacturing Systems 
Engineering; Iowa State University; Ames, IA 50011-2164, USA 

Abstract 

For service providers, uncertain demand for capacity and expansion lead time may create unavoidable capacity 
shortages, which may be allowed to accumulate before initiating an expansion. For the demand following a 
geometric Brownian motion process, we assume a stationary expansion policy where the timing and size of 
expansion are determined as fixed proportions of the capacity position. We define the service level in terms of 
the capacity shortages, which can be evaluated by applying pricing formulae for barrier options in finance. We 
observe the relationship between the two policy parameters at different specified service levels and for other 
model parameters. 

Keywords 
Capacity expansion, Service level, Barrier options 

1. Introduction 
Capacity expansion is the addition of facilities to keep up with the increasing demand. The goal is to find the 
optimal sizes and times of expansion under given conditions. The problem is complicated in cases where the 
demand is stochastic and where capacity cannot be added instantaneously, meaning there is some lead-time 
present. This paper formulates a model for such a case in which we assume a fixed lead-time and a random 
demand. 

The capacity expansion problem has been widely researched. Manne [1] proposed a model to decide the size of 
each expansion in the case where the demand follows random-walk pattern; also the effects of economies of 
scale and penalties for demand not being satisfied were considered in the model. Whitt [2] developed the Whitt-
Luss utilization formula for the capacity expansion problem where the demand is stochastic. In the current 
paper, we extend this analysis for the case where the capacity expansion starts with initial shortages and there is 
a fixed lead time for expansion. Chaouch and Buzacott [3] examined the same problem as in Buzacott and 
Chaouch [4] with consideration of lead time. They also considered two cases, where the capacity addition 
started before and after the current capacity is reached. Our paper is similar to the work of Chaouch and 
Buzacott [3] in the sense that we also consider initializing the capacity expansion after certain deficit has been 
accumulated; only the demand process considered in our model is different. A generalization of Brownian 
motion demand was considered by Bean Higle and Smith [5], where demand was assumed to be following 
either a transformed Brownian motion process or a semi-Markovian birth and death process. They showed that 
the problem can be transformed into an equivalent deterministic problem and that the effect of the probabilistic 
nature of demand is to reduce the interest rate. This result was extended in Ryan [6] with consideration of fixed 
lead-time. In this model, the demand was assumed to be following a geometric Brownian motion process and a 
timing policy was developed to provide a specified level of service. It was showed how the parameters of the 
timing policy could be obtained numerically using some of concepts of financial options pricing. Our paper is a 
further extension of this model. While Ryan's model assumed that the next capacity expansion starts before the 
installed capacity level is reached, in this paper we consider a case where the next expansion is started only after 
accumulation of some shortages. 

This situation can be compared to the barrier options in the world of finance. In particular, the value of an up-
and-out call option is mathematically similar to the expected shortage considered in this paper. Heynen and Kat 
[7] discuss some of the important results about barrier options when the Brownian motion and its maximum are 
tracked over different time intervals. 



130 

In this paper, we record the service level in terms of the average capacity shortages per unit time. A detailed 
study of service levels for inventory models was carried out by Klemm [8], Rigorous definitions for the three 
types of the service level viz. a, >9, 7 service levels were given for (,v, 5) and (r, Q) type inventory models. 
Further mathematical calculations for each type of service level and its effect on the order points in the various 
inventory models was done by Schneider [9]. 

As stated earlier, this paper builds on the variables and environment analyzed in Ryan. We start the paper by 
describing all the variables and notations used in Section 2. Here we also describe the basic model for this 
paper. Section 3 discusses the expression for the shortages in terms of the policy parameters. We present our 
numerical analyses in Section 4 and concluding remarks in Section 5. 

2. Model 
As our model is similar to Ryan [6], we will use consistent notation. Let B(t) be a Brownian motion having drift 
ju and volatility <72 with B(0) = 0- Demand for the product or service is given by the geometric Brownian 

motion (GBM) process P(t) = P(0)eH<". As Pit) is a GBM process, for any values of k and t given P(t), the ratio 

P(k+t) is a random variable independent of all the values of the process up to t and in addition, its logarithm 
Pit) 

Inf f(' + t)lhas a normal distribution with mean /A and variance a2k . And hence, given Pit),  the logarithmic 
l  m J 

growth in demand over a short interval of time At is given by ln| P(t + At) j _ + , where z is a standard 

I m J 

normal random variable. Define as the mean (exponential) growth rate of the demand. Marathe and 

Ryan [10] empirically verified the fit of the GBM process to historical data series for usage of airline and 
electric power capacity. 

We assume that capacity additions occur at discrete time points and that a fixed lead time of L time units is 
required to install new capacity. The problem is to choose a sequence {(T„,X„),«>!}» where T,„ the time when 

the n"1 capacity expansion starts, is a stopping time with respect to the Brownian motion B(t) and Xn  is the nlh 

increase in capacity. For any realization to of the Brownian motion B(t), let tn = Tn (a>). Let Kn be the installed 

capacity after n additions are completed, where the initial capacity is Ka . Then, 

The installed capacity at time t  is given by, 

K(t) = 

The capacity position at time t  is given by, 

y=i 

K0 ,  0 < ? < z, + L 

Kn ,  tn+L<t < r„+ 1  + L, n> 1. 

n(z)=lA'0' 0<t<t' 
[K„, t„ < / < < „ „ ,  n> 1. 

We assume that the policy proposed by Whitt and Luss for the same demand function is modified to account for 
the lead times and to allow planned shortages to occur. Whitt [2] showed that, without lead times, their policy 
results in a stationary distribution for the capacity utilization and provided a simple formula for its expected 
value. In the Whitt-Luss policy, each new expansion occurs when demand reaches some fixed proportion (< 1) 
of current capacity, and after its instantaneous addition, the new capacity is a constant proportion of its previous 
value. In this paper, we assume that each expansion occurs when demand reaches some fixed proportion, p, of 
the capacity position, and K„ = vK„_h where v > 1. Ryan [6] showed that for p < 1 with fixed lead times, the 
value of p to attain a specified service level can be found by using the Black-Scholes formula for pricing a 
European call option. Moreover, assuming this timing policy is followed, the expansion size policy minimizes 
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the infinite horizon discounted cost under a widely used expansion cost function that reflects economies of 
s c a l e .  I n  t h i s  p a p e r ,  w e  c o n s i d e r  t h e  c a s e  w h e r e  p > \ .  

The policy assumes that ever-increasing increments of capacity can be installed within the same lead time to 
keep pace with exponentially growing demand. This assumption is most reasonable in industries where capacity 
bottlenecks are caused by facilities subject to continuous technological improvement, such as those that rely on 
information and communications technology. However, it may hold in more traditional situations as well. For 
example, Lieberman [11] found that the Whitt-Luss policy provided the closest fit among several alternatives to 
the capacity utilization in an empirical study of the chemical product industry. Over at least two decades, total 
output grew by an average of 6.2% per year, and the mean size of expansion increments translated to a value of 
v = 1.09 at the plant level. 

Figures 1 and 2 illustrate the policy and potential shortages seen at the realized time tn ,  when demand first 
equals pKnA. The n" capacity expansion has just started. With this expansion, the total installed capacity will 
reach level K„ after the lead time L. As stated earlier, we model the situation wherein the manufacturer waits 
until certain amounts of capacity shortages are accumulated before starting the next expansion project. This 
"certain amount of shortages" is represented by the decision variable p,p> l. Hence, since the new capacity 

posit ion is  K„, the next expansion would start at  the t ime when the demand P(t) f irst  reaches the posit ion pK„. 
Since the demand process is stochastic, this time for starting the next expansion (T„+/) is a random variable. The 
second decision parameter is  the size of  each expansion v = Kn + 1 /Kn .  

Demand or 

Capacity 
P(t) S 

Shortage 

t  n  
/ I  !  

T„+j t„+L T„+]+L 

Figure 1. Capacity expansion policy when the expansion starts after the end of the current expansion cycle. 
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vK„. 

Kn-l 

Demand or 
Capacity 

^P(t) 

! / Shortage 

/ 

; ; 

I : 
t„+L T„+i T„+i+L 

Figure 2. Capacity expansion policy when the expansion starts before the end of the current expansion cycle. 

It is natural to define a cycle as the time interval from the end of one lead time to the end of the next, so that the 
actual capacity is constant over the cycle. For a generic cycle, we formulate a service measure akin to the fill 
rate used in periodic [12] and continuous review [8, 13], inventory models. The cycle length may be less than, 
equal to, or greater than L, depending on whether successive lead times overlap. At a generic expansion epoch 

tn, the decision maker knows P{t„) = pKn_x and wishes to predict the service level over the interval 

[zr, + L,T„.I + /,) • Schneider [9] defines the /? service level as the fraction of demand not being lost or 

backordered, which is relevant for lost sales or proportional backorder costs. Here, the proportion of demand 
that is satisfied is 

P = E  = 1 -E 
max[P(<)-A'„,0]dZ 

where the expectation is taken with respect to time t„. As is commonly done in inventory models [13, 14], we 
employ a series of approximations to obtain a tractable service measure. 

First, since the closest known value for demand during the cycle is p(Tn t l) = pKn> we approximate the 

denominator as Jp(t)dt ~ pK (T+l-t )• Second, we approximate the expected value of the ratio as the 

ratio of expected values: 

4r:rv[p(')-*„°]/*>]. (8) 

3. Mathematical Analysis 
As done in [2] for capacity utilization, our goal here is to express the average shortages in terms of the decision 
variables viz. the timing and size parameter. The expression can be used to obtain the values for the decision 
variables that achieve a given service level, or estimate the service level for given values of the decision 
parameters. 

From equation (8), the total expected shortage for the next cycle assuming that we know the demand and 
capacity at time t„ is (numerator of the equation (8)): 

I = £. f —(f(')-r.)i (PU)>K.) dt 
(9) 
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where lu) is indicator function such that lu) = 1 if jc is true and 

= 0 otherwise. 

The above integration can be solved by comparing the shortages to the barrier option scenario in the finance 
world - particularly, the up-and-out call option. Heynen and Kat [7] give the analytical equation for Up-and-Out 
Call option. After simplifications, the integral / of equation (9) becomes: 

where ¥(x^y^ P )  is the bivariate normal distribution function for variables X  and Y  with coefficient of 

correlation p. 
Hence, 

\ - P  =  —  -  =  —  
P e I t , M />ln[v] 

For complete mathematical treatment of the above equation please refer to the full version of this paper [15]. 

Unlike the timing policy in Theorem 1 of [6], the average shortage in our model depends on both decision 
variables, which is similar to the case in [2] where the capacity utilization was dependent on the timing and size 
parameters. 

4. Results 
In addition to the timing and size parameters, the average shortage (1-/J) also is affected by other parameters in 
the model, viz. length of the lead time, the drift and volatility factor of the demand process, etc. The following 
plots show the effect of each parameter on the average shortage. While analyzing the effect of any particular 
parameter on the shortages, the values of other parameters were kept constant. 

Figure 3 depicts the effect of the parameter p on the values of the average shortage, i.e., given the value of the 
variable p on the jc-axis; the plot gives the value of the corresponding shortages, for a given value of the size 
parameter (v). The values of the other parameters are v = 1.1, a= 15%, p. - 8%, and L = 2 years. As expected, 
to achieve the target of low average shortage during the expansion cycle, the manufacturer should start the 
expansion project with low initial shortages. Also the average shortages are reduced by increase in the volatility 
of the demand process. In contrast, an increase in the drift parameter of the demand process causes the average 
shortage to increase. It was also found that the average shortages increase with the length of the lead time. 
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Figure 3. Effects of p and other variables on the average shortage. 

Figure 4 tells the story of the second decision variable v and its relationship with our other decision variable p. 
In Figure 4, the values for the decision variable v, is plotted for different scenarios. For the base case, we 
assume that p = 1.05, O- 0.2, fJ = 0.08, L - 2 years and the average shortages are held at 5% of the current 
capacity level. If we delay the start of capacity expansion project (increase the value of p), then to maintain the 
same average shortage we have to increase the size of each expansion. Also, if the allowable shortages are 
increased, as expected, the required size of each expansion reduces. It was also seen that for increase in the 
volatility, the size parameter decreases for the same level of average shortage. Similarly, increase in lead time 
would force us to increase the size parameter to achieve the same target average shortage. 

V 

1.5 
99% 

1.4 

95% 1.3 

90% 1.2 

1.1 

P 
1.05 1.1 1.15 1.2 1.25 

Figure 4. Relationship between size and timing parameters. 

5. Conclusion 
Random demand combined with the presence of expansion lead times increase the criticality of the capacity 
expansion problem and this may lead to unavoidable initial capacity shortages. Another motivation to delay the 
expansion could be to allow additional observation of the uncertain demand before initiating the expansion. We 
have modeled one such case when capacity shortages were defined as a proportion of the existing capacity. 
Using the concepts from financial option pricing, an analytical expression for the capacity shortages was found 
in terms of the timing and size parameters of the expansion. We found out that as we allow more shortages, the 
size of each expansion project decreases; whereas if we delay the expansion project, the resulting size of 
expansion to maintain the specified level of shortages increases. 
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Appendix IV: Mathematica 5.1 code 

Appendix 4A 

pi = 1. 227; vl = 1. 0017; £1 = -0.482; 

p2 = 1.0076; v2 = 1.01; f2 = -0.6893; 

p3 = 0.929; v3 = 1.029; £3 =-0.7603; 

p4 = 0.966; v4 = 1.0136; £4 = -0.7056; 

p5 = 0.9971; v5 = 1.0111; £5 = -0.67067; 

rotLnind.2e[{xl+ x2 + x3 +x4 + x5 + x6 + x7 + x8 + x9 + xlO, 

al+ pi all + vl al2 - (xl - x2) == £1, 

a2 + p2 a21 + v2 a22 - (x3 - x4) == £2, 

a3 + p3 a31 + v3 a32 - (x5 - x6) == £3, 

a4 + p4 a41 + v4 a42 - (x7 - x8) == £4, 

a5 + p5 a51 + v5 a52 - (x9 - xlO) == £5, 

-al - p2 all - v2 al2 + (x3 - x4) 5 -£2, 

-al - p3 all - v3 al2 + (x5 -x6) 5 -£3, 

-al - p4 all - v4 al2 + (x7 -x8) <. -£4, 

-al - p5 all - v5 al2 + (x9 - xlO) 5 -£5, 

-a2 - pla21 - vla22 + (xl - x2) <. -£1, 

-a2 - p3 a21 - v3 a22 + (x5 - x6) 5 -£3, 

-a2 -p4 a21-v4a22 + (x7 - x8) a -£4, 

-a2 - p5 a21 -v5 a22 t (x9 - xlO) a -£5, 

-a3 -pla31-vla32 + (xl - x2) s -£1, 

-a3 - p2 a31 - v2 a32 + (x3 - x4) <s -£2, 

-a3 - p4 a31 - v4 a32 + (x7 - x8) <. -£4, 

-a3 - p5 a31 - v5 a32 + (x9 - xlO) 5 -£5, 

-a4 - pla41 -vla42 + (xl - x2) a -£1, 

-a4 - p2 a41 -v2 a42 + (x3 - x4) <. -£2, 

-a4 - p3 a41 -v3 a42 + (x5 - x6) <. -£3, 

-a4 - p5 a41 - v5 a42 + (x9 - xlO) s -£5, 

-a5 - pla51 - vl a52 + (xl - x2) s -£1, 

-a5 - p2 a51 - v2 a52 + (x3 - x4) <. -£2, 

-a5 - p3 a51 - v3 a52 + (x5 -x6) 5 -f 3, 

-a5 - p4 a51 - v4 a52 + (x7 - x8) ± -£4, xl fc 0, x2 è 0, 

x3a0,x4 5:0,x5fc0,x6k0,x7fc0,x8fc0,x9 5:0, xlO iO}, 

{xl, x2, x3, x4, x5, x6, x7, x8, x9, xlO, al, a2, a3, 

a4, a5, all, al2, a21, a22, a31, a32, a41, a42, a51, a52}] 
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{0., {al-» 0., all->-0.392828, al2-» 0., 

a2-> -31.0758, a21 ->1.2472, a22-> 28.8414, a3-> 0., 

a31 -»• 0. 906762, a32-».-1.55751, a4-* -0.636283, 

a41 -> 1.03812, a42-+ -1.05776, a5-* 0., a51-> 0.906762, 

a 5 2  - >  - 1 .  5 5 7 5 1 ,  x l  - »  0 . ,  x l O  - »  0 . ,  x 2  - *  0 . ,  x 3  ̂  0 . ,  

x 4 - *  0 . ,  x 5  - »  0 . ,  x 6  - »  0 . ,  x 7  - *  0 . ,  x 8  - »  0 . ,  x 9  - >  0 . } }  

Appendix 4B: 

« Statistics ' Continue usDistriimtions " 

MVH[x_, mu_, var ] : = 

Module[{SSS=Inverse[var]}, 

(2 7t)( ) Det[SSS] \ c( f ) ) sss• ]. 

xvec = {xl, x2>; 

iraivec = {0, 0}; 

varcov = {(1, p>, {p, 1}}; 

nord : = HormalDistriJbution[0, 1] ; 

cdfirnc [x_] : = CDF[nord, x] ; 

£ = MVH[xvec, imivec, varcov] // Simplify; 

er2 

r = ti+ — ; 
2 

-Log[ — ]+(r+-Y")u 
hl[p_, v_, <r_, r , u_] := — ; 

a i/u 

Log[v] - (r + -2Î ) (u-L) 
tl[v_, ff_, r , u_] : = —— ; 

i •>/u -L 

2 Log[v] 
h2[p_, v_, or_, r , u_] : = hl[p, v, a, r, u] + 

a -/u 

—Log[v] — |r + — J (u — L) 
t2[v_, a , r , u ] : 2 ; 

<r *Ju-L 

-Log[^]+(r-^)u 

h3[p_, v_, w_, r , u] := — ; 
a - y u  

Log[v] - (r - -2Î) (u-L) 
t3[v_, <r_, r , u ] := 2 ; 

a -L 
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2 Log [vl 
M[p_, v_, a_, r_, u_] : = h3[p, v, a, r, u] + ; 

a v" 

-Log[v] - (r - — ) (u - L) 
t4[v_, <t_, r_, u ] := 2 ; 

a -*/u- L 

/ u-L 

P--1 — '' 

L = 2; 

f i =  0 . 0 2 ;  

a - 0.3; 

spec= 0.05; 

a = 0.99; 

to= 1.49192; 

Y=0.13; 

Fl[p_, v_, a_, r_, u_] : = 

«Integrate[£, {xl, -co, hl[p, v, a, r, u]>, 

{x2, -co, tl[v, a, r, u]>, AccuracyGoal ->4, 

PrecisionGoal -> 4, SingularityDepth-> 25, 

MaxRecursion->30]; 

F2[p_, v_, <J , r , u_] : = 

«Integrate[f, {xl, -co, h2[p, v, a, r, u]}, 

{x2, -oo, t2[v, a, r, u]>, AccuracyGoal _»4, 

PrecisionGoal -* 4, SingularityDepth-> 25, 

MaxRecursion -> 30] ; 

F3[p_, v_, a , r , u_] : = 

«Integrate[£, {xl, -oo, h3[p, v, <r, r, u]}, 

(x2, -oo, t3[v, a, r, u]}, AccuracyGoal-» 4, 

PrecisionGoal -» 4, SingularityDepth -> 25, 

Maadtecursion -» 30] ; 

F4[p_, v_, a , r , u_] : = 

«Integrate[£, {xl, -co, M[p, v, <r, r, u]}, 

{x2, -oo, t4[v, a, r, u]}, AccuracyGoal ->4, 

PrecisionGoal -» 4, SingularityDepth-> 25, 

MaxRecursion-+30]; 

F5[v_, o_, r , u_] : = cd£unc[tl[v, <r, r, u]]; 

F6[v_, o_, r , u ] : = cdfunc[t2[v, a, r, u]]; 
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ShortFun[p_, v_, <f_, r_, •*_] 

Hlntegrate[ 

l(! Fl[p, v, a, r, ul-vo2*1 ^jF2[p, v, a, r, 11] -

e'J:uF3[p, v, <r, r, u] + 

e^uv<r2 1^. j F4[p, v, <r, r, u] -

spec ( — J F5[v, a, r, u] + 

i j i  i i - . l  )  
spec| —Jv<R2 F6[V, CF, r, U] I, {U, L, OO>, 

AccuracyGoal -» 4, PrecisionGoal -» 4, 

SingularityDepth 25, MaxRecursion-> 30]; 

(v - l)a p^ 
TotC [p , v , a , b ] : — ; 

— — — — i _ v»-* 

ShortFun[0.99938, 1.0327, ff,r, y] 

TotC[0.99938, 1.0321,a, to] 

Hlntegrate : : nintp : Encountered the non-number 

3.33333 (-«20#- + «!*-) 
at {xl, x£) = (xl, xZ} . More... 

v^t 

N Integrate : : nintp : 

0.214512 3.33333 «1» («1» «1» 
Encountered, the non-number + 

'•/™u V~u 

at {xl, x2> = (x 1 f x2} . More... 

N Integrate : :nintp : 

0.214512 3.33333 «1» («1» «1» 
Encountered the non-number - — + . 

v~u vïï 
at {xl, x2> = {xl, x2) . More... 

General : : stop : Further output of NIntegrate : :nintp will 

be suppressed during this calculation. More... 

-0.00547128 

2.11412 
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