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ABSTRACT. In this paper we study the positive solutions to the n x n p-
Laplacian system:

- ((piﬂl (ull))/ = )‘hl(t) uzljlilio‘1 + fl(u2) , t€ (07 1)7

— (pa (uh))" = Aha(t) (ub2 172 + fo(us)), t€(0,1),

— (P () = M () (w70 4 fu(w)) s € (0,1),
uj(0) =0=1u;(1); j=1,2,...,n,
where X is a positive parameter, p; > 1, a;j € (0,p; — 1), ¢p, (w) = |w|Pi ~2w,
and h; € C((0,1),(0,00)) N L*((0,1),(0,00)) for j = 1,2,...,n. Here f; :
[0,00) = [0,00), j = 1,2,...,n are nontrivial nondecreasing continuous functi-
ons with f;(0) = 0 and satisfy a combined sublinear condition at infinity. We
discuss here a bifurcation result, an existence result for A > 0, and a multi-

plicity result for a certain range of \. We establish our results through the
method of sub-super solutions.

1. Introduction. Study of positive solutions to the 2 x 2 system:
“Apur = A (BT 4 fi(ug)), 2 € Q,
—Ap,us = A u’ffl*az + fa(u1)), = € Q, (1)
uj =0, z€d); j=1,2
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was discussed in [5] where © is a bounded domain in RV, N > 1 with a smooth boun-
dary 0Q, A > 0, p; > 1, a; € (0,p; — 1), j = 1,2, and A, w = div(|Vw|™2Vw),
m > 1 is the m-Laplacian operator of w. Assuming f; : [0,00) = [0,00), j = 1,2
are nondecreasing continuous functions with f;(0) = 0, it was established that
for X\ = 0 there exist positive solutions of (1) bifurcating from the trivial branch
(A ur = 0,u2 = 0) at (0,0,0). Further, under additional assumptions on f; for
7 = 1,2, the existence result for all A > 0 and a multiplicity result for a certain
range of A\ were proven.

Extending the above study to domains exterior of a ball and to n X n systems,
we encounter systems of the form:

—Ap,uy = MK (|z|) (77 + fi(up) ), @ € Bg,
—Ap,ug = AKs(|z|) ug’?*l*” + fo(us)), z € Bg,
: = : (2)
7Apnu" = )\Kn(|l'|) (uﬁnilian + fn(ul)) , T € BE'7
uj(z) =0on |z|=7rp; j=1,2,...,n,
uj(x) = 0as |z] > o00; j=1,2,...,n,

where Bg := {z € RY|jz| > ro > 0}, p; > 1, a; € (0,p; — 1), f; : [0,00) —
[0, 00) are nontrivial nondecreasing continuous functions with f;(0) =0, and K; €
C([rg,00),(0,00)) are class of functions that satisfy K;(Jz|) — 0 as |z| — oo for
7 = 1,2,...,n. Restricting the analysis to radial solutions and to the case p; =
p2 = -+ =p, = p where 1 < p < N, by the Kelvin type transformation, r = |z|

N-p

and t = ( r ) "7 (2) reduces to

o

)" = Aha(t) (uf ™ + fi(ua)), t € (0,1),

— (pp(ur,)) = Ny (t) (uh™ =" + fu(wr)) . ¢ € (0,1),
UJ(O) ZOZUj(l); jz 1,2,...,n

- P pA-N) 1-p 5
where h;(t) := (11\)7_—;) rh t N K (rotN—p) for j = 1,2,...,n. Clearly, h; €
C((0,1],(0,00)) for j = 1,2,...,n. If we assume that K;(r) < — for r >
1 and o > 0, then ﬁj(t) — oo ast — 0+ for j = 1,2,...,n. However, izj €
L1((0,1],(0,00)) for j =1,2,...,n.

Motivated by the aforementioned observations, in this paper, we study the posi-
tive solutions to a more general singular n x n system:

- (@Pl (u/l))/ = )‘hl(t) uzl)l_l_al + fl(u2) , te (0’ 1)7
— (ppa(uh)) = Mo (t) (uB>™ 7% + fa(ug) ), t€(0,1),
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where p; > 1, o € (0,p; — 1), @p, (w) = |w|Pi?w, and h; € C((0,1),(0,00)) N
L'((0,1),(0,00)) for j = 1,2,...,n. Here f; : [0,00) — [0,00), j = 1,2,...,n are
nontrivial nondecreasing continuous functions with f;(0) = 0. By a positive solution
u = (u1,ug,...,u,) we mean u; € C*[0,1] with u; >0 on (0,1) for j =1,2,...,n.
We first establish a bifurcation result at (0,0) from the trivial branch (A, u = 0).
We prove:

Theorem 1.1. There exists A\g > 0 such that for all X € (0, Xo), (3) has a positive
solution u = (u1,ug...,u,) and |[ujllcc — 0 as X = 0 for all j = 1,2,...,n
(see figure 1).

[[TEY] P L | Y | P

A

F1cURrE 1. Bifurcation of solution from the origin.

Assuming a combined sublinear condition at infinity:
M M M Ay i
(Hy) lim [f1[ I 2[ ]o...ofii]lo(fn(s))pn_l]pl 1

s—%00 sp1i—1
1
where fJ[M](s) = fj(Ms)ri~" for j =1,2,...,n, we establish:

Theorem 1.2. Assume (Hy) holds. Then (3) has a positive solution for all A > 0
(see figure 2).

= 0 for every M > 0,

T lloot oot U]l

A
FIGURE 2. Bifurcation for all A > 0.
Next let (1) i= e (B0} ha(®) = v (50} b o= inf ()
L = % and wy, € C'[0,1] be the unique solution of boundary value
problem:

h*(t), t € (0,1),

w(0) =0 (1)

{(sopj (W)’
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(see [3]). Now if h, > 0 and f; satisfy:
(Hz) there exist positive constant a and b (> a) such that

1 { apf*l} { bri—1
min ———————min 4 a®, >  min - max {Ll}} ,
=12 | 2y, || I () =120 |j=12..n U 7 b f;(b)

then we prove:

Theorem 1.3. Assume h, > 0 and (Hy) — (Hz) hold. Then (3) has at least three
positive solutions for A € (A, \*) where

| s !
noim i (e {10

. . 1 [ o, aPiTt
A* =  min ﬁmm{a 7,7}
§=1,2,....n 2||ij||oé fi(a)

and

(see figure 3).

[l lleo oot llunlleo

/

Ay A

F1GURE 3. Multiplicity results for certain range of A.

We establish Theorems 1.1 - 1.3 by the method of sub-super solution. By a subso-
lution of (3) we mean a function (11,2, ...,%,) € C10,1] x C1[0,1] x - - - x C[0,1]
such that ¢;(0) = 0=1;(1) for j =1,2,...,n and

1 1
| en@ie)e s < [ Ana(s) (w717 6) + a(wa() C(s)ds for all ¢ € 1
0 0

1

1
| omae)e)ds < [ Ana(s) (4877175 (6) + La(wa(s) C(s)ds for all ¢ € 1
0 0

IN

1

1 : :
/O ep,, (U (5))¢ (s)ds < / Ahn(s) (W5 17 () + fu(¥1(5))) ¢(s)ds for all ¢ € W.

0
By a supersolution of (3) we mean a function (¢y, ¢o, ..., ¢,) € C1[0,1] x C1[0,1] x
-++ x C1[0,1] such that ¢;(0) = 0= ¢;(1) for j =1,2,...,n and

| ont@ )¢ ()ds = [ M) (8717 ) + F(0a() G(s)ds for all ¢ € W.
0 0

| omleso)¢ )5 = [ Aralo) (687172 () + fala(s) G(s)ds for all ¢ € W.
0 0
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>
1

1 : :
/O Pp, (@,(5))C (s)ds > /0 M (s) (47179 (5) + fu(1(5))) (s)ds for all ¢ € W,

where W := {h € C§°(0,1)|]h > 0 in (0,1)}. By a strict subsolution of (3) we
mean a subsolution which is not a solution. By a strict supersolution of (3) we
mean a supersolution which is not a solution. Then the results in [1] and [4] can be
extended to such singular systems and the following lemmas hold:

Lemma 1.4. Let (1,2, ...,%,) be a subsolution and (¢1,¢a,...,dn) be a super-
solution of (3). If ; < @; for j = 1,2,...,n, then (3) has at least one solution
(u1,ug, ..., u,) such that u; € C1[0,1] and ¥; <wuj < ¢; for j=1,2,...,n.

Lemma 1.5. Let f; be nonnegative and nondecreasing for j =1,2,...,n, and sup-
pose there exist a subsolution (Y1,va, ..., V), a strict subsolution (1,2, ..., ¥n,),
a strict supersolution (¢1,d2,...,¢n) and a supersolution (¢1,d2,...,Pn) of (3)
sychithat qujig ¢j S ¢]7 1/’3 S ¢j S ¢] fOTj = 172,...,7?, and (7»/1177/’27~-~71/1n) g
(¢1,02,...,0n). Then (3) has at least three distinct solutions (uy,us,...,Un),
(uf,us,...,ut) and (41,qs,...,Uy,) such that

(u17u27 s aun) € A= [(7/}131!}2; s awn)a (Qz_slad_)% e 7(72_5n)]a

(UTaU;» ey u;) €B:= [(1;171[)27 e 7&%)7 (¢17 ¢27 C) ¢n)]7

(1_1,1,1_1,2, s aﬂn) € [(’l/}la 77[12, s a’l/}n)a (¢1a ¢23 e d)n)] \ (A U B)

We will establish Theorem 1.1 in Section 2 and Theorems 1.2 - 1.3 in Section 3.
Finally, in Section 4, we discuss a simple example satisfying hypotheses of Theorems
1.1-1.3.

Remark 1. Note that the study of positive radial solution of (2) when p; # p; for
some i,j € {1,2,...,n} remains open.
2. Proof of Theorem 1.1. Let v > 0 be such that ya; < 1 and y(p; — 1) < 1 for
i=1,2,...,n. Let A\g > 0 be such that

Ao~ w1710 AT f Ol lloe) < 1for j=1,2,.n =1 (4)
and )

l—vyan, n—l—an - n
Ao lwp, BT+ AT £ (MG lwpy o) < 1 (5)

Define ¢; := Nw,, for j =1,2,...,n. For A < g and j =1,2,...,n — 1 using (4)
we have

— (i, (85)) = X ® =D (1)
> N @DR () (A7 o, 18775 + 2670 (A w1 )

> Ahj(t) (()‘Wij)pjiliaj + /i ()\’prj-%—l))

= A1) (@57 + £ (6541))
Similarly for A < Ap using (5) we have

_(@pn (éiz))/ > Ay (t) ((bﬁn_l_a" + fn(él)) .
Further, ¢;(0) =0 = ¢;(1) for j = 1,2,...,n. Hence (¢1, ¢2,...,¢,) is a superso-
lution of (3) for A < Ag.
Next given A > 0, we construct a subsolution of (3). Let z,, > 0 in (0,1) be the
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eigenfunction with ||z, [|oc = 1 corresponding to the principal eigenvalue A; ;. of
the problem:

{—(sopj () = A (8)]2[Pi 22, t € (0,1),

z(0) =0=2(1)
(see [2]). Choose m = 0 such that \;, m® < X for j = 1,2,...,n. Define
Y i=mzp, for j=1,2,...,n. For j =1,2,...,n—1 we have

_(gopj (1/)_;))/ = Al,pj h* (t)(mZPJ )pjil S /\h] (t) (¢§j717aj + fj (wj—i-l))
and similarly we have

—(@p, (1)) < Ah(2) (YEr 717 4 £ (¥1)) -

Further, ¢;(0) = 0 =,(1) for j =1,2,...,n. Hence (¢1,v2,...,1%y) is a subsolu-
tion of (3). We can also choose m & 0 such that (1,%s,...,¥,) < (d1,02,...,0n)
since wy, (0) > 0 and wj, (1) < 0 for j = 1,2,...,n. Hence by Lemma 1.4 there

)

exists a solution (uq,us,...,u,) such that (1,19, ..., %n) < (U, ug, ..., uy) <
(¢1,02,...,0pn). Moreover ||ujllcc — 0 as A — 0 since ||¢;llcc — 0 as A — 0 for
7=12,...,n. 0

3. Proofs of Theorems 1.2 - 1.3.

3.1. Proof of Theorem 1.2. Let (¢1,%2,...,1,) be as in Theorem 1.1. Then
(1,12, ... ,1y) is a subsolution of (3) for A > 0. Next we construct a supersolution
of (3). Let M > 1 be such that for j =2,3,...,n

pj—l-aj

(Mo fl oo fl) (M, 1)) 2 (207 1) . (©)
where

1
g o= 4 @V My e § = 1,2, m = L
o j=n

.....

| (70 i o0 (1 0wy 1))
N, [ O oy oo "
and .
o 2 Al 2 Q
From (6), we obtain
(358 0 £ oo S (0 10)) ™ 2 (VT T ) )
since f; are nondecreasing functions for j =1,2,...,n. Now we define
R M*wp,; ji=1,
% {(mwle}m o fi oo g o (M (M lloe)) w3 5 =2, m.
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Then using (7) we have

— (p, (31))
. M*Pl*l M*pl*l
= h*(t) ( 5 + 5 )
> ha(t) (M*pl 1-o M2 +)\(f1f3]of ..o flAl (M*||wp1||oo))pll)

> Aha (t ((M*||wp1 loo)” " (@AM oo f1P) (M*prlHoo)wz))

)
> A () (8577 + fi(6a))
and for j =2,3,...,n— 1 using (9) we have
(‘ij (Qgg )/
(<2A TMf o gl oo My, )
pj—1
Mo fl oo My, 1) )

s (t)( Mo [ oo SO 1)

by

v

pj—l-a;

> (1) (@0F T o f12h 00 fIP AL o)y, )
1
+ Ahy (1), (<2A> PR M A 00 RO )y, )

Muy(t) (65717 4 f(50) )

Y

Similarly using (9) we have

pn_l

~(2pn (@) = () (@N)FT ML (M 1))
> M (t) (M M gy llo)) ™ (MAE (0 1))

(
o+ N (8) (ML (M )
) (

—1—an,

1 Pn—1l—ap " Pn—1—an,
> Mua(t) (2077 [y, 1 ) (M2 (" 1))
+ Ay (B) fr (M wyp,)
> Mo () (57170 + £a(d)) -

Hence (q?)l,agg,...,qgn) is a supersolution of (3). Since z;,j (0) > 0 and zz’gj(l) <0
for j = 1,2,...,n, we can again choose M* > 1 such that (¢1,v2,...,%,) <
(¢1, b2, - .., &n). By Lemma 1.4 there exist a positive solution (u1,us,. .., u,) such

that (wlana"wwn) (u17u27~-~7un)§(élaéQw"aén)- O
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3.2. Proof of Theorem 1.3. Define gZNJj =
A< Aand j=1,2,...,n—1 we have

pr T T Wr; for j = 1,2,...,n. For

abi—1

_(9017(95;)), :h*(t) ( _ n aPi 1‘_1>
' 2wy, 1% 2w, |18
>hj (t) ()\apj_l_aj + )\fj (a))
>Ah;(t) (J’?j_l_aj + fj(éjﬂ)) :
Similarly for A < A* we have

(0, (8,)) > A () (20717 4 fu(d))

Hence (41, o, . .., dn) is a strict supersolution of (3) for A < \*.
Next we construct a strict subsolution for A > A,. Let € € (0, 3) and ,7 € (1,00).
Define p : [0,1] — [0,1] by

oty ={ o

INIA
»—1\3\)—‘

IAIN

p(l = 1),

= O

where

ﬁ(t):Z{ 1-(1-(H")", o<t<e

1
1, e<t<i.

Let d(t) = bp(t) and h, as before. For j = 1,2,...,n we define ¢ as the c?0, 3]
solution of the problem:

_(Sopj (W))/ = )\ﬁ*f](d), te (Ov %)a
$(0) = 0=19'(3).

Now extend 97 to [1,1] as

Now if

then for j =1,2,...,n — 1 we have

(o0, (0)) = A, f5(d) < Ay ()£3(d) < Ay (8) (37717 + F(By41)) s £ € (0,1)

and similarly
(o (4)) < M) (382 4 (), € (0,1),

which implies (1@1, o, ... ,@n) will be a strict subsolution. However, (10) follows if
1/3;(15) > d/(t) for t € (0, 3) since ¢;(0) = 0 = d(0). Note that for j =1,2,...,n we
obtain 1% (t) > d'(t) for e < t < £ because d'(t) = 0 and 1;; (t) >0fore<t <
For t € (0,€) we have

)2 ¢, (/ A, f5(d ) = o5 (Ah*fj(b)(i —e)) |
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Since |d'(t)| < b'%", it is easy to see that &;(t) > d'(t) for t € (0, €) provided

_ 1 knb .
<ppj1 (/\h*fj(b)(2 —e)) > % forj=1,2,...,n

or equivalently

\ pi—1 1 bri—! 11
>j—?1§’.’?,n{(“”) ei=1(§ —€) b, f](b)} )

b pri 1
Since A, =  mi {L: b= {r b
- = Lops fron gt} = mes g ) o some
0e{1,2,...,n}, taking e = B¢ 91 in the definition of p, (11) reduces to showing

b1
A> ma Pt 12
e {1 (12)
We can choose £ > 1 and n > 1 such that (12) is satisfied. Hence (10) holds for
A > A.. Thus (41,9, ...,1y) is a strict subsolution of (3) for A > A,.

From Theorem 1.2, we have a sufficiently small subsolution (¢1,%s,...,1,) and a

sufficiently large supersolution (¢1, ¢a, ..., dy,) such that
(¢17w27~-~7¢n) < ((517(2;27' 7&”) < (élanZW'w({Sn)

and o ) o )
(¢17¢27"'7¢n) S (¢17¢27--~7¢n) S (¢17¢27"'7¢n)'
Since djlle = a < b < [$sllo0 for j = 1,2,...,n, we obtain ($1,2, ..., %)

p
(¢1,b2,...,0,). Hence (3) has at least three distinct positive solution for A €
(As, A*) by Lemma 1.5. O

4. Example. Here we discuss an example that satisfies the hypotheses of Theorem
1.1 - 1.3. Consider the system:

— oy (1)) = A (W77 e 1), e (0,1),
— (ppa(h)) = Ay (B4 ugt), e (00),

_ (13)

— (o, (W) =g (w1 +uf ), e (01),
UJ(O) ZOZUj(l), j = 1,2,...

7n7
where 7 > 0, 8; € (0,1), ¢; > 0 and h;(t) = t%] for j =1,2,...,n. Here fi(s) =
e7ts —1 and fj(s) = s%-1 for j = 2,3,...,n. Clearly f;(0) =0 forj=1,2,...,n

)

Further, (H;) holds since f; is bounded for each 7 > 0. Hence Theorem 1.1 - 1.2

hold for all 7 > 0 and {; > 0 for j = 1,2,...,n — 1. Next consider the case when

¢ >pj+1—1forj=1,2,...,n—1and 7 > 1. Choosing a =1 and b = 7 we have:
1

, 1 . { abim } N 1
min —————— minsa —  min —
s=L2n | 2y, 12 i@ T dimt2en |, 27T
and

. ppi—1 L* rp1—1
min max {L” } < — max ,T”_l_Cl e ,Tp"_l_c"*l ,
i=12,..n (j=12,... h, f;(b) h, ez —1
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where L* := max {Lij}. It is easy to show that
4,5=1,2,....n
7Pp1—1 i L
rnax{iI 1771’2 =G . Pt C”*} — 0 as 7 — oo.
ez —

Thus (Hs) is satisfied for 7 >> 1. Hence (13) has at least three positive solution for
a certain range of A. In fact, for a given A € (0, A) where

% . 1 1 1
= mm{ eS| , e RRREE pn—l}’
2||wp, [[se7" (e = 1) 2[|wp,[[2 2||wp, [l

there exists 7 > 0 such that (13) has at least three positive solution for 7 > 7*.
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