BIFURCATION AND MULTIPLICITY RESULTS FOR A CLASS OF $n \times n$ p-LAPLACIAN SYSTEM

Mohan Mallick

Department of Mathematics Indian Institute of Technology Madras, Chennai-600036, India

R. Shivaji*

Department of Mathematics and Statistics University of North Carolina at Greensboro, Greensboro, NC 27412, USA

Byungjae Son

Department of Mathematics Wayne State University, Detroit, MI 48202, USA

S. Sundar

Department of Mathematics Indian Institute of Technology Madras, Chennai-600036, India

(Communicated by Junping Shi)

ABSTRACT. In this paper we study the positive solutions to the $n \times n$ *p*-Laplacian system:

$$\begin{cases} -\left(\varphi_{p_{1}}(u'_{1})\right)' = \lambda h_{1}(t) \left(u_{1}^{p_{1}-1-\alpha_{1}} + f_{1}(u_{2})\right), & t \in (0,1), \\ -\left(\varphi_{p_{2}}(u'_{2})\right)' = \lambda h_{2}(t) \left(u_{2}^{p_{2}-1-\alpha_{2}} + f_{2}(u_{3})\right), & t \in (0,1), \\ \vdots & & \vdots \\ -\left(\varphi_{p_{n}}(u'_{n})\right)' = \lambda h_{n}(t) \left(u_{n}^{p_{n}-1-\alpha_{n}} + f_{n}(u_{1})\right), & t \in (0,1), \\ u_{j}(0) = 0 = u_{j}(1); & j = 1, 2, \dots, n, \end{cases}$$

where λ is a positive parameter, $p_j > 1$, $\alpha_j \in (0, p_j - 1)$, $\varphi_{p_j}(w) = |w|^{p_j - 2}w$, and $h_j \in C((0,1),(0,\infty)) \cap L^1((0,1),(0,\infty))$ for $j=1,2,\ldots,n$. Here $f_j:[0,\infty) \to [0,\infty)$, $j=1,2,\ldots,n$ are nontrivial nondecreasing continuous functions with $f_j(0)=0$ and satisfy a combined sublinear condition at infinity. We discuss here a bifurcation result, an existence result for $\lambda>0$, and a multiplicity result for a certain range of λ . We establish our results through the method of sub-super solutions.

1. **Introduction.** Study of positive solutions to the 2×2 system:

$$\begin{cases}
-\Delta_{p_1} u_1 = \lambda \left(u_1^{p_1 - 1 - \alpha_1} + f_1(u_2) \right), & x \in \Omega, \\
-\Delta_{p_2} u_2 = \lambda \left(u_2^{p_2 - 1 - \alpha_2} + f_2(u_1) \right), & x \in \Omega, \\
u_j = 0, & x \in \partial\Omega; & j = 1, 2
\end{cases} \tag{1}$$

²⁰⁰⁰ Mathematics Subject Classification. Primary: 34B16, 34B18; Secondary: 35J57.

 $Key\ words\ and\ phrases.\ p$ -Laplacian, singular system, positive solution, multiplicity and bifurcation.

^{*} Corresponding author: R. Shivaji.

was discussed in [5] where Ω is a bounded domain in \mathbb{R}^N , $N \geq 1$ with a smooth boundary $\partial\Omega$, $\lambda > 0$, $p_j > 1$, $\alpha_j \in (0, p_j - 1)$, j = 1, 2, and $\Delta_m w := \operatorname{div}(|\nabla w|^{m-2}\nabla w)$, m > 1 is the m-Laplacian operator of w. Assuming $f_j : [0, \infty) \to [0, \infty)$, j = 1, 2 are nondecreasing continuous functions with $f_j(0) = 0$, it was established that for $\lambda \approx 0$ there exist positive solutions of (1) bifurcating from the trivial branch $(\lambda, u_1 \equiv 0, u_2 \equiv 0)$ at (0, 0, 0). Further, under additional assumptions on f_j for j = 1, 2, the existence result for all $\lambda > 0$ and a multiplicity result for a certain range of λ were proven.

Extending the above study to domains exterior of a ball and to $n \times n$ systems, we encounter systems of the form:

$$\begin{cases}
-\Delta_{p_{1}}u_{1} = \lambda K_{1}(|x|) \left(u_{1}^{p_{1}-1-\alpha_{1}} + f_{1}(u_{2})\right), & x \in B_{E}, \\
-\Delta_{p_{2}}u_{2} = \lambda K_{2}(|x|) \left(u_{2}^{p_{2}-1-\alpha_{2}} + f_{2}(u_{3})\right), & x \in B_{E}, \\
\vdots & & \vdots \\
-\Delta_{p_{n}}u_{n} = \lambda K_{n}(|x|) \left(u_{n}^{p_{n}-1-\alpha_{n}} + f_{n}(u_{1})\right), & x \in B_{E}, \\
u_{j}(x) = 0 \text{ on } |x| = r_{0}; & j = 1, 2, \dots, n, \\
u_{j}(x) \to 0 \text{ as } |x| \to \infty; & j = 1, 2, \dots, n,
\end{cases} \tag{2}$$

where $B_E := \{x \in \mathbb{R}^N | |x| > r_0 > 0\}, \ p_j > 1, \ \alpha_j \in (0, p_j - 1), \ f_j : [0, \infty) \to [0, \infty)$ are nontrivial nondecreasing continuous functions with $f_j(0) = 0$, and $K_j \in C([r_0, \infty), (0, \infty))$ are class of functions that satisfy $K_j(|x|) \to 0$ as $|x| \to \infty$ for $j = 1, 2, \ldots, n$. Restricting the analysis to radial solutions and to the case $p_1 = p_2 = \cdots = p_n = p$ where 1 , by the Kelvin type transformation, <math>r = |x| and $t = \left(\frac{r}{r_0}\right)^{\frac{N-p}{1-p}}$, (2) reduces to

$$\begin{cases} -\left(\varphi_{p}(u_{1}^{\prime})\right)^{\prime} = \lambda \tilde{h}_{1}(t) \left(u_{1}^{p-1-\alpha_{1}} + f_{1}(u_{2})\right), \ t \in (0,1), \\ -\left(\varphi_{p}(u_{2}^{\prime})\right)^{\prime} = \lambda \tilde{h}_{2}(t) \left(u_{2}^{p-1-\alpha_{2}} + f_{2}(u_{3})\right), \ t \in (0,1), \\ \vdots \qquad \qquad \vdots \\ -\left(\varphi_{p}(u_{n}^{\prime})\right)^{\prime} = \lambda \tilde{h}_{n}(t) \left(u_{n}^{p-1-\alpha_{n}} + f_{n}(u_{1})\right), \ t \in (0,1), \\ u_{j}(0) = 0 = u_{j}(1); \ j = 1, 2, \dots, n, \end{cases}$$

where $\tilde{h}_{j}(t) := \left(\frac{p-1}{N-p}\right)^{p} r_{0}^{p} \ t^{\frac{p(1-N)}{N-p}} K_{j}\left(r_{0}t^{\frac{1-p}{N-p}}\right)$ for $j=1,2,\ldots,n$. Clearly, $\tilde{h}_{j} \in C((0,1],(0,\infty))$ for $j=1,2,\ldots,n$. If we assume that $K_{j}(r) \leq \frac{1}{r^{N+\sigma}}$ for $r \gg 1$ and $\sigma > 0$, then $\tilde{h}_{j}(t) \to \infty$ as $t \to 0+$ for $j=1,2,\ldots,n$. However, $\tilde{h}_{j} \in L^{1}((0,1],(0,\infty))$ for $j=1,2,\ldots,n$.

Motivated by the aforementioned observations, in this paper, we study the positive solutions to a more general singular $n \times n$ system:

$$\begin{cases}
-\left(\varphi_{p_{1}}(u'_{1})\right)' = \lambda h_{1}(t) \left(u_{1}^{p_{1}-1-\alpha_{1}} + f_{1}(u_{2})\right), & t \in (0,1), \\
-\left(\varphi_{p_{2}}(u'_{2})\right)' = \lambda h_{2}(t) \left(u_{2}^{p_{2}-1-\alpha_{2}} + f_{2}(u_{3})\right), & t \in (0,1), \\
\vdots & = & \vdots \\
-\left(\varphi_{p_{n}}(u'_{n})\right)' = \lambda h_{n}(t) \left(u_{n}^{p_{n}-1-\alpha_{n}} + f_{n}(u_{1})\right), & t \in (0,1), \\
u_{j}(0) = 0 = u_{j}(1); & j = 1, 2, \dots, n,
\end{cases}$$
(3)

where $p_j > 1$, $\alpha_j \in (0, p_j - 1)$, $\varphi_{p_j}(w) = |w|^{p_j - 2}w$, and $h_j \in C((0, 1), (0, \infty)) \cap$ $L^1((0,1),(0,\infty))$ for $j=1,2,\ldots,n$. Here $f_j:[0,\infty)\to[0,\infty),\ j=1,2,\ldots,n$ are nontrivial nondecreasing continuous functions with $f_i(0) = 0$. By a positive solution $\underline{u} = (u_1, u_2, \dots, u_n)$ we mean $u_j \in C^1[0, 1]$ with $u_j > 0$ on (0, 1) for $j = 1, 2, \dots, n$. We first establish a bifurcation result at $(0,\underline{0})$ from the trivial branch $(\lambda,\underline{u}\equiv\underline{0})$. We prove:

Theorem 1.1. There exists $\lambda_0 > 0$ such that for all $\lambda \in (0, \lambda_0)$, (3) has a positive solution $\underline{u} = (u_1, u_2 \dots, u_n)$ and $||u_j||_{\infty} \to 0$ as $\lambda \to 0$ for all $j = 1, 2, \dots, n$ (see figure 1).

FIGURE 1. Bifurcation of solution from the origin.

Assuming a combined sublinear condition at infinity:

Assuming a combined sublinear condition at infinity:
$$(H_1) \lim_{s \to \infty} \frac{\left[f_1^{[M]} \circ f_2^{[M]} \circ \cdots \circ f_{n-1}^{[M]} \circ (f_n(s))^{\frac{1}{p_n-1}}\right]^{p_1-1}}{s^{p_1-1}} = 0 \text{ for every } M > 0,$$
 where $f_j^{[M]}(s) := f_j(Ms)^{\frac{1}{p_j-1}}$ for $j = 1, 2, ..., n$, we establish:

Theorem 1.2. Assume (H_1) holds. Then (3) has a positive solution for all $\lambda > 0$ (see figure 2).

FIGURE 2. Bifurcation for all $\lambda > 0$.

Next let
$$h^*(t) := \max_{j=1,2,...,n} \{h_j(t)\}, \ h_*(t) := \min_{j=1,2,...,n} \{h_j(t)\}, \ \underline{h}_* := \inf_{t \in (0,1)} h_*(t), L_{ij} := \frac{(2p_i)^{p_j}}{(p_i-1)^{p_j-1}} \text{ and } w_{p_j} \in C^1[0,1] \text{ be the unique solution of boundary value problem:}$$

$$\begin{cases} -(\varphi_{p_j}(w'))' = h^*(t), \ t \in (0,1), \\ w(0) = 0 = w(1) \end{cases}$$

(see [3]). Now if $\underline{h}_* > 0$ and f_i satisfy:

 (H_2) there exist positive constant a and b (>a) such that

$$\min_{j=1,2,...,n} \left\{ \frac{1}{2\|w_{p_j}\|_{\infty}^{p_j-1}} \min\left\{a^{\alpha_j}, \frac{a^{p_j-1}}{f_j(a)}\right\} \right\} > \min_{i=1,2,...,n} \left\{ \max_{j=1,2,...,n} \left\{ L_{ij} \frac{b^{p_j-1}}{\underline{h}_* f_j(b)} \right\} \right\},$$
 then we prove:

Theorem 1.3. Assume $\underline{h}_* > 0$ and $(H_1) - (H_2)$ hold. Then (3) has at least three positive solutions for $\lambda \in (\lambda_*, \lambda^*)$ where

$$\lambda_* := \min_{i=1,2,\dots,n} \left\{ \max_{j=1,2,\dots,n} \left\{ L_{ij} \frac{b^{p_j-1}}{\underline{h}_* f_j(b)} \right\} \right\}$$

and

$$\lambda^* := \min_{j=1,2,...,n} \left\{ \frac{1}{2\|w_{p_j}\|_{\infty}^{p_j-1}} \min \left\{ a^{\alpha_j}, \frac{a^{p_j-1}}{f_j(a)} \right\} \right\}$$

(see figure 3).

FIGURE 3. Multiplicity results for certain range of λ .

We establish Theorems 1.1 - 1.3 by the method of sub-super solution. By a subsolution of (3) we mean a function $(\psi_1, \psi_2, \dots, \psi_n) \in C^1[0, 1] \times C^1[0, 1] \times \cdots \times C^1[0, 1]$ such that $\psi_j(0) = 0 = \psi_j(1)$ for $j = 1, 2, \dots, n$ and

$$\int_{0}^{1} \varphi_{p_{1}}(\psi'_{1}(s))\zeta'(s)ds \leq \int_{0}^{1} \lambda h_{1}(s) \left(\psi_{1}^{p_{1}-1-\alpha_{1}}(s)+f_{1}(\psi_{2}(s))\right)\zeta(s)ds \text{ for all } \zeta \in W,$$

$$\int_{0}^{1} \varphi_{p_{2}}(\psi'_{2}(s))\zeta'(s)ds \leq \int_{0}^{1} \lambda h_{2}(s) \left(\psi_{2}^{p_{2}-1-\alpha_{2}}(s)+f_{2}(\psi_{3}(s))\right)\zeta(s)ds \text{ for all } \zeta \in W,$$

$$\vdots \qquad \qquad \vdots$$

$$\int_{0}^{1} \varphi_{p_{n}}(\psi'_{n}(s))\zeta'(s)ds \leq \int_{0}^{1} \lambda h_{n}(s) \left(\psi_{n}^{p_{n}-1-\alpha_{n}}(s)+f_{n}(\psi_{1}(s))\right)\zeta(s)ds \text{ for all } \zeta \in W.$$
By a supersolution of (3) we mean a function $(\phi_{1},\phi_{2},\ldots,\phi_{n}) \in C^{1}[0,1] \times C^{1}[0,1] \times \cdots \times C^{1}[0,1] \text{ such that } \phi_{j}(0) = 0 = \phi_{j}(1) \text{ for } j = 1,2,\ldots,n \text{ and}$

$$\int_{0}^{1} \varphi_{p_{1}}(\phi'_{1}(s))\zeta'(s)ds \geq \int_{0}^{1} \lambda h_{1}(s) \left(\phi_{1}^{p_{1}-1-\alpha_{1}}(s)+f_{1}(\phi_{2}(s))\right)\zeta(s)ds \text{ for all } \zeta \in W,$$

$$\int_{0}^{1} \varphi_{p_{2}}(\phi'_{2}(s))\zeta'(s)ds \geq \int_{0}^{1} \lambda h_{2}(s) \left(\phi_{2}^{p_{2}-1-\alpha_{2}}(s)+f_{2}(\phi_{3}(s))\right)\zeta(s)ds \text{ for all } \zeta \in W,$$

$$\vdots \geq \qquad \vdots \\ \int_0^1 \varphi_{p_n}(\phi_n'(s))\zeta'(s)ds \geq \int_0^1 \lambda h_n(s) \left(\phi_n^{p_n-1-\alpha_n}(s) + f_n(\phi_1(s))\right)\zeta(s)ds \text{ for all } \zeta \in W,$$

where $W:=\{h\in C_0^\infty(0,1)|h\geq 0 \text{ in } (0,1)\}$. By a strict subsolution of (3) we mean a subsolution which is not a solution. By a strict supersolution of (3) we mean a supersolution which is not a solution. Then the results in [1] and [4] can be extended to such singular systems and the following lemmas hold:

Lemma 1.4. Let $(\psi_1, \psi_2, \dots, \psi_n)$ be a subsolution and $(\phi_1, \phi_2, \dots, \phi_n)$ be a supersolution of (3). If $\psi_j \leq \phi_j$ for j = 1, 2, ..., n, then (3) has at least one solution (u_1, u_2, \dots, u_n) such that $u_j \in C^1[0, 1]$ and $\psi_j \le u_j \le \phi_j$ for $j = 1, 2, \dots, n$.

Lemma 1.5. Let f_j be nonnegative and nondecreasing for j = 1, 2, ..., n, and suppose there exist a subsolution $(\psi_1, \psi_2, \dots, \psi_n)$, a strict subsolution $(\bar{\psi}_1, \bar{\psi}_2, \dots, \bar{\psi}_n)$, a strict supersolution $(\bar{\phi}_1, \bar{\phi}_2, \dots, \bar{\phi}_n)$ and a supersolution $(\phi_1, \phi_2, \dots, \phi_n)$ of (3) such that $\psi_j \leq \bar{\psi}_j \leq \phi_j$, $\psi_j \leq \bar{\phi}_j \leq \phi_j$ for j = 1, 2, ..., n and $(\bar{\psi}_1, \bar{\psi}_2, ..., \bar{\psi}_n) \not\leq$ $(\bar{\phi}_1, \bar{\phi}_2, \dots, \bar{\phi}_n)$. Then (3) has at least three distinct solutions (u_1, u_2, \dots, u_n) , $(u_1^*, u_2^*, \dots, u_n^*)$ and $(\bar{u}_1, \bar{u}_2, \dots, \bar{u}_n)$ such that

$$(u_1, u_2, \dots, u_n) \in A := [(\psi_1, \psi_2, \dots, \psi_n), (\bar{\phi}_1, \bar{\phi}_2, \dots, \bar{\phi}_n)],$$

$$(u_1^*, u_2^*, \dots, u_n^*) \in B := [(\bar{\psi}_1, \bar{\psi}_2, \dots, \bar{\psi}_n), (\phi_1, \phi_2, \dots, \phi_n)],$$

$$(\bar{u}_1, \bar{u}_2, \dots, \bar{u}_n) \in [(\psi_1, \psi_2, \dots, \psi_n), (\phi_1, \phi_2, \dots, \phi_n)] \setminus (A \cup B).$$

We will establish Theorem 1.1 in Section 2 and Theorems 1.2 - 1.3 in Section 3. Finally, in Section 4, we discuss a simple example satisfying hypotheses of Theorems 1.1 - 1.3.

Remark 1. Note that the study of positive radial solution of (2) when $p_i \neq p_j$ for some $i, j \in \{1, 2, \dots, n\}$ remains open.

2. **Proof of Theorem 1.1.** Let $\gamma > 0$ be such that $\gamma \alpha_i < 1$ and $\gamma(p_i - 1) < 1$ for $j=1,2,\ldots,n$. Let $\lambda_0>0$ be such that

$$\lambda_0^{1-\gamma\alpha_j} \|w_{p_j}\|_{\infty}^{p_j-1-\alpha_j} + \lambda_0^{1-\gamma(p_j-1)} f_j(\lambda_0^{\gamma} \|w_{p_{j+1}}\|_{\infty}) < 1 \text{ for } j = 1, 2, \dots, n-1 \quad (4)$$

$$\lambda_0^{1-\gamma\alpha_n} \|w_{p_n}\|_{\infty}^{p_n-1-\alpha_n} + \lambda_0^{1-\gamma(p_n-1)} f_n(\lambda_0^{\gamma} \|w_{p_1}\|_{\infty}) < 1.$$
 (5)

Define $\phi_j := \lambda^{\gamma} w_{p_j}$ for j = 1, 2, ..., n. For $\lambda < \lambda_0$ and j = 1, 2, ..., n - 1 using (4) we have

$$\begin{split} -(\varphi_{p_{j}}(\phi'_{j}))' &= \lambda^{\gamma(p_{j}-1)}h^{*}(t) \\ &\geq \lambda^{\gamma(p_{j}-1)}h^{*}(t) \left(\lambda_{0}^{1-\gamma\alpha_{j}} \|w_{p_{j}}\|_{\infty}^{p_{j}-1-\alpha_{j}} + \lambda_{0}^{1-\gamma(p_{j}-1)}f_{j}(\lambda_{0}^{\gamma} \|w_{p_{j+1}}\|_{\infty}) \right) \\ &\geq \lambda h_{j}(t) \left(\left(\lambda^{\gamma}w_{p_{j}} \right)^{p_{j}-1-\alpha_{j}} + f_{j} \left(\lambda^{\gamma}w_{p_{j+1}} \right) \right) \\ &= \lambda h_{j}(t) \left(\phi_{j}^{p_{j}-1-\alpha_{j}} + f_{j} \left(\phi_{j+1} \right) \right). \end{split}$$

Similarly for $\lambda < \lambda_0$ using (5) we have

$$-(\varphi_{p_n}(\phi'_n))' \ge \lambda h_n(t) \left(\phi_n^{p_n-1-\alpha_n} + f_n(\phi_1)\right).$$

Further, $\phi_i(0) = 0 = \phi_i(1)$ for j = 1, 2, ..., n. Hence $(\phi_1, \phi_2, ..., \phi_n)$ is a supersolution of (3) for $\lambda < \lambda_0$.

Next given $\lambda > 0$, we construct a subsolution of (3). Let $z_{p_i} > 0$ in (0,1) be the

eigenfunction with $||z_{p_j}||_{\infty} = 1$ corresponding to the principal eigenvalue λ_{1,p_j} of the problem:

$$\begin{cases} -(\varphi_{p_j}(z'))' = \lambda h_*(t)|z|^{p_j-2}z, \ t \in (0,1), \\ z(0) = 0 = z(1) \end{cases}$$

(see [2]). Choose $m \approx 0$ such that $\lambda_{1,p_j} m^{\alpha_j} \leq \lambda$ for j = 1, 2, ..., n. Define $\psi_j := m z_{p_j}$ for j = 1, 2, ..., n. For j = 1, 2, ..., n - 1 we have

$$-(\varphi_{p_j}(\psi_j'))' = \lambda_{1,p_j} h_*(t) (m z_{p_j})^{p_j - 1} \le \lambda h_j(t) \left(\psi_j^{p_j - 1 - \alpha_j} + f_j(\psi_{j+1}) \right)$$

and similarly we have

$$-(\varphi_{p_n}(\psi'_n))' \le \lambda h_n(t) \left(\psi_n^{p_n - 1 - \alpha_n} + f_n(\psi_1) \right).$$

Further, $\psi_j(0) = 0 = \psi_j(1)$ for $j = 1, 2, \ldots, n$. Hence $(\psi_1, \psi_2, \ldots, \psi_n)$ is a subsolution of (3). We can also choose $m \approx 0$ such that $(\psi_1, \psi_2, \ldots, \psi_n) \leq (\phi_1, \phi_2, \ldots, \phi_n)$ since $w'_{p_j}(0) > 0$ and $w'_{p_j}(1) < 0$ for $j = 1, 2, \ldots, n$. Hence by Lemma 1.4 there exists a solution (u_1, u_2, \ldots, u_n) such that $(\psi_1, \psi_2, \ldots, \psi_n) \leq (u_1, u_2, \ldots, u_n) \leq (\phi_1, \phi_2, \ldots, \phi_n)$. Moreover $||u_j||_{\infty} \to 0$ as $\lambda \to 0$ since $||\phi_j||_{\infty} \to 0$ as $\lambda \to 0$ for $j = 1, 2, \ldots, n$.

3. Proofs of Theorems 1.2 - 1.3.

3.1. **Proof of Theorem 1.2.** Let $(\psi_1, \psi_2, \dots, \psi_n)$ be as in Theorem 1.1. Then $(\psi_1, \psi_2, \dots, \psi_n)$ is a subsolution of (3) for $\lambda > 0$. Next we construct a supersolution of (3). Let M > 1 be such that for $j = 2, 3, \dots, n$

$$\left(Mf_j^{[\beta_j]} \circ f_{j+1}^{[\beta_{j+1}]} \circ \dots \circ f_n^{[\beta_n]} \left(M \|w_{p_1}\|_{\infty}\right)\right)^{\alpha_j} \ge \left((2\lambda)^{\frac{1}{p_j-1}} \|w_{p_j}\|_{\infty}\right)^{p_j-1-\alpha_j}, \quad (6)$$

where

$$\beta_j := \begin{cases} (2\lambda)^{\frac{1}{p_{j+1}-1}} M \| w_{p_{j+1}} \|_{\infty}; \ j = 1, 2, \dots, n-1, \\ 1; \qquad j = n. \end{cases}$$

Let $\beta := \max_{j=1,2,\ldots,n} \{\beta_j\}$. By (H_1) we can choose $M^* \gg 1$ such that $M^* > M$,

$$\frac{1}{2\lambda \|w_{p_1}\|_{\infty}^{p_1-1}} \ge \frac{\left(f_1^{[\beta]} \circ f_2^{[\beta]} \circ \dots \circ f_n^{[\beta]} \left(M^* \|w_{p_1}\|_{\infty}\right)\right)^{p_1-1}}{(M^* \|w_{p_1}\|_{\infty})^{p_1-1}} \tag{7}$$

and

$$\frac{M^{*\alpha_1}}{2} \ge \lambda \|w_{p_1}\|_{\infty}^{p_1 - 1 - \alpha_1}.$$
(8)

From (6), we obtain

$$\left(Mf_{j}^{[\beta]} \circ f_{j+1}^{[\beta]} \circ \dots \circ f_{n}^{[\beta]} \left(M^{*} \| w_{p_{1}} \|_{\infty}\right)\right)^{\alpha_{j}} \ge \left((2\lambda)^{\frac{1}{p_{j}-1}} \| w_{p_{j}} \|_{\infty}\right)^{p_{j}-1-\alpha_{j}}$$
(9)

since f_j are nondecreasing functions for j = 1, 2, ..., n. Now we define

$$\hat{\phi}_j := \begin{cases} M^* w_{p_1}; & j = 1, \\ \left((2\lambda)^{\frac{1}{p_j - 1}} M f_j^{[\beta]} \circ f_{j+1}^{[\beta]} \circ \cdots \circ f_{n-1}^{[\beta]} \circ f_n^{[\beta]} \left(M^* \| w_{p_1} \|_{\infty} \right) \right) w_{p_j}; & j = 2, \dots, n. \end{cases}$$

Then using (7) we have

$$- (\varphi_{p_{1}}(\hat{\phi}'_{1}))'$$

$$= h^{*}(t) \left(\frac{M^{*p_{1}-1}}{2} + \frac{M^{*p_{1}-1}}{2} \right)$$

$$\geq h_{1}(t) \left(M^{*p_{1}-1-\alpha_{1}} \frac{M^{*\alpha_{1}}}{2} + \lambda \left(f_{1}^{[\beta]} \circ f_{2}^{[\beta]} \circ \cdots \circ f_{n}^{[\beta]} \left(M^{*} \| w_{p_{1}} \|_{\infty} \right) \right)^{p_{1}-1} \right)$$

$$\geq \lambda h_{1}(t) \left((M^{*} \| w_{p_{1}} \|_{\infty})^{p_{1}-1-\alpha_{1}} + f_{1} \left((2\lambda)^{\frac{1}{p_{2}-1}} M f_{2}^{[\beta]} \circ \cdots \circ f_{n}^{[\beta]} \left(M^{*} \| w_{p_{1}} \|_{\infty} \right) w_{2} \right) \right)$$

$$\geq \lambda h_{1}(t) \left(\hat{\phi}_{1}^{p_{1}-1-\alpha_{1}} + f_{1}(\hat{\phi}_{2}) \right)$$

and for j = 2, 3, ..., n-1 using (9) we have

$$-(\varphi_{p_{j}}(\hat{\phi}'_{j}))'$$

$$= h^{*}(t) \left((2\lambda)^{\frac{1}{p_{j}-1}} M f_{j}^{[\beta]} \circ f_{j+1}^{[\beta]} \circ \cdots \circ f_{n}^{[\beta]} (M^{*} \| w_{p_{1}} \|_{\infty}) \right)^{p_{j}-1}$$

$$\geq \lambda h_{j}(t) \left(M f_{j}^{[\beta]} \circ f_{j+1}^{[\beta]} \circ \cdots \circ f_{n}^{[\beta]} (M^{*} \| w_{p_{1}} \|_{\infty}) \right)^{p_{j}-1}$$

$$+ \lambda h_{j}(t) \left(M f_{j}^{[\beta]} \circ f_{j+1}^{[\beta]} \circ \cdots \circ f_{n}^{[\beta]} (M^{*} \| w_{p_{1}} \|_{\infty}) \right)^{p_{j}-1}$$

$$\geq \lambda h_{j}(t) \left((2\lambda)^{\frac{1}{p_{j}-1}} M f_{j}^{[\beta]} \circ f_{j+1}^{[\beta]} \circ \cdots \circ f_{n}^{[\beta]} (M^{*} \| w_{p_{1}} \|_{\infty}) \| w_{p_{j}} \|_{\infty} \right)^{p_{j}-1-\alpha_{j}}$$

$$+ \lambda h_{j}(t) f_{j} \left((2\lambda)^{\frac{1}{p_{j+1}-1}} M f_{j+1}^{[\beta]} \circ \cdots \circ f_{n}^{[\beta]} (M^{*} \| w_{p_{1}} \|_{\infty}) w_{p_{j+1}} \right)$$

$$\geq \lambda h_{j}(t) \left(\hat{\phi}_{j}^{p_{j}-1-\alpha_{j}} + f_{j}(\hat{\phi}_{j+1}) \right).$$

Similarly using (9) we have

$$-(\varphi_{p_{n}}(\hat{\phi}'_{n}))' = h^{*}(t) \left((2\lambda)^{\frac{1}{p_{n-1}}} M f_{n}^{[\beta]} (M^{*} \| w_{p_{1}} \|_{\infty}) \right)^{p_{n}-1}$$

$$\geq \lambda h_{n}(t) \left(M f_{n}^{[\beta]} (M^{*} \| w_{p_{1}} \|_{\infty}) \right)^{\alpha_{n}} \left(M f_{n}^{[\beta]} (M^{*} \| w_{p_{1}} \|_{\infty}) \right)^{p_{n}-1-\alpha_{n}}$$

$$+ \lambda h_{n}(t) \left(M f_{n}^{[\beta]} (M^{*} \| w_{p_{1}} \|_{\infty}) \right)^{p_{n}-1}$$

$$\geq \lambda h_{n}(t) \left((2\lambda)^{\frac{1}{p_{n}-1}} \| w_{p_{n}} \|_{\infty} \right)^{p_{n}-1-\alpha_{n}} \left(M f_{n}^{[\beta]} (M^{*} \| w_{p_{1}} \|_{\infty}) \right)^{p_{n}-1-\alpha_{n}}$$

$$+ \lambda h_{n}(t) f_{n} (M^{*} w_{p_{1}})$$

$$\geq \lambda h_{n}(t) \left(\hat{\phi}_{n}^{p_{n}-1-\alpha_{n}} + f_{n}(\hat{\phi}_{1}) \right).$$

Hence $(\hat{\phi}_1, \hat{\phi}_2, \dots, \hat{\phi}_n)$ is a supersolution of (3). Since $z'_{p_j}(0) > 0$ and $z'_{p_j}(1) < 0$ for $j = 1, 2, \dots, n$, we can again choose $M^* \gg 1$ such that $(\psi_1, \psi_2, \dots, \psi_n) \le (\hat{\phi}_1, \hat{\phi}_2, \dots, \hat{\phi}_n)$. By Lemma 1.4 there exist a positive solution (u_1, u_2, \dots, u_n) such that $(\psi_1, \psi_2, \dots, \psi_n) \le (u_1, u_2, \dots, u_n) \le (\hat{\phi}_1, \hat{\phi}_2, \dots, \hat{\phi}_n)$.

3.2. **Proof of Theorem 1.3.** Define $\tilde{\phi}_j := \frac{a}{\|w_{p_j}\|_{\infty}} w_{p_j}$ for j = 1, 2, ..., n. For $\lambda < \lambda^*$ and j = 1, 2, ..., n - 1 we have

$$-(\varphi_{p_{j}}(\tilde{\phi}'_{j}))' = h^{*}(t) \left(\frac{a^{p_{j}-1}}{2||w_{p_{j}}||_{\infty}^{p_{j}-1}} + \frac{a^{p_{j}-1}}{2||w_{p_{j}}||_{\infty}^{p_{j}-1}} \right)$$
$$> h_{j}(t) \left(\lambda a^{p_{j}-1-\alpha_{j}} + \lambda f_{j}(a) \right)$$
$$\geq \lambda h_{j}(t) \left(\tilde{\phi}_{j}^{p_{j}-1-\alpha_{j}} + f_{j}(\tilde{\phi}_{j+1}) \right).$$

Similarly for $\lambda < \lambda^*$ we have

$$-(\varphi_{p_n}(\tilde{\phi}'_n))' > \lambda h_n(t) \left(\tilde{\phi}_n^{p_n - 1 - \alpha_n} + f_n(\tilde{\phi}_1) \right).$$

Hence $(\tilde{\phi}_1, \tilde{\phi}_2, \dots, \tilde{\phi}_n)$ is a strict supersolution of (3) for $\lambda < \lambda^*$. Next we construct a strict subsolution for $\lambda > \lambda_*$. Let $\epsilon \in (0, \frac{1}{2})$ and $\kappa, \eta \in (1, \infty)$. Define $\rho : [0, 1] \to [0, 1]$ by

$$\rho(t) := \begin{cases} \hat{\rho}(t), & 0 \le t \le \frac{1}{2}, \\ \hat{\rho}(1-t), & \frac{1}{2} \le t \le 1, \end{cases}$$

where

$$\hat{\rho}(t) := \left\{ \begin{array}{ll} 1 - \left(1 - \left(\frac{t}{\epsilon}\right)^{\eta}\right)^{\kappa}, & \quad 0 \leq t \leq \epsilon, \\ 1, & \quad \epsilon < t \leq \frac{1}{2}. \end{array} \right.$$

Let $d(t) = b\rho(t)$ and \underline{h}_* as before. For j = 1, 2, ..., n we define ψ_j^* as the $C^2[0, \frac{1}{2}]$ solution of the problem:

$$\begin{cases} -(\varphi_{p_j}(\psi'))' = \lambda \underline{h}_* f_j(d), \ t \in (0, \frac{1}{2}), \\ \psi(0) = 0 = \psi'(\frac{1}{2}). \end{cases}$$

Now extend ψ_i^* to $\left[\frac{1}{2},1\right]$ as

$$\tilde{\psi}_j(t) := \begin{cases} \psi_j^*(t), & 0 \le t \le \frac{1}{2}, \\ \psi_j^*(1-t), & \frac{1}{2} \le t \le 1. \end{cases}$$

Now if

$$\tilde{\psi}_j(t) > d(t), \ t \in \left(0, \frac{1}{2}\right) \tag{10}$$

then for $j = 1, 2, \ldots, n-1$ we have

$$-(\varphi_{p_j}(\tilde{\psi}'_j))' = \lambda \underline{h}_* f_j(d) \le \lambda h_j(t) f_j(d) < \lambda h_j(t) \left(\tilde{\psi}_j^{p_j - 1 - \alpha_j} + f(\tilde{\psi}_{j+1}) \right), \ t \in (0, 1)$$

and similarly

$$-(\varphi_{p_n}(\tilde{\psi}'_n))' < \lambda h_n(t) \left(\tilde{\psi}_n^{p_n - 1 - \alpha_n} + f(\tilde{\psi}_1) \right), \ t \in (0, 1),$$

which implies $(\tilde{\psi}_1, \tilde{\psi}_2, \dots, \tilde{\psi}_n)$ will be a strict subsolution. However, (10) follows if $\tilde{\psi}'_j(t) > d'(t)$ for $t \in (0, \frac{1}{2})$ since $\psi_j(0) = 0 = d(0)$. Note that for $j = 1, 2, \dots, n$ we obtain $\tilde{\psi}'_j(t) > d'(t)$ for $\epsilon \le t \le \frac{1}{2}$ because d'(t) = 0 and $\tilde{\psi}'_j(t) > 0$ for $\epsilon \le t \le \frac{1}{2}$. For $t \in (0, \epsilon)$ we have

$$\tilde{\psi}_j'(t) \ge \varphi_{p_j}^{-1} \left(\int_{\epsilon}^{\frac{1}{2}} \lambda \underline{h}_* f_j(d(s)) ds \right) = \varphi_{p_j}^{-1} \left(\lambda \underline{h}_* f_j(b) \left(\frac{1}{2} - \epsilon \right) \right).$$

Since $|d'(t)| \leq \frac{b\kappa\eta}{\epsilon}$, it is easy to see that $\tilde{\psi}'_i(t) > d'(t)$ for $t \in (0,\epsilon)$ provided

$$\varphi_{p_j}^{-1}\left(\lambda \underline{h}_* f_j(b) \left(\frac{1}{2} - \epsilon\right)\right) > \frac{\kappa \eta b}{\epsilon} \text{ for } j = 1, 2, \dots, n$$

or equivalently

$$\lambda > \max_{j=1,2,\dots,n} \left\{ (\kappa \eta)^{p_j - 1} \frac{1}{\epsilon^{p_j - 1} (\frac{1}{2} - \epsilon)} \frac{b^{p_j - 1}}{\underline{h}_* f_j(b)} \right\}. \tag{11}$$

Since $\lambda_* = \min_{i=1,2,\dots,n} \left\{ \max_{j=1,2,\dots,n} \left\{ L_{ij} \frac{b^{p_j-1}}{\underline{h}_* f_j(b)} \right\} \right\} = \max_{j=1,2,\dots,n} \left\{ L_{\theta j} \frac{b^{p_j-1}}{\underline{h}_* f_j(b)} \right\}$ for some $\theta \in \{1,2,\dots,n\}$, taking $\epsilon = \frac{p_\theta-1}{2p_\theta}$ in the definition of ρ , (11) reduces to showing

$$\lambda > \max_{j=1,2,\dots,n} \left\{ (\kappa \eta)^{p_j - 1} L_{\theta j} \frac{b^{p_j - 1}}{\underline{h}_* f_j(b)} \right\}.$$
 (12)

We can choose $\kappa > 1$ and $\eta > 1$ such that (12) is satisfied. Hence (10) holds for $\lambda > \lambda_*$. Thus $(\tilde{\psi}_1, \tilde{\psi}_2, \dots, \tilde{\psi}_n)$ is a strict subsolution of (3) for $\lambda > \lambda_*$. From Theorem 1.2, we have a sufficiently small subsolution $(\psi_1, \psi_2, \dots, \psi_n)$ and a sufficiently large supersolution $(\hat{\phi}_1, \hat{\phi}_2, \dots, \hat{\phi}_n)$ such that

$$(\psi_1, \psi_2, \dots, \psi_n) \leq (\tilde{\phi}_1, \tilde{\phi}_2, \dots, \tilde{\phi}_n) \leq (\hat{\phi}_1, \hat{\phi}_2, \dots, \hat{\phi}_n)$$

and

$$(\psi_1, \psi_2, \dots, \psi_n) \le (\tilde{\psi}_1, \tilde{\psi}_2, \dots, \tilde{\psi}_n) \le (\hat{\phi}_1, \hat{\phi}_2, \dots, \hat{\phi}_n).$$

Since $\|\tilde{\phi}_j\|_{\infty} = a < b \leq \|\tilde{\psi}_j\|_{\infty}$ for j = 1, 2, ..., n, we obtain $(\tilde{\psi}_1, \tilde{\psi}_2, ..., \tilde{\psi}_n) \not\leq (\tilde{\phi}_1, \tilde{\phi}_2, ..., \tilde{\phi}_n)$. Hence (3) has at least three distinct positive solution for $\lambda \in (\lambda_*, \lambda^*)$ by Lemma 1.5.

4. **Example.** Here we discuss an example that satisfies the hypotheses of Theorem 1.1 - 1.3. Consider the system:

$$\begin{cases}
-\left(\varphi_{p_{1}}(u'_{1})\right)' = \lambda_{\frac{1}{t^{\beta_{1}}}} \left(u_{1}^{p_{1}-1-\alpha_{1}} + e^{\frac{\tau u_{2}}{\tau+u_{2}}} - 1\right), \ t \in (0,1), \\
-\left(\varphi_{p_{2}}(u'_{2})\right)' = \lambda_{\frac{1}{t^{\beta_{2}}}} \left(u_{2}^{p_{2}-1-\alpha_{2}} + u_{3}^{\zeta_{1}}\right), \qquad t \in (0,1), \\
\vdots \qquad \qquad \vdots \qquad \qquad \vdots \\
-\left(\varphi_{p_{n}}(u'_{n})\right)' = \lambda_{\frac{1}{t^{\beta_{n}}}} \left(u_{n}^{p_{n}-1-\alpha_{n}} + u_{1}^{\zeta_{n-1}}\right), \qquad t \in (0,1), \\
u_{j}(0) = 0 = u_{j}(1); \ j = 1, 2, \dots, n,
\end{cases} \tag{13}$$

where $\tau > 0$, $\beta_j \in (0,1)$, $\zeta_j > 0$ and $h_j(t) = \frac{1}{t^{\beta_j}}$ for $j=1,2,\ldots,n$. Here $f_1(s) = e^{\frac{\tau s}{\tau + s}} - 1$ and $f_j(s) = s^{\zeta_{j-1}}$ for $j=2,3,\ldots,n$. Clearly $f_j(0) = 0$ for $j=1,2,\ldots,n$. Further, (H_1) holds since f_1 is bounded for each $\tau > 0$. Hence Theorem 1.1 - 1.2 hold for all $\tau > 0$ and $\zeta_j > 0$ for $j=1,2,\ldots,n-1$. Next consider the case when $\zeta_j > p_{j+1} - 1$ for $j=1,2,\ldots,n-1$ and $\tau \gg 1$. Choosing a=1 and $b=\tau$ we have:

$$\min_{j=1,2,\dots,n} \left\{ \frac{1}{2\|w_{p_j}\|_{\infty}^{p_j-1}} \min\left\{a^{\alpha_j}, \frac{a^{p_j-1}}{f_j(a)}\right\} \right\} \ge \frac{1}{4} \min_{j=1,2,\dots,n} \left\{ \frac{1}{\|w_{p_j}\|_{\infty}^{p_j-1}} \right\}$$

and

$$\min_{i=1,2,...,n} \left\{ \max_{j=1,2,...,n} \left\{ L_{ij} \frac{b^{p_j-1}}{\underline{h}_* f_j(b)} \right\} \right\} \leq \frac{L^*}{\underline{h}_*} \max \left\{ \frac{\tau^{p_1-1}}{e^{\frac{\tau}{2}}-1}, \tau^{p_2-1-\zeta_1}, \dots, \tau^{p_n-1-\zeta_{n-1}} \right\},$$

where $L^* := \max_{i,j=1,2,\ldots,n} \{L_{ij}\}$. It is easy to show that

$$\max \left\{ \frac{\tau^{p_1 - 1}}{e^{\frac{\tau}{2}} - 1}, \tau^{p_2 - 1 - \zeta_1}, \dots, \tau^{p_n - 1 - \zeta_{n-1}} \right\} \to 0 \text{ as } \tau \to \infty.$$

Thus (H_2) is satisfied for $\tau \gg 1$. Hence (13) has at least three positive solution for a certain range of λ . In fact, for a given $\lambda \in (0, \hat{\lambda})$ where

$$\hat{\lambda} := \min \Big\{ \frac{1}{2\|w_{p_1}\|_{\infty}^{p_1-1}(e-1)}, \frac{1}{2\|w_{p_2}\|_{\infty}^{p_2-1}}, \dots, \frac{1}{2\|w_{p_n}\|_{\infty}^{p_n-1}} \Big\},$$

there exists $\tau^* > 0$ such that (13) has at least three positive solution for $\tau > \tau^*$.

REFERENCES

- H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 229–256.
- [2] Y. H. Lee and I. Sim, Global bifurcation phenomena for singular one-dimensional p-Laplacian, J. Differential Equations, 229 (2006), 620–709.
- [3] R. Manásevich and J. Mawhin, Boundary value problems for nonlinear perturbations of vector p-Laplacian-like operators, J. Korean Math. Soc., 37 (2000), 665–685.
- [4] R. Shivaji, A remark on the existence of three solutions via sub-super solutions, *Nonlinear Analysis and Applications*, Lecture Notes in Pure and Appl. Math., **109** (1987), 561–566.
- [5] R. Shivaji and B. Son, Bifurcation and multiplicity results for classes of p, q Laplacian systems, $Topol.\ Methods\ Nonlinear\ Anal.$, 48 (2016), 103–114.

Received March 2016; revised August 2016.

E-mail address: mohan.math09@gmail.com
E-mail address: shivaji@uncg.edu
E-mail address: gm5431@wayne.edu
E-mail address: slnt@iitm.ac.in