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Abstract: The sensor network design procedure developed by Nabil and Narasimhan (2012),
which relates process economics and data reconciliation, involves the formulation of a mixed
integer cone program. The solution to this problem yields the globally optimal sensor network.
A branch and bound method can be used to find the global optimum; however, for systems with
large numbers of variables, this approach may require a large amount of computational effort to
find the solution. In this paper, a specialized branch and bound algorithm is proposed for solving
the sensor network design problem, which uses certain heuristics to obtain a solution faster. One
involves a low rank factorization to reduce the size of the relaxed problem. The other involves an
approximation of the global lower bound for the branch and bound solution.The utility of this
algorithm is demonstrated on a simple flow network, a small but realistic evaporator system,
and a medium sized steam metering network.

Keywords: Measurement selection, mixed integer programming, global optimum, data
reconciliation, operational loss

1. INTRODUCTION

A process plant requires sensors to aquire good quality
data on the variables that describe the process. This data
can then be used for several different purposes, includ-
ing control, monitoring, safety, fault detection, and on-
line optimization. However, a chemical process is usually
described by hundreds of variables, and only a limited
number of these variables can be measured, owing to the
nature of the process and the cost of measurement. The
problem of sensor network design for a chemical process
typically involves the selection of a few variables to be
measured from the complete set of variables that describe
the process. The focus of a particular approach to sensor
network design can be on different objectives, such as
observability of the variables, fault detection and diagnosis
(Raghuraj et. al. (1999)), reliability in presence of sensor
failure (Ali and Narasimhan (1993)), estimation accuracy
(Mah and Kretsovalis (1987)), minimizing capital cost, or
maximizing operational profit. Since the individual ob-
jectives are usually incommensurable, several approaches
have also been proposed, which combine two or more
of these objectives (Bhushan and Rengaswamy (2000),
Bagajewicz (2002)).

Many of these approaches lead to a graph theoretic formu-
lation of the problem. For example, Raghuraj et. al. (1999)
use a problem formulation based on directed graphs.
Graph algorithms are then used to solve these problems.
Other approaches use an optimization formulation, for
example, Bagajewicz (1997) formulates the problem as a
mixed integer non-linear program (MINLP).

With the advent of computationally efficient algorithms
and tools, the sensor network design procedure of Nabil
and Narasimhan (2012) follows an optimization based ap-

proach. It combines the objectives of minimum operational
loss, and maximum estimation accuracy by data reconcili-
ation. This approach uses an average loss function, defined
as a weighted sum of the variances and covariances of in-
dividual measurements, to quantify the loss of operational
profit. A weighting matrix quantifies the economic impor-
tance of each variable. The problem is then formulated as
a mixed integer cone program (MICP), which is solved to
obtain the globally optimal sensor network. The integer
variables in this problem are Boolean.

The resulting optimization problem can be solved using
the branch and bound strategy, a widely used approach for
solving mixed integer linear programs and mixed integer
non-linear programs. Branch and bound methods either
guarantee global optimality of the solution, or terminate
at a point which can be proved to be ε-suboptimal. These
methods compute upper and lower bounds on the objective
function at every step. The lower bounds, in the case of
minimization, are computed by solving the original opti-
mization problem after relaxing some or all of the integer
constraints on the variables. Each such relaxed problem
forms a ’node’ in the branch and bound process, on which
further ’branching ’ is possible by adding an integer con-
straint. However, the resulting relaxed problems need not
be convex, in which case the algorithm cannot guarantee
global optimality of the solution.

The MICP to find the optimal sensor network has been
solved to global optimality using the branch and bound
solver provided by the YALMIP software package. How-
ever, it has been shown that this requires a large amount
of computational effort in the case of large networks.

The focus of this work is to develop a branch and bound
algorithm specifically for the MICP formulated by Nabil
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and Narasimhan (2012). The main objective of developing
a new algorithm is to bring about a significant decrease
in the amount of computational effort required for sensor
network design of large systems using this procedure.
There are two features of this algorithm which contribute
to attaining this objective.

First, a low rank factorization of the weighting matrix in
the loss function is used when solving the relaxed problem
at each node. This significantly reduces the size of the
resulting semi-definite program and speeds up the overall
solution process.

Second, a heuristic is proposed for choosing the current
lower bound on the objective function at any stage of the
algorithm. This lower bound is then treated as a global
lower bound for all nodes that remain to be explored,
until a relaxed solution with a smaller function value
is encountered. This heuristic, along with the proposed
branching strategy, is aimed at reducing the number of
nodes visited by the algorithm, while still finding a solution
that is close enough to the global optimum.

This paper is organized as follows. In Section 2, the
sensor network design procedure and the formulation of
the MICP are discussed in brief. Section 3 starts with a
brief overview of the general branch and bound strategy.
This is followed by a detailed description of the proposed
algorithm. Finally, in Section 4, the results of numerical
experiments using the proposed algorithm are presented.

2. SENSOR NETWORK DESIGN PROBLEM

This section contains a brief overview of the sensor network
design approach developed by Nabil and Narasimhan
(2012). This procedure relates process economics and the
accuracy of estimates obtained by data reconciliation. For
complete details of the sensor network design formulation,
the reader is referred to the original article.

To address the data reconciliation objective, this formula-
tion classifies the process variables z as primary variables
zp (any subset of z that forms a minimum observable set)
and secondary variables zs (the remaining variables). With
such a segregation of variables, the process model may be
described by the equation

Apzp +Aszs = 0 (1)

Since the primary variables form a minimum observable
network, the matrix As is invertible, and the model can
be expressed as

zs −Bzp = 0 (2)

where B = −As
−1Ap. This can be written in the form

z = Czp (3)

where z is the vector of all variables of interest, z = [zp; zs],
and C = [I;B]. Here, C is a matrix that relates all the
process variables to the primary variables (measurement
model). The measurements y can now be expressed as

y = Czp + v (4)

where the vector y contains all variables of interest in
the process. The data reconciliation problem is formulated

as a weighted least squares problem for minimizing error
variance in presence of measurement errors, given by

min
zp

(y − Czp)TQ(y − Czp) (5)

where Q is a weighting matrix of the form

Q = diag{ qi
σ2
i

} (6)

Here qi is a binary variable indicating whether the ith

variable is measured (qi = 1) or not (qi = 0). σ2
i is the

variance of the measurement error in the ith variable.

This problem is analytically solvable and yields the follow-
ing error covariance matrix for the variables z:

Σz = C(CTQC)−1CT (7)

To address the objective of minimizing the average op-
erational loss, a second order approximation of the cost
function is used. The manipulated variables are denoted by
u and the disturbance variables are denoted by d. The cost
function, J(u, d), describes the negative operational profit
of the process accounting for product value, raw material
cost, and utility cost. After converting all the variables to
the deviation form, the function J is expanded about a
nominal operating point (assumed optimal), up to second
order terms.

J =
1

2
uTJuuu+ uTJudd+

1

2
dTJddd+ uTJu + dTJd. (8)

Under the assumption that the only source of uncertainty
is the measurement error, this leads to an expression for
the average loss L:

L =
1

2
Tr(WΣz) (9)

Here, W is a positive semidefinite weighting matrix. It
depends on the matrices Juu and Jud, which are the second
order partial derivatives of the cost function J(u, d). Note
that the weighting matrix W must be (n × n), while the
cost function J depends only on the manipulated and
disturbance variables, thus giving W the following form:

W =



ndxnd︷ ︸︸ ︷
JT
ud(J−1

uu )TJud

ndxnu︷︸︸︷
JT
ud

(nd+nu)xnx︷︸︸︷
0

Jud Juu︸︷︷︸
nuxnu

...

0 · · · 0︸︷︷︸
nxxnx


. (10)

The resulting expression for average loss is given by

L =
1

2
Tr(WC(CTQC)−1CT ) (11)

where Σz has been substituted from (7). Using a fac-
torization of the weighting matrix W = RRT , and the
Schur complement (see Nabil and Narasimhan (2012)), the
problem of minimizing average loss can be formulated as
the mixed integer cone program:

min
t,qi,Y

=
1

2
t; s.t. Tr(Y ) ≤ t; Y � 0

[
Y RTC

(RTC)T (CTQC)

]
� 0 (12)

IFAC DYCOPS 2013
December 18-20, 2013. Mumbai, India

691



nz∑
i=1

ciqi ≤ c∗; qi ∈ {0, 1}; Q = diag{ qi
σ2
i

}.

A full rank factorization of W is obtained using singular
value decomposition, such that R is a square matrix of
the same size as W . Additionally, in the formulation given
in (12), a capital cost constraint is imposed on the selected
sensors, where c∗ is the available resource limit and ci is
the cost of an individual sensor. This leaves us with the
problem of finding the binary variables qi that minimize
the average loss.

As the problem is a mixed Boolean cone program, it
can be solved using a branch and bound procedure. The
constraints in optimization problem (12) are linear in Q.
Therefore, the problems resulting from the relaxation of
the integer constraints on the diagonal elements of Q at
each node, will be convex. The relaxations can thus be
solved to global optimality by a semi-definite programming
solver. This means that the branch and bound method
can potentially find a solution whose global optimality is
guaranteed.

Globally optimal solutions to the above problem have been
found for test cases, using the branch and bound solver
available in the YALMIP software package (J. Löfberg
(2004)). This solution procedure was found to be compu-
tationally demanding in the case of even moderately sized
systems, often requiring several hours of computational
time to find the optimum. The reason for this is twofold.
The first is the direct increase in number of integer vari-
ables. The second is the increase in size of the matrix Y .
Clearly, Y is a square matrix of the same size as R, which,
in turn, is the same size as W (nz × nz). The entries of Y
are decision variables of the optimization problem, which
means that any increase in the size of Y translates to a
much larger relaxed problem.

Thus, when designing a sensor network for larger systems,
the size of W becomes larger, and the corresponding
increase in size of Y increases the amount of computa-
tional effort required to solve the relaxed problem. For
this approach to be effectively used in designing sensor
networks for very large systems therefore, we need a more
computationally efficient way of finding the optimum.

3. ALGORITHM

In this section, an overview of the general branch and
bound approach is provided, followed by a detailed de-
scription of the proposed algorithm for the solution of the
MICP resulting from the sensor network design procedure.

3.1 General Branch and Bound Strategy

The branch and bound solution approach can be applied to
problems of several different types. It is a popular method
for solving mixed integer programming problems, both
linear and non-linear. This approach works on the principle
that the set of all solutions can be partitioned into smaller
subsets, which can then be evaluated separately, following
a systematic procedure, until a solution is found that can
be proved to be globally optimal. In the case of mixed
integer programming, the branch and bound strategy

needs to be used in conjunction with a solution approach
for the relaxed problem. In our case, the relaxed problems
are solved by semi-definite programming.

If the branch and bound algorithm is not terminated
prematurely, it is guaranteed to find an optimal solution
to linear and convex nonlinear problems. However, in most
cases, in the interest of reducing computation time, the
algorithm is terminated at a stage when the incumbent
integer solution can be proved to be ε-suboptimal.

Consider a general mixed integer optimization problem of
the form

minimize
x,z

f0(x, z)

subject to fi(x, z) ≤ bi, i = 1, . . . ,m.

zj ∈ Z, j = 1, . . . , n.

(13)

Here, the variables x are continuous variables, while the
variables z are restricted to integer values. The functions f
may be linear or nonlinear. In the case of mixed Boolean
problems, as in our case, the constraints on z would be
zj ∈ {1, 0}.
The branch and bound algorithm begins by relaxing all
the integer constraints on the variables. The solution to
this relaxed problem need not have all the z variables at
integer values. The algorithm then branches on one of the
z variables which is at a non-integer value. The branching
step involves the addition of an integer constraint on the
chosen variable. A new subproblem is formed every time
the algorithm branches.

At each new subproblem, bounds are computed, on the
optimum objective function value. The lower bound is
calculated by solving the problem with the integer con-
straints relaxed on all the remaining variables. The global
upper bound at any stage of the algorithm is the smallest
objective function value (for minimization) corresponding
to an integer solution.

At the outset, the upper bound may be calculated in
different ways, such as simply rounding each of the relaxed
Boolean variables zj to 0 or 1, or first rounding each of the
relaxed Boolean variables to 0 or 1, and then, with these
values of fixed, solving the resulting convex problem in the
variables x ( Boyd and Mattingley (2007)).

Different heuristics exist to decide which variable to branch
on, and which subproblem to investigate next. These
heuristics use conditions on the relaxed variables and the
lower bound of the subproblem to decide the next step.

At any stage of the algorithm, a global upper bound and
lower bound are defined. In some cases, when the exact
global optimum is not needed, the algorithm is termi-
nated when the gap between these two bounds becomes
smaller than a given tolerance ε. Otherwise, the algorithm
terminates only when all nodes are completely fathomed,
i.e., when it is certain that branching further on any of
the remaining non-integer nodes will not lead to a better
solution, thus guaranteeing global optimality.

In most cases, the condition that all nodes are fathomed
can only be satisfied after a large amount of computational
time. Therefore, it becomes preferable to terminate the
algorithm at a point which is ε-suboptimal. For example,
in the current problem, a tolerance of 0.01 would mean
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that the optimum sensor network found gives an average
loss that is within one percent of the loss given by the
globally optimum network.

3.2 Proposed Algorithm

The development of a specialized branch and bound so-
lution procedure for sensor network design, using the ap-
proach of Nabil and Narasimhan (2012), has been moti-
vated in Section 2. The heavy computational demands for
large systems, at present, limits the applicability of the
method to systems with few variables.

The focus of the proposed branch and bound approach is
therefore to minimize the computational effort required
in finding optimum solutions to large systems, thereby
facilitating the easy application of this method to systems
of any size.

The main features of the proposed algorithm are discussed
below.

Solving the relaxed problem: As mentioned before, the
relaxation of the integer constraints at any subproblem
result in a convex optimization problem, for which a
solution can be found that is guaranteed to be globally
optimal. In the present formulation (given in (12)), the
relaxation is a semi-definite programming problem, for
which several solvers are available.

As a way of reducing the size of the relaxed problem,
we propose the use of a low rank factorization of the
weighting matrix W . Since the cost function J usually
depends only on a small number of process variables,
W is typically a highly sparse matrix. This makes a low
rank factorization highly effective in reducing the size of
the relaxed problem. The factorization is computed by
first performing a singular value decomposition on W ,
as before. However, we now neglect those singular values
which account for less than 0.1 percent of the sum of
singular values. Thus we have

W = U1S1U
T
1 + U2S2U

T
2

≈ U1S1U
T
1 .

(14)

where U1 and S1 correspond to the retained singular

values. Thus R = U1S
1
2
1 . If p singular values are retained,

U1 will be an nz × p matrix and S1 will be a non-singular
p×p matrix, which would make R an nz×p matrix. Thus,
the matrix Y in the relaxed problem would become p× p,
significantly reducing the computational effort when p is
much less than nz.

Branching strategy: In common branch and bound
solvers, the variable selection for branching is based on
some criterion, such as picking that variable whose value
is closest to one or zero, picking the one whose value is
closest to 0.5, or using information about the Lagrange
multipliers corresponding to each constraint ( Boyd and
Mattingley (2007)). The branching strategy used in the
present approach is simpler, in that it does not use any
heuristic for deciding the branching variable. It simply
selects the first non-integer variable qi when the variables
are arranged in order from i = 1, . . . , n.

Another simplification in the branching strategy lies in
the selection of the next subproblem to be investigated.

Instead of selecting that subproblem with the smallest
lower bound, this algorithm selects the nearest neighbor to
the subproblem that was investigated in the previous step.
The nearest neighbor is defined in terms of the binary tree
structure implicit in this solution approach.

Pruning strategy: The method used here for discarding
a given subproblem, i.e., pruning, is the same as that used
in most branch and bound approaches. A subproblem is
pruned if its lower bound exceeds the current global upper
bound.

Global upper bound: The global upper bound at any
stage of the branch and bound solution process is the
lowest objective function value corresponding to an integer
solution. The upper bound value is used at every step
to discard those subproblems which are certain to be
suboptimal. The lower the value of the upper bound,
the greater the chance that a given subproblem whose
branches do not lead to a better integer solution, will be
discarded.

The algorithm starts with the completely relaxed problem,
and branches on the first non-integer variable qi (see the
optimization problem described by (5)). This variable is
set to 0 and 1, and the corresponding relaxed subproblems
are solved. According to the proposed method, to find a
good upper bound, the next branching will be on that
subproblem that gives the smaller optimum value between
the two. This adds two new subproblems, from which the
one with the smaller function value is chosen for branching.

This heuristic is followed until an integer solution is found,
meaning that more integer constraints will continue to be
added until an integer solution is reached. The optimum at
this solution now becomes the global upper bound for the
branch and bound algorithm. It remains the global upper
bound until a This approach is commonly used in branch
and bound solvers.

Global lower bound: The lower bound at a particular
subproblem is found by solving the corresponding relaxed
optimization problem, which in this case, is a semi-definite
program. The global lower bound at any stage of the
branch and bound is the objective function value corre-
sponding to that subproblem that has the smallest lower
bound among those that are yet to be explored.

The branching strategy used in the present approach,
as explained previously, is different from that of the
traditional branch and bound, and the function values
of all the remaining unexplored subproblems will not be
available at an intermediate stage.

The proposed heuristic works in tandem with the branch-
ing strategy used. The global lower bound is approximated
to be the minimum of the available lower bounds, over all
the fathomed subproblems at the current level. Here, the
level is defined as the number of integer constraints which
are active at a given subproblem.

For example, suppose the algorithm is currently about to
explore the nodes resulting from a parent node, at which
three of the variables are constrained to integer values. The
level of the parent node here is three. The current lower
bound is set as the minimum of the objective function
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values over all the subproblems of level three that have
been evaluated by the algorithm until the current step.

Note that this may not give us the global lower bound over
all the remaining unexplored nodes, which a traditional
branch and bound approach would use. The lower bound
used here is thus an approximation to the actual global
lower bound.

Termination: There are three ways in which the pro-
posed algorithm can terminate. The first, is if the original
problem, with all the integer constraints relaxed, is found
to be infeasible. The second, is if all possible subproblems
have been either pruned or completely fathomed. The third
condition for termination uses a tolerance ε, for the gap
between the current global upper bound and lower bound.
The gap is defined as given by Edgar et. al. (2001):

gap =
|upper bound− lower bound|

1 + |upper bound|
If the gap is less than the tolerance ε, the algorithm
terminates. In all the numerical experiments described in
the next section, a value of 0.01 is used as the tolerance.

4. NUMERICAL EXPERIMENTS

In this section, we present the results of applying the pro-
posed branch and bound technique to the sensor network
design problem for three different systems. The first, a
small system, is the flow network of an ammonia process
described in Narasimhan and Jordache (2000). The second,
a slightly larger system, is a realistic evaporator system
described in Kariwala et. al. (2008). The third is a steam
metering network described in Narasimhan and Jordache
(2000), which is an example of a moderately sized system,
with 28 variables.

4.1 Algorithm Implementation

The algorithm was implemented using Matlab R2010a, on
a Windows system, with an Intel Core 2 Duo 2.20 GHz
and 4 GB of RAM. The semi-definite programming solver
available with the cvx convex optimization package was
used for solving the relaxed subproblems.

4.2 Ammonia Network

The sensor network design problem for the simplified
ammonia process was solved by Nabil and Narasimhan
(2012), as a test case for their approach. The manipulated
variables are F5 and F7, while F1 is considered as the
disturbance variable. For zp = [F2 F5 F7]T , the process
matrix is as given by Nabil and Narasimhan (2012). A
cost function of the form J = (F5 − F7)2 + (F5 − F1)2 is
used to find the weighting matrix W . It is assumed that
the costs of the individual sensors are same and the capital
cost is available for selecting only the minimum number of
sensors.

Results: The resulting MICP was solved using the pro-
posed branch and bound algorithm. The optimum sensor
network was found to be {F1, F5, F8}. The optimum solu-
tion was compared with that obtained using the YALMIP
branch and bound solver, and found to match. The pro-
posed algorithm visits 7 nodes, while the YALMIP solver

visits 8. For this small system, the there is almost no
difference in effort between the two solvers.

4.3 Evaporator System

The optimal sensor network design approach was also
applied to a realistic evaporation process by Nabil and
Narasimhan (2012). The forced-circulation evaporator sys-
tem is shown in Fig. 1. Here, the concentration of the feed
stream is increased by evaporating the solvent through a
vertical heat exchanger with circulated liquor.

Fig. 1. Evaporator system.

The economic objective is to minimize the loss of opera-
tional profit. A cost function of the form

J = 600F100 + 0.6F200 + 1.009(F2 + F3) + 0.2F1 − 4800F2

(15)
is used. The nominal values are obtained by solving the
resulting nonlinear optimization problem (Kariwala et. al.
(2008)).

The variables d = [X1 T1 T200]T are taken as disturbance
variables, with X1 = 5%, T1 = 40◦C, and T200 = 25◦C at
the nominal operating point. The manipulated variables
are u = [F200 F1]T , and the remaining variables of interest
are x = [F2 F3 F4 F5 F100 T2 T3 T201 P2 Q100 Q200]T .
The vector of all variables of interest is therefore z =
[d; u; x]. The primary variables are chosen to be zp =
[F2 F3 F100 F200 T201]T . The implementation, or measure-
ment errors for flow and pressure measurements are taken
to be 2% and 2.5% of the nominal values, respectively.
The available capital cost is taken to be $550. The process
matrix is obtained by linearization around the operating
point. The weighting matrix is obtained numerically using
the objective function (15).

Results: The resulting MICP was solved using the pro-
posed branch and bound algorithm. The optimum sensor
network was found to be {F2, F3, F100, F200, T201}. The op-
timum solution was compared with that obtained using the
YALMIP branch and bound solver, and found to match.
The proposed algorithm visits 8 nodes, while the YALMIP
solver visits 16. For this system also, the there is very little
difference in efficiency between the two solvers.

4.4 Steam Metering Network

To evaluate the computational efficiency of the proposed
algorithm, we have implemented it on a larger problem.
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For this purpose, we use the steam metering system of
a methanol synthesis plant, as described by Narasimhan
and Jordache (2000). This system contains 11 process units
and 28 process streams. This is a moderately sized problem
with 28 variables, with a minimum of 17 sensors required.

The cost function was randomly generated such that Juu
is positive definite (Juu � 0) and well-conditioned, and
the resulting MICP was solved for 50 different cases, using
both the proposed algorithm and the branch and bound
solver provided by YALMIP. The gap tolerance was set to
0.01 for both solvers. For a particular case, the problem
was also solved using the proposed algorithm, without the
low rank factorization, for comparison. This could not be
repeated for all 50 cases because of the large amount of
computational time required by the YALMIP solver.

Table 1. Numerical Experiments

Ammonia Evaporator Synthetic
network system network

Number of variables 8 16 28
Number of primary 3 5 17
variables
Number of possible 56 4368 21474180
combinations
Number of nodes 7 8 1065*
explored by proposed
algorithm
Number of nodes 14 16 22115*
explored by YALMIP
Computational time using 7.61 9.80 1047.22*
proposed algorithm with
low rank factorization (s)
Computational time - - 3287.15*
using YALMIP with
low rank factorization (s)
Optimum average loss ($/h) 3 10.28 32.03*
using proposed algorithm
Optimum average loss ($/h) 3 10.28 30.74*
using YALMIP

*Average over 50 runs.

Results: For the 50 randomly generated cases of the
steam metering network problem, the average number of
nodes visited by the proposed algorithm was found to be
lower than the number visited by the YALMIP solver, by
a factor of approximately 22. However, the optimum value
of the loss found by the proposed algorithm was found to
be, on average, about 4 percent higher than that found by
the YALMIP solver. This additional loss results from the
approximation of the lower bound used by the algorithm.

For the single case where the proposed algorithm was
used with and without the low rank factorization, the
number of nodes visited remained the same in both cases,
but the computational time was found to increase by
approximately a factor of 16. This result clearly showcases
the effectiveness of the low rank factorization in improving
computational efficiency.

5. CONCLUSION

A branch and bound type algorithm, combined with a
low rank factorization, has been proposed for solving the
sensor network design problem of Nabil and Narasimhan

(2012). From the results presented for the steam metering
network, we can conclude that the proposed algorithm is
successful in reducing the computational effort required
to solve the sensor network design problem. However, the
solution found by the proposed algorithm is found to have,
on average, a loss that exceeds the global optimum by
about 4 percent, while the YALMIP solver guarantees a
loss within 1 percent of the global optimum. Since the aim
has been to make the sensor network design procedure of
Nabil and Narasimhan (2012) applicable to systems much
larger than the those dicussed in the paper, the additional
loss, which results from the approximation of the lower
bound used by the algorithm, may be considered an ac-
ceptable penalty to be paid for the significant reduction in
computational effort. Work is in progress to demonstrate
the utility of the approach for very large systems, and to
identify other heuristics that can improve the algorithm.
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