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ABSTRACT Accurate fault diagnosis in air brake is crucial to reduce frequent brake inspection and

maintenance in heavy commercial road vehicles. Existing model-based fault diagnostic schemes work well

under limited vehicle operating conditions, which is insufficient for developing an on-board monitoring

device. In this context, a learning-based fault identification scheme using the Random Forest technique,

which accommodates the vehicle’s wide operating conditions, is proposed. This scheme identifies the

brake’s fault levels with a better classification accuracy of 92% compared to techniques such as Naïve

Bayes, k-Nearest Neighbors, Support Vector Machine, and Decision Tree. Further, a fault-tolerant controller

is proposed to overcome the vehicle’s directional instability arising due to the brake fault. Two sliding mode

controllers, namely differential brake control and steering angle control, were developed to control the yaw

angle. These have been implemented in a Hardware in Loop experimental platform with the vehicle dynamic

simulation software TruckMaker®.

INDEX TERMS Classification algorithms, Fault diagnosis, Fault-tolerant controller, Heavy Road Vehicle,

Machine Learning, Random forests, Sliding mode controller, Supervised learning

I. INTRODUCTION

H
EAVY Commercial Road Vehicles (HCRVs) use air

brake systems, whose failure leads to the vehicle’s yaw

instability and increased stopping distance. The excessive

stroke length of a component called pushrod is one of the

major faults in the air brake system. The increase in clearance

between the brake lining and the brake drum is due to worn

out brake lining and thermal expansion of brake drum, which

causes excessive stroke length [1]. However, the maintenance

or repair of brakes cannot always be achieved immediately.

It requires a human being to go underneath the vehicle to

measure/observe the pushrod stroke manually. Further, this

approach is time-consuming and becomes difficult for vehi-

cles with low ground clearance. Active safety systems such as

ABS, traction control, and electronic stability control require

a properly functioning brake system, as it is the primary actu-

ator in the control loop. HCRVs with an active safety system

should be fault-tolerant in ensuring the vehicle’s stability

and delivering the expected vehicle performance. Hence, a

Fault-Tolerant Controller (FTC) capable of guaranteeing the

vehicle’s stability during brake failures is essential.

The design of the FTC system requires an accurate and

tractable diagnostic scheme for decision making. For pre-

serving the safety of human occupants and reliability of

vehicle operations, the occurrence of faults must be taken

into account to generate a fault flag, which would trigger the

FTC. Existing fault diagnostic schemes for the air brake sys-

tem have predominantly followed model-based approaches.

Kandt et al. [2] developed a mathematical model of the

air brake system to find the brake stroke from the brake

chamber pressure. Subramanian et al. [1] developed model-

based diagnostic schemes to detect leaks and estimate the

pushrod stroke. In [3], the authors developed a model-based

diagnostic scheme to predict the out-of-adjustment of the

pushrod and the severity of leak in the air brake system.

All the methods mentioned above were developed only for

a specific set of vehicle operating conditions like low and

medium brake applications. Additionally, they require pres-
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sure sensors that are not economically viable during real-time

implementation. Hence, this paper’s primary objective is to

develop a fault diagnostic model using a machine learning

approach, which incorporates the entire range of vehicle op-

erating conditions and uses the readily available wheel speed

data to avoid the necessity of additional pressure sensors.

Another vital fact to be noted is that the Anti-lock Brake

System (ABS) is mandatory in HCRVs in many countries,

including India, U.S.A., Australia, and Brazil [4]–[7]. As

the wheel speed sensor is an essential component of ABS,

the wheel speed sensor data is readily available in HCRVs.

Motivated by these, a fault identification model using the

wheel speed sensor data is proposed in this study, which

uses a Machine Learning (ML) based multiclass classifier.

Various ML algorithms like Naïve Bayes (NB), k-Nearest

Neighbors (k-NN), Support Vector Machine (SVM), Deci-

sion Tree (DT), and Random Forest (RF) were compared to

obtain the best prediction algorithm.

The ultimate aim of multiclass classification is to distin-

guish the various class labels of new instances with known

attribute values and unknown class labels, which can then

be used to make intelligent decisions. The NB algorithm is

widely used for classification and is a probabilistic classifier.

An application of the NB algorithm in fault diagnosis of

vehicle fleet tracking modules can be found in [8]. An-

other commonly used classification algorithm is k-NN, which

classifies an object based on distance from its neighbors

[9]. Even though k-NN is a simple algorithm, its prediction

accuracy depends on the distance metric used to calculate the

distance between an object and its neighbors. Sankavaram et

al. developed a fault diagnostic model based on the k-NN

algorithm in a hybrid electric vehicle regenerative braking

system [10]. The DT algorithm is a widely used multiclass

classification tool that finds application in many real-world

classification problems such as fault diagnosis, weather pre-

diction, and astronomy. Huang et al. developed a DT based

fault diagnostic model for a fuel cell engine [11]. The issues

related to the construction of DTs are the tree’s growth to

enable it to accurately classify the training data sets and the

pruning stage in which unnecessary nodes and branches are

removed for better classification accuracy. The disadvantages

of DTs can be overcome by the RF algorithm, an ensemble

algorithm made of many decision trees using random subsets

of features, bootstrapping, and average voting to make pre-

dictions [12]. The work in [13] discusses the fault diagnosis

of automotive systems based on the RF algorithm. In the

present work, fault identification models based on all the ML

methods mentioned above have been developed. The various

performance measures of these models were compared to

obtain the most accurate fault identification scheme. Thus,

one of the objectives of this paper is to identify the fault

(using a suitable ML model) in the air brake system in the

early stage of its occurrence using wheel speed sensor data,

which ultimately gives an idea about the severity of the fault.

Hence, this would be suitably integrated for advanced vehicle

safety systems and intelligent vehicles.

On detecting a faulty brake during the vehicle’s opera-

tion, the driver should take necessary action to correct any

trajectory error through steering command. But the driver’s

reaction is affected by individual factors, such as driving

experience, gender, and habits [14]–[16]. An improper steer-

ing command to improve stability may further worsen the

situation. In this context, an FTC capable of maintaining

vehicle stability under a faulty brake scenario would be of

significant interest. Hence, this paper’s second objective is to

develop an FTC that maintains the yaw angle at the desired

values under the brake fault scenario by giving an appropri-

ate control command. Two controllers, namely Differential

Braking Controller (DBC) and Steering Angle Controller

(SAC), were considered for the FTC scheme. For a better

control action in the presence of faulty brake, DBC and

SAC’s performance were analyzed based on the vehicle’s

Stopping Distance (SD) and yaw angle reduction. Here, the

proposed methodology works so that, whenever a brake fault

is detected, the controller gets activated and provides the

necessary control action.

The variables required for implementing the controller

are yaw angle, yaw rate, longitudinal, and lateral vehicle

speed. However, vehicle longitudinal and lateral speed are

not readily available as measurements in practice. Various

estimation schemes are available for longitudinal and lat-

eral speed estimation that use extended Kalman filter [17],

adaptive Kalman filter [18], and Sliding Mode Observers

(SMO) [19]. Although the performance of the above methods

is similar, Kalman filter based estimation schemes require a

large amount of computation [20]. But SMO avoids massive

matrix computation and gives better parameter robustness

and is more practically feasible than the Kalman filter [21].

Hence, in this research, an SMO based estimation scheme has

been used to estimate vehicle lateral and longitudinal speeds.

The development of fault-tolerant control schemes for

air brake systems has not been adequately explored by the

research community. A few related works in this domain for

other automotive systems are the following. Li et al. devel-

oped a fuzzy H∞ controller for active suspension with ac-

tuator delay and fault [22]. An observer-based fault-tolerant

controller for uncertain steer-by-wire systems using model

predictive control has been developed by Haung et al. [23].

A nonlinear fault-tolerant control scheme has been developed

by Youssef et al. considering vehicle lateral dynamics using

T-S fuzzy model [24]. Chen et al. designed a sliding mode

control based FTC considering a hypersonic flight vehicle’s

longitudinal dynamics [25]. Guo et al. developed a sliding

mode FTC for nonlinear systems with actuator fault [26].

A nonlinear vehicle model suitable for scenarios like com-

bined braking and cornering has been used in this study.

Further, the control technique for FTC should have adequate

robustness to tolerate the incidence of potential paramet-

ric uncertainties and external disturbances during on-road

vehicle operation. In this regard, due to its suitability for

nonlinear systems, and also by virtue of its robustness, Slid-

ing Mode Control (SMC) has been used in this study for
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FTC design [27], [28]. SMC is a well established control

technique for various control engineering problems [29].

Chae et al. developed a dynamic handling control scheme

for electric vehicles using adaptive SMC [30]. An adaptive

SMC scheme was designed to eliminate the thruster faults

and external disturbances for a spacecraft by Liu et al. [31].

Anche et al. developed a hitch control system to attenuate

the disturbance forces in tractors [32]. In order to overcome

the inherent limitation of chattering in SMC (high-frequency

control signal switching), a reaching law based SMC design

has been employed for FTC design [33].

Based on related literature, it was observed that a proper

diagnostic tool, along with an adequate FTC scheme for the

air brake system, is not available. In view of this, a diagnostic

method that considers the vehicle’s wide operating conditions

and an FTC scheme that preserves the vehicle’s stability in

the event of brake system failure has been presented in this

paper. The key features of this study are:

• Design of experiments is proposed for the collection of

extensive data sets required for the development of fault

identification models.

• Various multiclass algorithms for fault identification of

the air brake system using the wheel speed sensor data

are developed and compared.

• An SMO based observer is designed for estimating the

vehicle longitudinal and lateral speed that are essential

for FTC design.

• In order to maintain vehicle directional stability under

the brake fault scenario, an SMC based FTC is designed

and implemented in a Hardware-in-Loop (HiL) experi-

mental platform.

The rest of this article is organized as follows. Section II

deals with the theoretical background of fault identification

schemes. The overview of fault-tolerant control, along with

fault identification structure, is discussed in section III. The

experimental setup and the data collection procedure are

explained in section IV. Section V discusses the fault iden-

tification of the air brake system using multiclass classifiers.

Section VI explains the FTC design and analysis, includ-

ing the description of the vehicle model, SMO design and

controller design, and its performance evaluation. Finally,

section VII concludes the paper.

II. FAULT IDENTIFICATION METHODS

Fault detection and diagnosis consist of three steps, namely

fault detection, isolation, and identification. The present

study deals with fault identification of the Front Right (FR)

brake system using various ML techniques viz., Naïve Bayes

(NB), k-Nearest Neighbors (k-NN), Decision Tree (DT),

Support Vector Machines (SVMs) and Random Forest (RF).

These methods are briefly discussed below.

1) Naïve Bayes Algorithm

The Naïve Bayes (NB) classifier technique is based on the

Bayes theorem and is capable of handling an arbitrary num-

ber of independent variables. As per the Bayes theorem,

p(aj |b) =
p(b|aj)p(aj)

p(b)
, (1)

where, p(aj |b) is the probability of instance b in class aj ,

p(b|aj) is the probability of generating instance b given class

aj , p(aj) is the probability of occurrence of class aj , and

p(b) is the probability of occurrence of instance b. The Naïve

Bayes classifier assumes independence among attributes for

a given class [34].

2) k-Nearest Neighbor Algorithm

In the k-Nearest Neighbor (k-NN) algorithm, the classifica-

tion of an object is obtained based on distance from its neigh-

bors. The commonly used method of measuring distance

is the Euclidean distance metric method. Here, the k-NN

algorithm selects only the k-nearest neighbor classes based

on a majority vote that would predict the best-fit class for a

point [9].

3) Decision Tree Algorithm

Decision tree (DT) builds classification algorithms in the

form of a tree structure and uses a set of binary rules to

calculate a target value. It consists of a root node, which

represents the entire samples, each internal node corresponds

to a “test” on an attribute, and finally, each leaf gives a

class label. The basic algorithm used in DT is known as

the Iterative Dichotomiser 3 (ID3) algorithm, which develops

decision trees using a top-down approach [35].

4) Random Forest Algorithm

Random Forest (RF) algorithm is an ensemble based algo-

rithm, which consists of several decision trees. The two key

concepts in the RF algorithm are the random sampling of

training data points for building trees and random subsets

of features for splitting nodes [12], [36]. One of the main

advantages of using the RF algorithm is that it is free from

the model overfitting issues. In the present study, the number

of trees used in the forest was 50, the minimum number of

samples required to split an internal leaf node was taken as 2,

and the minimum number of samples required at a leaf node

was taken as 1.

5) Support Vector Machines (SVMs)

SVMs are designed for binary classification, which gives

an outcome of +1 or -1 [37]. But at the same time, it is

an excellent tool for multiclass classification. Two different

approaches are mainly considered for a multiclass SVM: one-

against-all (OAA) and one-against-one (OAO). OAA uses K

binary problems to classify K classes in which each problem

discriminates a given class from the other (K-1) classes.

For this approach, the system requires K binary classifiers.

In OAO, each classifier is trained to distinguish between

each pair of classes. This design exhausts all combinations

of positive class assignments. Hence, this approach requires
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FIGURE 1: Overview of differential braking based and steering angle based Fault Tolerant Controller along with fault

identification scheme

K(K-1)/2 binary classifiers [38], [39]. SVM-OAO is typically

more accurate than the SVM-OAA [38], and hence, SVM-

OAO was used to classify three levels of faults in the air brake

system. Here, the SVM parameters were optimized using a

10-fold cross-validation approach. Two kernel techniques,

viz., linear and Gaussian kernels were used in the present

study.

III. OVERVIEW OF FAULT-TOLERANT CONTROL ALONG

WITH FAULT IDENTIFICATION STRUCTURE

Fig. 1 represents the overall block schematic of the pro-

posed FTC scheme based on Differential Braking Control

(DBC)/Steering Angle Control (SAC). Here, the Hardware-

in-the-Loop (HiL) experimental platform consists of an

Electro-Pneumatic Regulator (EPR) based air brake system.

Initially, air brake fault was identified by a multiclass ML

model. Once the fault flag gets activated, the FTC controller

has to give the required control command for vehicle sta-

bility. A sliding mode controller design based on conven-

tional constant rate reaching law (CRRL) and power rate

exponential reaching law (PRERL) has been developed to

implement DBC and SAC. In SAC, the steering angle is the

control signal fed back to the vehicle model. On the other

hand, in DBC, brake force is the control signal converted to

the desired brake pressure and then realized through a brake

controller.

IV. EXPERIMENTAL SETUP AND DATA COLLECTION

A. EXPERIMENTAL SETUP

 

PC running with 

IPG/TruckMaker® and 

MATLAB/Simulink®
 

Rapid prototyping 

Hardware EPR 
Front brake 

chambers 

Rear brake 

chambers 

Steering and pedal 

assembly 

Potentiometer Pressure sensor 

FIGURE 2: Hardware-in-the-loop (HiL) experimental setup

of air brake system in HCRVs
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The Hardware-in-the-Loop (HiL) experimental setup used

in the present study (Fig. 2) consists of:

• HCRV brake system along with the vehicle dynamic

simulation software IPG/ TruckMaker®.

• Flexible and modular hardware viz., IPG XPack4,

which acts as a Real-Time Rapid Control Prototyping

tool.

• Pressure sensors for measuring brake chamber pressure.

• Electro-Pneumatic Regulators (EPRs), used to regulate

the pressure, allow the compressed air from the storage

reservoir to the brake chamber based on an analog DC

voltage supplied between 0-10 V.

• Potentiometers interfaced with the control hardware for

measuring the pushrod stroke.

B. VEHICLE PARAMETERS

TABLE 1: Vehicle parameters [40]

Parameter
Unladen vehicle

Values

Laden vehicle

Values

Mass,M 4700 kg 16200 kg

Distance from
Front Axle,Lf

2.7 m 3.4 m

Distance from
Rear Axle, Lr

2.7 m 2.0 m

CG Height, h 1 m 1.3 m

Moment of Inertia
(X-axis), Ix

6176 kgm2 20000 kgm2

Moment of Inertia
(Z-axis), Iz

39000 kgm2 100000 kgm2

Cornering stiffness,
Cαf

79322 N/rad 330683 N/rad

Cornering stiffness,
Cαr

82748 N/rad 186589 N/rad

Track Width,
d

2.1 m 2.1 m

A 16200 kg truck was used in this study [40]. A wheel-

base of 5.4 m and a straight line maneuver with an initial

longitudinal speed of 80 km/h (22.22 m/s) were considered.

The brake was applied for a duration of 10 s. The vehicle

parameters used in the current analysis are given in Table 1.

C. DATA COLLECTION PROCEDURE

The feature set for developing the ML model consists of

wheel speed data from the four wheels. Fig. 3 shows the

test scenarios used for the data collection. Data sets cor-

responding to broad combinations of physical parameters

(e.g. vehicle load, brake and road conditions) representing

realistic vehicle operating conditions were considered in

order to achieve good prediction accuracy. Thus, vehicle

load conditions (fully laden and fully unladen), various brake

chamber pressures from 0.1 MPa to 0.9 MPa with a step size

of 0.1 MPa, tire-road interface friction values (µmax = 0.8,

µmax = 0.3 and split µ) and brake conditions (No-fault,

10%, and 20% brake torque reduction) were the test scenarios

considered for the collection of training data sets. In order to

illustrate the efficacy of the developed ML models, partially

laden (50% of maximum load), random pressure application,

 

Vehicle  load 
condition

Fully 
Laden

Fully 
Unladen

Partially 
laden

Brake 
chamber 
pressure

0.1- 0.9 
MPa

With a 
step size of 

0.1 MPa

Random 
pressure

Tire-road 
interface 
condition

Dry road 
surface

Snowy road 
surface

Split μ road 
surface

Wet road 
surface 

Brake 
condition

No fault

Fault 
(Torque 
reduction)

• 10 % and 
20 %

Random 
torque 

reduction

FIGURE 3: Various vehicle operating and road conditions

for collecting training (normal font) and testing data (both

normal font and italics font)

tire-road interface friction value µmax = 0.5 and random

torque reductions were also included in the testing process.

Since the wheel speed sensor data is highly sensitive to the

various vehicle operating conditions and working conditions

of all four brakes, a detailed test matrix was designed by

encompassing the four test scenarios (Fig. 3) and is shown

in Table 2. The proposed scheme for fault identification is in-

tended to develop diagnostic algorithms separately for all the

four brakes. For the sake of brevity, this paper demonstrates

the fault diagnostic algorithm for the front right brake alone.
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FIGURE 4: Brake torque variation with static pushrod stroke

length [41]

In order to obtain the various fault levels for fault identifi-

cation, the vehicle performance analysis has been conducted

in terms of the yaw angle deviation and stopping distance.

The relation between brake torque and the pushrod stroke

length is shown in Fig. 4, and it is clear that the brake
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TABLE 2: Test matrix for fault identification of front right brake chamber

Test Case Fault level Front right Front left Rear right Rear left Fault Identification label No.of Training data

No fault NF NF NF NF FRNF 54

10% fault F NF NF NF FRF10% 54Case I

20% fault F NF NF NF FRF20% 54

No fault NF F NF NF FRNF 54

10% fault F F NF NF FRF10% 54Case II

20% fault F F NF NF FRF20% 54

No fault NF NF F NF FRNF 54

10% fault F NF F NF FRF10% 54Case III

20% fault F NF F NF FRF20% 54

No fault NF NF NF F FRNF 54

10% fault F NF NF F FRF10% 54Case IV

20% fault F NF NF F FRF20% 54

No fault NF F F NF FRNF 54

10% fault F F F NF FRF10% 54Case V

20% fault F F F NF FRF20% 54

No fault NF NF F F FRNF 54

10% fault F NF F F FRF10% 54Case VI

20% fault F NF F F FRF20% 54

No fault NF F NF F FRNF 54

10% fault F F NF F FRF10% 54Case VII

20% fault F F NF F FRF20% 54

No fault NF F F F FRNF 54

10% fault F F F F FRF10% 54Case VIII

20% fault F F F F FRF20% 54

Total training data 1296

torque drastically reduces after a particular stroke length

(readjustment limit). The reduction of brake torque in any

brake chamber affects vehicle performance (yaw stability

and stopping distance), and it becomes more severe under

varying tire-road interface conditions and load conditions of

the vehicle. The variation of yaw angle and stopping distance

corresponding to different levels of brake torque reduction in

the front right brake of a fully laden vehicle with µmax = 0.8
and brake pressure of 0.8 MPa is shown in Fig. 5.
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FIGURE 5: Yaw angle and stopping distance corresponding

to the different level of brake torque reduction in front right

brake

The effect of stopping distance and yaw angle variations

with a reduction in brake torque was analyzed for a vehicle

with a length of 8.1 m and a width of 2.1 m on a road

with a lane width of 3.5 m. The yaw angle at 20% and

30% reduction in brake torque was found to be 2o and 3o,

respectively, and it was observed that at 30% brake torque

reduction, the vehicle would go outside the lane boundary.

Similarly, the corresponding increase in stopping distance

was found to be 3.6 m and 4.6 m, respectively. Hence, it

is clear that a 30% torque reduction is a severe fault and

the performance would not deteriorate much at 20% torque

reduction. Hence, it was determined that it is essential to

detect the fault when it reaches a level of at most 20%.

From this analysis, the fault levels of front right brake were

fixed as FRNF, FRF10%, and FRF20% corresponding to

no-fault, 10% torque reduction, and 20% torque reduction,

respectively. The labels FRF and FRNF correspond to the

front right faulty brake and front right non-faulty brake,

respectively. For developing fault diagnosis algorithms for

other brakes, Table 2 can be relabelled accordingly.

Data sets were collected by conducting 1795 test runs that

include 1296 training data sets and 499 testing data sets. Each

wheel speed data consists of 1000 data points collected at a

sampling rate of 50 Hz.

V. FAULT IDENTIFICATION USING MACHINE LEARNING

TECHNIQUES

A. PERFORMANCE ANALYSIS OF VARIOUS ML

TECHNIQUES

For fault identification, the multiclass algorithm is required

to classify at least three classes of fault levels. Here, the

6 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3024251, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FRF(10%)

FRF(20%)
FRNF

Predicted Class

FRF(10%)

FRF(20%)

FRNF

T
ru

e 
C

la
ss

25

24

19

21

23

23

119

119

126

(a)

FRF(10%)

FRF(20%)
FRNF

Predicted Class

FRF(10%)

FRF(20%)

FRNF

T
ru

e 
C

la
ss

20

13

15

17

11

14

139

132

138

(b)

FRF(10%)

FRF(20%)
FRNF

Predicted Class

FRF(10%)

FRF(20%)

FRNF

T
ru

e 
C

la
ss

13

31

15

12

12

2

138

151

125

(c)

FRF(10%)

FRF(20%)

FRNF

Predicted Class

FRF(10%)

FRF(20%)

FRNF

T
ru

e 
C

la
ss

113

1

2

87

1

50

78

167

(d)

FRF(10%)

FRF(20%)

FRNF

Predicted Class

FRF(10%)

FRF(20%)

FRNF

T
ru

e 
C

la
ss

9

13

37

4

8

4

120

153

151

(e)

FRF(10%)

FRF(20%)

FRNF

Predicted Class

FRF(10%)

FRF(20%)

FRNF

T
ru

e 
C

la
ss

1

10

14

10

3

2

148

163

148

(f)

FIGURE 6: Confusion matrix for fault level classification of air brake system based on wheel speed sensor data: (a) Naïve

Bayes, (b) k-Nearest Neighbor, (c) Decision Tree, (d) SVM (Linear), (e) SVM (Gaussian), (f) Random Forest

TABLE 3: Performance measures of various ML techniques

Performance

Measures

Random Forest SVM (Gaussian) SVM (Linear) Decision Tree k-Nearest Neighbor Naïve Bayes

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

Precision (%) 88 98 89 89.9 92.2 72 99 52 68 74 91 83 82 79 84 75 14 15

Recall (%) 96.7 87.2 93 92 79 85 56 97 99 90 85 76 85 81 81 35 34 37

Class Accuracy (%) 97 95 94 94 89 86 74 81 87 88 91 85 88 86 87 38 48 49

Average Accuracy (%) 94.51 89.55 81.4 88.02 87.21 45.09

Overall Accuracy (%) 91.99 84.97 73.54 82.97 81.96 34.87

Computation Time (s) 0.33 2.22 0.345 0.213 1.08 0.415

C1 ⇒ Class1 : FRNF,C2 ⇒ Class2 : FRF (20%),C3 ⇒ Class3 : FRF (10%)

fault levels were taken as No-Fault, 10%, and 20% fault on

the front right brake with corresponding labels FRNF, FRF

(10%), and FRF (20%), respectively. The developed models

were tested with 499 data sets that include random operating

conditions of vehicle load and road scenarios. The confusion

matrix corresponding to various ML models is given in Fig.

6. Here, the diagonal entry of the confusion matrix shows

the number of correct classifications and the off-diagonal

entry represents the wrong classifications. The performance

measures like precision, recall, and accuracy of the various

ML models are given in Table 3. Here, class accuracy,

average accuracy (average of each accuracy per class), and

overall accuracy (number of correctly predicted items/total of

the item to predict) were calculated for all ML models. The

average and overall accuracy of the RF model were 94.51%

and 91.99%, respectively, which is the highest performance

compared to the other ML models. It was noted that, with

an Intel CoreTM Processor i5-6200U CPU with 8GB RAM,

the computation time for testing with a single set of data was

0.33 s in the case of the RF model. Based on this analysis, it

can be concluded that the Random Forest model provided the

best prediction accuracy for correct classification of various
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fault levels of the air brake system.

VI. FAULT TOLERANT CONTROL SCHEME DESIGN AND

ANALYSIS

A. THE VEHICLE MODEL

The current study used a two track vehicle model with 3

degrees of freedom (3 DOF) (longitudinal, lateral, and yaw

motion of the vehicle), which is shown in Fig. 7. The pitch

and roll motions have been neglected. Here, δ is the front

wheel steering angle, lf and lr denote, respectively, the

distance of center of gravity (CG) from the front and rear

axle center, d is the track width, Fx denotes the braking force,

and the subscripts fl, fr, rl, and rr represent, respectively, the

front left, front right, rear left and rear right. M is mass of

the vehicle, Cαf , Cαr are the cornering stiffness of each

front tire and rear tire, respectively. vx(t) and vy(t) are the

longitudinal and lateral speed of the vehicle, respectively.

Iz is the moment of inertia about the z-axis and δ(t) is the

vehicle steering angle. The equations of motion are given by

Fyrl

Fxrr

Fyrr

 𝜓
Fxrl

Fyfr
Fxfr

Fxfl αf δf

αr

X

Y

Lr Lf

L

d

β

Fyfl

FIGURE 7: Two-track model of a vehicle performing a left

turn

v̇x(t) = ψ̇(t)vy(t)−
Cαf

M

(

δ(t)−
vy(t) + ψ̇(t)lf

vx(t)

)

δ(t)

−
1

M
(Fxfl(t) + Fxfr(t) + Fxrl(t) + Fxrr(t)),

(2)

(3)

v̇y(t) = −ψ̇(t)vx(t) +
Cαr

M

(

−vy(t) + ψ̇(t)lr
vx(t)

)

−
Cαf

M

(

vy(t) + ψ̇(t)lf
vx(t)

)

+
Cαf

M
δ(t)

+
δ(t)

M
(Fxfl(t) + Fxfr(t)) ,

ψ̈(t) =
lf
Iz
Cαfδ(t)−

lf
Iz
Cαf

(

−vy(t) + ψ̇(t)lf
vx(t)

)

−
lr
Iz
Cαr

(

−vy(t) + ψ̇(t)lr
vx(t)

)

−
d

2Iz
(Fxfr(t)−Fxfl(t))−

d

2Iz
(Fxrr(t)−Fxrl(t)).

(4)

Equations (2), (3), and (4) are represented in state space form

as

ẋ(t) = f(x(t)) + g(u(t)), (5)

where, state vector

x(t) =
[

vx(t) vy(t) ψ(t) ψ̇(t)
]T
,

and the input vector

u(t) =
[

Fxfl(t) Fxfr(t) Fxrl(t) Fxrr(t)
]T
.

Here, the output equation is,

y(t) =









0
0
1
0









.









vx(t)
vy(t)
ψ(t)

ψ̇(t)









= ψ(t). (6)

The vehicle model given in (5) and (6) was used for FTC

design. The Pacejka Magic Formula 6.1 tire model [42] was

used in the present study and it is given by

y = Dsin[C(arctan(Bx− E(Bx− arctanBx))], (7)

where Y (X) = y(x) + SV and x = X + SH . Here, Y
is the output variable (longitudinal force, lateral force or

aligning moment), and X is the input variable (longitudinal

slip or slip angle). The tire model parameters B, C, D,

and E, represent the stiffness factor, the shape factor, the

peak value, and the curvature factor. The parameters SH and

SV denote the horizontal and vertical shifts of the force-

slip curve, respectively. The tire model parameters for the

315/80R22.5 radial truck tire were obtained from the vehicle

dynamic simulation software, IPG TruckMaker® [43], and

used in this study.

B. SLIDING MODE OBSERVER (SMO) DESIGN

Vehicle parameters like longitudinal and lateral speed are

not readily available through measurements. Hence, for im-

plementing FTC, these parameters were estimated using a

Sliding Mode Observer (SMO). The structure of SMO is

given in Fig. 8. The basic SMO design includes two steps:

• Design of intersection of the sliding surface to restrict

the estimation error trajectories to the sliding surface

with the desired stable dynamics.

• Determination of the observer gain to drive the estima-

tion error trajectories to the sliding surface and maintain

it on the surface for all subsequent time.

For the design of SMO, consider the nonlinear system,

ẋ(t) = f(x(t),u(t)), z = hNL(x(t)) (8)
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System= Vehicle simulator 

𝑥̂̇ = 𝐹(𝑥̂(𝑡), 𝑢(𝑡)) − Λsgn(𝑧(𝑡) − 𝑧̂(𝑡)) 

𝑥̂ = [𝑣𝑥(𝑡) 𝑣𝑦(𝑡) 𝜓̇̂(𝑡) 𝜓̂(𝑡)]𝑇  𝑧̂ = [ 𝑎̂𝑦(𝑡) 𝜓̇̂(𝑡)]𝑇 

𝑧(𝑡) = [𝑎𝑦(𝑡) 𝜓̇(𝑡)]𝑇  𝑢 = [𝐹𝑥𝑓𝑙(𝑡) 𝐹𝑥𝑓𝑟(𝑡) 𝐹𝑥𝑟𝑙(𝑡) 𝐹𝑥𝑟𝑟(𝑡)]𝑇  

FIGURE 8: Basic structure of Sliding Mode Observer

where,

f(x̂(t),u(t)) =









f1(x̂(t),u(t))
f2(x̂(t),u(t))
f3(x̂(t),u(t))
f4(x̂(t),u(t))









,

hNL(x(t)) =

[

hNL1(x(t))
hNL2(x(t))

]

,

and the measurement vector,

z(t) =
[

ay(t) ψ̇(t)
]T
.

An SMO for the system given in (8) can be designed as

˙̂x(t) = f(x̂(t),u(t))−Λzs(t), (9)

where, Λ is a 4x2 robustness gain matrix and zs(t) is 2x1

robustness vector which is expressed by

zs(t) =
[

sgn(z̃1(t)) sgn(z̃2(t))
]T
,

where,

z̃1(t) = ây(t)− ay(t) = s1(t) and

z̃2(t) =
˙̂
ψ(t)− ψ̇(t) = s2(t).

The 2-dimensional surface s(t) = [s1(t) s2(t)]
T = 0 will

be attractive if outside of the surface there exists

si(t)ṡi(t) < 0, i = 1, 2.

Further, if

si(t)ṡi(t) ≤ −ηisi(t), i = 1, 2,

holds, system trajectories will reach the surface s(t) = 0
in finite time. The above sliding-mode observer has a chat-

tering problem due to the ‘sgn’ discontinuity, which can be

eliminated by using a boundary layer approach which uses a

‘saturation’ function instead of ‘sgn’ function [44].

Fig. 9 shows the estimated and actual longitudinal speed

and lateral speed during a lane change maneuver for a

fully laden vehicle with high tire-road friction coefficient

(µmax = 0.8). The efficacy of the algorithm was evaluated

with other test maneuvers like steady state circle, braking-

in-a-curve and steer step. The performance of SMO was

analyzed in terms of Root Mean Square Error (RMSE), and

the observations are shown in Table 4. The RMSE of the

longitudinal and lateral speed of all cases was less than 0.69

m/s.
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FIGURE 9: Estimated and actual longitudinal speed and

lateral speed during a lane change maneuver : a) Longitudinal

Speed b) Lateral Speed

TABLE 4: Performance evaluation of SMO based estimation

scheme

Test Maneuver
RMSE (m/s)

Longitudinal Speed Lateral Speed

Lane change 0.02 0.12

Steady State Circle 0.61 0.69

Braking-in-a-curve 0.17 0.42

Steer Step 0.46 0.39

C. CONTROLLER DESIGN USING SLIDING MODE

CONTROL

Sliding Mode Control (SMC) is a well accepted robust

control technique that finds application in various control

engineering problems. SMC is used in this paper to develop

a robust FTC for the air brake system. This led to the de-

velopment of a suitable controller design for maintaining ve-

hicle stability with faulty brakes. Hence, two control actions,

namely Differential Braking Control (DBC) and Steering An-
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gle Control (SAC) were developed, and the performance of

the vehicle with both controllers was evaluated. The objective

was to regulate the yaw angle (ψ(t)) to zero through adequate:

• Longitudinal brake forces as control inputs in DBC;

• Steering angle as control input in SAC.

Here, the error in state variable is

e(t) = x3a(t)− x3d(t) = ψ(t)− ψd(t), (10)

where, ψ(t) and ψd(t) are the actual and desired yaw angle

respectively. The desired yaw angle is given by ψd(t) and is

desired to be ‘zero’ during a straight line maneuver.

For the design of SMC based controller towards the regu-

lation of the state variable, ψ(t), the switching function was

selected as

s(t) = λe(t) + ė(t), (11)

where, λ > 0.

Now taking the first derivative of s(t) and applying the

desired values of output variables to zero

ṡ(t) = λψ̇(t) + ψ̈(t). (12)

In order to mitigate chattering, reaching law based SMC

design has been employed here. The conventional Constant

Rate Reaching Law (CRRL) is given by,

ṡ(t) = −Kcsgn(s(t)) = λψ̇(t) + ψ̈(t). (13)

Even though CRRL has been widely used as a simple

strategy for SMC design, it introduces chattering in the

system. This limits the practical utility of SMC since high

frequency control signal switching due to chattering may

result in actuator damages [33], [45]. Hence, SMC design

should involve adequate chattering mitigation in order to

make it suitable for practical application. In this context, the

recently proposed Power Rate Exponential Reaching Law

(PRERL), which provides chattering mitigation property, has

been adopted for air brake system FTC design. The PRERL

is given by

ṡ(t) =
−Kp

δ0 + (1− δ0)e−α|s(t)|p
|s(t)|

q
sgn(s(t))

= λψ̇(t) + ψ̈(t). (14)

Here, the controller gainsKc andKp are positive. In PRERL,

δ0, α, p, q are controller tuning parameters to ensure the

robustness and chattering mitigation [46].

Case I: Differential Braking Control (DBC) using PRERL

Using (14) and (4), the desired brake force control signal can

now be obtained as,

(15)

Fi(t) =
2

d

[

−Kp

δ0 + (1− δ0)e−α|s(t)|p
|s(t)|

q
sgn(s(t))

+ (−1)i+1 λψ̇(t)

+ (−1)i+1 lf
Iz
Cαf

(

−vy(t) + ψ̇(t)lf
vx(t)

)

+ (−1)i
lr
Iz
Cαr

(

−vy(t) + ψ̇(t)lr
vx(t)

)]

+ (−1)2i F(i+1)(t) + (−1)2i+1 F(i+2)(t)

+ (−1)2i+2 F(i+3)(t),

where, i = 0, 1, 2, 3 and index of F (t) is mod 4, implying

a cyclic ordering of F0(t), F1(t), F2(t), and F3(t). Again,

F0(t) = Fxfl(t), F1(t) = Fxfr(t), F2(t) = Fxrl(t),
and F3(t) = Fxrr(t), represent the four longitudinal brake

forces.

Here, (15) represents the control equation for DBC

scheme, where the longitudinal forces are the control inputs.

Case II: Steering Angle Control (SAC) using PRERL

Using (14) and (4), the steering angle control signal δ(t) is

obtained as,

δ(t) =
Iz

lfCαf

[

−Kp

δ0 + (1− δ0)e−α|s(t)|p
|s(t)|

q
sgn(s(t))

− λψ̇(t)

]

+

(

−vy(t) + ψ̇(t)lf
vx(t)

)

+
lrCαr

lfCαf

(

−vy(t) + ψ̇(t)lr
vx(t)

)

+
d

2lfCαf

(Fxfr(t)− Fxfl(t))

+
d

2lfCαf

(Fxrr(t)− Fxrl(t)) .

(16)

Equation (18) represents the control equation for SAC

scheme, where the steering angle is the control input, and

the four longitudinal forces used in the equation are obtained

from the TruckMaker vehicle model.

Further, the performance of PRERL based DBC and SAC

schemes has been compared with the conventional CRRL

approach as given in case III and case IV.
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Case III: Differential Braking Control (DBC) using CRRL

To obtain the control equations using CRRL, the reaching

law given in (15) is replaced with that given in (13) to obtain

(17)

Fi(t) =
2

d

[

−Kcsgn(s(t)) + (−1)i+1 λψ̇(t)

+ (−1)i+1 lf
Iz
Cαf

(

−vy(t) + ψ̇(t)lf
vx(t)

)

+ (−1)i
lr
Iz
Cαr

(

−vy(t) + ψ̇(t)lr
vx(t)

)]

+ (−1)2i F(i+1)(t) + (−1)2i+1 F(i+2)(t)

+ (−1)2i+2 F(i+3)(t).

Case IV: Steering Angle Control (SAC) using CRRL

To obtain the control equations using CRRL, replace the

reaching law given in (18) is replaced with that given in (13)

to obtain

(18)

δ(t) =
Iz

lfCαf

[

−Kcsgn(s(t))− λψ̇(t)
]

+

(

−vy(t) + ψ̇(t)lf
vx(t)

)

+
lrCαr

lfCαf

(

−vy(t) + ψ̇(t)lr
vx(t)

)

+
d

2lfCαf

(Fxfr(t)− Fxfl(t))

+
d

2lfCαf

(Fxrr(t)− Fxrl(t)) .

Controller parameters

The values of controller parameters are:

• DBC with PRERL law: The controller gain and tuning

parameters are Kp = 3500, λ = 0.001, q = 0.4, δ0 = 0.1,

p = 1, α = 10.

• DBC with CRRL law: The controller gain and tuning

parameter are Kc = 10, λ = 0.001.

• SAC with PRERL law: The controller gain and tuning

parameters are Kp = 8300, λ = 1, q = 0.3, δ0 = 0.8, p =

1, α = 10.

• SAC with CRRL law: The controller gain and tuning

parameter are: Kc = 1000, λ = 1.

D. CONTROLLER IMPLEMENTATION

The controller design consists of two stages, namely the

outer loop controller and the inner loop controller. The block

diagram representation of the inner and outer loop controllers

is given in Fig. 10. The outer loop consists of the vehicle’s

longitudinal speed and lateral speed estimation blocks that

use a Sliding Mode Observer (SMO) design based on the

information from the accelerometer and yaw rate sensors.

The estimated longitudinal and lateral speeds are considered

in the controller formulation. A fault identification block pro-

vides a fault flag, enabling the controller to provide the nec-

essary control action. The longitudinal forces from the SMC

were converted to the required brake chamber pressure and

then converted to an equivalent Electro Pneumatic Regulator

(EPR) voltage through an inner loop controller design based

on Proportional Integral Derivative (PID) control. Also, a

delay compensation technique was included to compensate

for the delay effects in the air brake system [47]. Here,

yd(t) is the desired pressure generated from the outer loop

controller, y(t) is the actual pressure value from the sensor,

and ye(t) is the predicted pressure.

The SAC has been implemented through Software-in-the-

Loop (SiL) platform. Here, the steering angle is the control

input that is provided back to TruckMaker®.

E. STABILITY ANALYSIS

Lyapunov’s stability analysis [44] was carried out for the

PRERL based SMC with the selected sliding surface. Using

(10), (11), and (12), ṡ(t) can be written as,

ṡ(t) =
−Kp

δ0 + (1− δ0)e−α|s(t)|p
|s(t)|

q
sgn(s(t)) + bd(t), (19)

where bd(t) represents the bounded disturbance in the system.

The Lyapunov function for the above system was selected as

V (t) =
1

2
(s(t))2. (20)

Differentiating (20)

V̇ (t) = s(t)ṡ(t). (21)

Substituting (19) in (21),

V̇ (t) = s(t)

(

−Kp

δ0 + (1− δ0)e−α|s(t)|p
|s(t)|

q
sgn(s(t))

+ bd(t)

)

.

(22)

Consider the magnitude of bd(t) to be bounded by a positive

scalar B and
Kp

δ0+(1−δ0)e−α|s(t)|p |s(t)|
q
= ρ.

Equation (22) can now be written as,

V̇ (t) < |s(t)|B − s(t)ρsgn(s(t)), (23)

which can be rewritten as,

V̇ (t) < −|s(t)|(ρ−B). (24)

For the asymptotic stability of the equilibrium point (s(t)∗ =
0), V̇ (t) < 0, ∀s(t) 6= 0. Hence,

|s(t)|(ρ−B) > 0 ⇒ ρ > B. (25)

Hence, for asymptotic stability, the value of ρ should be

chosen to be greater than that of B.
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F. PERFORMANCE ANALYSIS OF FTC

In this study, two control schemes, namely DBC and SAC,

have been developed. Their performance has been analyzed

based on the vehicle’s yaw angle reduction and the stopping

distance analysis. Both control schemes use the SMC tech-

nique with PRERL. The designed controller’s performance

has also been compared with the conventional SMC tech-

nique, which uses CRRL. The performance of the controllers

was analyzed for various vehicle load (fully laden and fully

unladen), road (tire-road friction coefficients, µmax = 0.3
and 0.8), and fault scenarios (20%, 50%, and 90% fault

levels). Fig. 11 shows the brake torque, brake force, EPR

voltage, steering angle, and yaw angle characteristics for a

fully laden vehicle on a high-µ surface with 50% fault on

the front right brake. With the presence of 50% fault on the

front right brake, the brake torque and brake force on all four

brakes without control action are shown in Fig. 11 (a) and

(b), respectively. The same with the control action of CRRL

based DBC are shown in Fig. 11 (c) and (e) and PRERL

based DBC are shown in Fig. 11 (d) and (f). Fig. 11 (g) shows

the equivalent EPR voltage corresponding to the control

signal representing the front left brake force obtained through

CRRL based DBC and PRERL based DBC. Fig. 11 (h)

shows steering angle control signal obtained through CRRL

based SAC and PRERL based SAC. In both cases, chattering

introduced by the conventional CRRL approach has been

mitigated by the PRERL based approach. Finally, Fig. 11

(i) and (j) show the corresponding yaw angle corrections. In

order to select suitable control action with the presence of

brake fault, an analysis based on yaw angle reduction and

SD has been conducted, and the results are shown in Fig.

12 (a) and 12 (b). The performance of both DBC and SAC

for various vehicle load, different fault levels (20%, 50% and

90% fault in the front right brake), with CRRL and PRERL

reaching law and maximum tire-road friction coefficients (0.8

and 0.3) are quantified in Table 5. The performance of DBC

and SAC schemes with CRRL and PRERL approaches under

various vehicle operating scenarios are summarized below:

• Scenario 1: Fully laden vehicle with µmax = 0.8
and 20% brake fault. In this scenario, the yaw angle

reduction of all the controllers (DBC with PRERL and

CRRL and SAC with PRERL and CRRL) was above

95%. The increase in stopping distance was more than 5

m with the DBC scheme and less than 0.94 m with the

SAC scheme.

• Scenario 2: Fully laden vehicle with µmax = 0.8 with

50% brake fault. The yaw angle reduction was 100%

with the DBC scheme. SAC with PRERL and CRRL

provided a yaw angle reduction of 97.46% and 96.16%,

respectively. The increase in stopping distance corre-

sponding to DBC with PRERL and CRRL was 11.59

m and 5.61 m, respectively, while that corresponding

to SAC with PRERL and CRRL schemes was less than

0.91 m.

• Scenario 3: Fully laden vehicle with µmax = 0.8
with 90% brake fault. The yaw angle reduction was

12 VOLUME 4, 2016
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FIGURE 11: Fully laden vehicle performance characteristics in the presence of 50% brake fault on a dry road surface: a) Brake

torque without control, b) Brake force without control, c) Brake torque with CRRL control, d) Brake torque with PRERL

control, e) Brake force with CRRL control, f) Brake force with PRERL control, g) Equivalent EPR voltage corresponding to

control signal, h) Steering angle control signal, i) Yaw angle without DBC and with PRERL based DBC and CRRL based DBC,

j) Yaw angle without SAC and with PRERL based SAC and CRRL based SAC
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TABLE 5: Performance analysis of FTC

Fully Laden Vehicle with µmax = 0.8 Fully Laden Vehicle

with µmax = 0.3
Fully Unladen Vehicle

with µmax = 0.8
Fully Unladen Vehicle

with µmax = 0.3

Fault level 20 % 50% 90% 20 % 50% 90% 20 % 50% 90% 20 % 50% 90%

Yaw Angle (o)

With Fault 1.82 4.72 9.26 1.03 2.65 4.711 4.49 11.89 28.6 1.12 2.64 4.72

DBC

(PRERL)

0.05 -0.03 0.004 -0.006 -0.002 -0.001 0.0172 0.011 0.08 0.016 0.05 0.013

DBC

(CRRL)

-0.93 -0.045 0.064 -0.0182 0.059 -0.0125 0.015 -0.45 0.05 0.156 0.042 0.122

SAC

(PRERL)

0.08 0.12 0.42 0.000006 0.003 0.002 0.08 0.15 0.05 0.04 0.002 0.002

SAC

(CRRL)

0.84 0.45 0.59 -0.03 -0.043 -0.005 -0.008 0.053 0.824 0.133 0.07 0.112

Stopping

Distance

(m)

With Fault 41.94 45.41 51.01 143 149 166 49.3 53.03 60.91 146.6 159.3 176.08

DBC

(PRERL)

47.52 57 66 158 159 182 54.31 57.9 74.38 157 164.25 185.1

DBC

(CRRL)

47.5 57.02 66.66 157.9 158.2 182.6 54.05 58.52 74.46 157.1 165.3 185.5

SAC

(PRERL)

42.11 45.42 51.06 143.4 150 166.7 50 53.8 60.98 146.7 159.5 177

SAC

(CRRL)

41.9 46 51 144 150.5 166.68 49.5 54 61 146.74 159.4 176.2

99% with the DBC scheme (both PRERL and CRRL),

while the corresponding value for the SAC scheme (both

PRERL and CRRL) was 95%. The increase in stopping

distance corresponding to DBC with PRERL and CRRL

was 14.99 m and 16.99 m, respectively, while that

corresponding to SAC with PRERL and CRRL schemes

was less than 0.09 m.

• Scenario 4: Fully laden vehicle with µmax = 0.3
with 20% brake fault. The yaw angle reduction with

all controllers (DBC with PRERL and CRRL and SAC

with PRERL and CRRL) was 100%. The increase in

stopping distance corresponding to DBC with PRERL

and CRRL was 15 m and 14.90 m, respectively, while

that corresponding to SAC with PRERL and CRRL

schemes was less than 0.4 m.

• Scenario 5: Fully laden vehicle with µmax = 0.3 with

50% brake fault. The yaw angle reduction with DBC

scheme (both PRERL and CRRL) and SAC scheme

(both PRERL and CRRL) was higher than 97.77% and

95%, respectively. The increase in stopping distance

corresponding to DBC with PRERL and CRRL was 10

m and 8 m, respectively, while that corresponding to

SAC with PRERL, and the CRRL scheme was less than

1 m.

• Scenario 6: Fully laden vehicle with µmax = 0.3
with 90% brake fault. The yaw angle reduction with

all controllers (DBC with PRERL and CRRL and SAC

with PRERL and CRRL) was 100%. The increase in

stopping distance corresponding to DBC with PRERL

and CRRL was 16 m and 15 m, respectively, while that

corresponding to SAC with PRERL and CRRL scheme

was less than 0.7 m.

• Scenario 7: Fully Unladen vehicle with µmax =
0.8 with 20% brake fault. The yaw angle reduction

with DBC scheme (both PRERL and CRRL) and SAC

scheme (both PRERL and CRRL) was higher than

99.67% and 98.22%, respectively. The increase in stop-

ping distance corresponding to DBC with PRERL and

CRRL was 5.01 m and 4.75 m, respectively, while that

corresponding to SAC with PRERL and CRRL scheme

was less than 1.7 m.

• Scenario 8: Fully Unladen vehicle with µmax = 0.8
with 50% brake fault. The yaw angle reduction with

the DBC scheme (both PRERL and CRRL) and with

the SAC scheme (both PRERL and CRRL) was higher

than 99.91% and 98.74%, respectively. The increase in

stopping distance corresponding to DBC with PRERL

and CRRL was 4.87 m and 5.49 m, respectively, while

that corresponding to SAC with PRERL and CRRL
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FIGURE 12: Performance comparison of DBC and SAC based on a) Yaw Angle Reduction and b) Stopping Distance

scheme was less than 0.97 m.

• Scenario 9: Fully Unladen vehicle with µmax = 0.8
with 90% brake fault. The yaw angle reduction with

the DBC scheme (both PRERL and CRRL) and with the

SAC scheme (both PRERL and CRRL) was greater than

99.72% and 97.12%, respectively. The increase in stop-

ping distance corresponding to DBC with PRERL and

CRRL was 13.47 m and 13.49 m, respectively, while

that corresponding to SAC with PRERL and CRRL

scheme was less than 1.09 m.

• Scenario 10: Fully Unladen vehicle with µmax = 0.3
with 20% brake fault. The yaw angle reduction with

the DBC scheme (both PRERL and CRRL) and with the

SAC scheme (both PRERL and CRRL) was greater than

95% and 96.43%, respectively. The increase in stopping

distance corresponding to DBC with PRERL and CRRL

was 10.40 m and 11.40 m, respectively, while that

corresponding to SAC with PRERL and CRRL scheme

was less than 0.14 m.

• Scenario 11: Fully Unladen vehicle with µmax = 0.3
with 50% brake fault. The yaw angle reduction with

the DBC scheme (both PRERL and CRRL) and with

the SAC scheme (both PRERL and CRRL) was 98%

and greater than 97.35%, respectively. The increase in

stopping distance corresponding to DBC with PRERL

and CRRL was 4.95 m and 5.70 m, respectively, while

that corresponding to SAC with PRERL and CRRL

scheme was less than 0.2 m.
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• Scenario 12: Fully Unladen vehicle with µmax = 0.3
with 90% brake fault. The yaw angle reduction with

the DBC scheme (both PRERL and CRRL) and with

the SAC scheme (both PRERL and CRRL) was greater

than 97.42% and 97.63%, respectively. The increase in

stopping distance corresponding to DBC with PRERL

and CRRL was 9.02 m and 8.92 m, respectively, while

that corresponding to SAC with PRERL and CRRL

scheme was less than 0.92 m.

From this analysis, it is clear that both the DBC and the

SAC controllers gave good tracking accuracy (greater than

95%) as shown in Fig. 12 (a). However, DBC results in an

increase of SD to maintain directional stability. This is due to

the reduction in the net brake force occurring as a result of

DBC trying to balance the brake torque on both sides of the

vehicle, as shown in Fig. 11 (a) and (c). The CRRL scheme’s

disadvantage is the high chattering in the control signal,

as shown in Fig. 11 (g) and (h). By analyzing the above

twelve scenarios, it was concluded that the SAC with the

PRERL scheme provided better control action with a lower

increase in stopping distance in the presence of brake faults.

Even though the SAC provides appreciably good tracking

accuracy along with a lower increase in stopping distance,

there exists a trade-off between the DBC and SAC in view

of their practical implementation. Given the active braking

control systems already present in production vehicles, DBC

is easier to implement practically. In the case of SAC, the

corresponding controller needs to apply the steering angle

control input through the steering system and this would be

felt by the driver. This may lead to potential conflict with

the driver’s steering command and lead to non-acceptance by

drivers. However, since SAC provides better performance in

terms of a lower increase in SD, it is a good candidate for

implementation in autonomous vehicles.

G. ROBUSTNESS ANALYSIS

The robustness of the controller has been evaluated by testing

the controller performance under a side wind disturbance.

The vehicle under study is a fully laden vehicle in a straight

line maneuver on a road with a maximum friction coefficient

of 0.8. The side wind force used in this study is shown in

Fig. 13 (a), which consists of a ramp, step, and sinusoidal

signals [48]. It can be seen from Fig. 13 (b) that while the side

wind force further increased the yaw angle in the absence

of control, the controller was able to reduce the same and

maintain the straight-line trajectory. Since the SAC scheme

provided better control action with the faulty brakes, the

robustness analysis was done for the SAC scheme. It was

observed that the SAC with the CRRL scheme provided

90.2% yaw angle reduction, while the SAC with the PRERL

scheme shows better control action with 94.3% yaw angle

reduction.

In the case of heavy commercial road vehicles, vehicle

mass highly depends on the vehicle’s load condition. For

the considered class of vehicles, mass is different for fully

laden (16200 kg) and unladen (4700 kg) vehicle. Moreover,
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FIGURE 13: Robustness analysis: a) Side wind force distur-

bance input and b) Yaw angle with and without SAC scheme

when the vehicle under side wind force disturbance

for fully laden and unladen vehicles, the moment of inertia

(z-axis) and CG height are different. Also, the total force-

generating capacity of a tire-road interaction decreases from

a high friction surface (dry) to a low friction surface (snowy).

Hence, in the lateral motion, the lateral force saturation point

is reached at a lower slip angle on a low friction surface

compared to the dry friction surface. Also, the maximum lon-

gitudinal force is reduced from dry to snowy road surfaces.

With different brake fault levels, the longitudinal forces also

vary. A fixed controller parameter set that provides good

performance in the presence of these parametric uncertainties

was obtained. The controller gave a robust performance in

various vehicle operating scenarios such as fully laden and

unladen conditions, operation on different road surfaces (dry

and snowy), and different fault levels (20%, 50%, and 90%).
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VII. CONCLUSION

This paper primarily focused on designing a fault identifi-

cation scheme and a fault-tolerant control scheme for an air

brake system to improve the directional stability of HCRVs

under brake fault scenarios. A multiclass classification algo-

rithm has been developed to identify the various levels of

faults. Further, an FTC algorithm using SMC (both DBC

and SAC) was designed and analyzed for its performance

in containing the adverse effects of faulty brake on vehicle

stability.

The main highlights of the paper are:

• Six multiclass ML models were developed and trained

using data sets collected from 1296 experimental test

cases and tested with 499 data sets.

• The Random Forest model gave better classification

accuracy of 91.99 % compared to other ML models.

• The designed FTC with DBC was evaluated in HiL

experimental setup and SAC with SiL experimental

setup.

• The design of DBC and SAC schemes used two reach-

ing laws, namely PRERL and CRRL. On comparing the

FTC scheme based on the reaching laws, the PRERL

based SAC scheme provided better tracking accuracy.

• For a 50 % torque reduction on the front right brake of a

fully laden vehicle with 0.8 tire-road friction coefficient,

SAC-based FTC gave better tracking accuracy of 97.46

% (yaw angle) with a very small increase in SD (0.01

m) compared to DBC-based FTC .

In the current study, all the test scenarios were evaluated in

a HiL platform with the air brake hardware and TruckMaker®

software. Implementation of the developed algorithms for on-

road vehicles can be considered as future scope.
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