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Abstract

We establish an existence and uniqueness theorem on best proximity
point for contractive mappings on a metric space endowed with a graph.
As an application of this theorem, we obtain a result on the existence of
unique best proximity point for uniformly locally contractive mappings.
Moreover, our theorem subsumes and generalizes many recent fixed
point and best proximity point results.
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1. Introduction

Fixed point theory plays an important role for solving equations of the form
Tx = x where T is defined on a subset of a metric space, partially ordered
metric space, topological vector space or some suitable space. Given two non-
empty subsets A and B of a metric space (X, d), consider a non-self mapping
T : A → B. If T (A) ∩ A = ∅, there does not exist a solution of the equation
Tx = x. Then it is interesting to find a point x ∈ A that is closest to Tx in
some sense. Best approximation and best proximity point results have been
established in this direction. The well-known best approximation theorem due
to Ky Fan [3] states that for a given non-empty compact convex subset C of
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a normed linear space E and a continuous mapping F : C → E, there exists
x∗ ∈ C such that ‖x∗−Fx∗‖ = d(Fx∗, C) = inf{‖Fx∗−x‖ : x ∈ C}. Though
this result gives the existence of an approximate solution of Fx = x, such
solution need not be optimal in the sense that ‖x− Fx‖ is minimum.

Naturally, for the map T , one can think of finding an element x∗ ∈ A such
that d(x∗, Tx∗) = min{d(x, Tx) : x ∈ A}. Since for all x ∈ A, d(x, Tx) ≥
d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}. An optimal solution of min{d(x, Tx) :
x ∈ A} is one for which the value d(A,B) is attained. An element x∗ ∈ A is
called a best proximity point for the mapping T if d(x∗, Tx∗) = d(A,B). Hence
a best proximity point of the map T is not only an approximate solution of
Tx = x, but also optimal in the sense that d(x, Tx) is minimum. Clearly, a best
proximity point theorem is a natural generalization of a fixed point theorem.
Some interesting best proximity point results can be found in [7, 11, 14] and
for applications, one can refer to [5, 6].

Recently, Jachymski [4] established the existence of fixed points for contrac-
tive mappings on a metric space endowed with a graph. This result unified
various fixed point theorems for contractive mappings on metric spaces and
partially ordered metric spaces. For some more fixed point results on a metric
space with a graph, one can refer to [1, 13].

1.1. Our contribution. Following Jachymski [4], in this article we prove an
existence and uniqueness theorem on best proximity point for non-self contrac-
tive mappings on a metric space endowed with a graph. As an application of
this result, we obtain a generalization of the fixed point theorem for uniformly
locally contractive mappings due to Edelstein [2, Theorem 5.2]. Also, our re-
sult enables us to obtain a best proximity point result for non-self mappings
on partially ordered metric spaces. Further, our result subsumes a very recent
result on existence of a unique best proximity point on a metric space due to
V. Sankar Raj [11, Theorem 3.1].

2. Preliminaries

In this section, let us recall some definitions and notations which are needed
for our results.

Let (X, d) be a metric space. For given non-empty subsets A and B of (X, d),
we denote by A0 and B0 the following sets:

A0 = {x ∈ A : d(x, y) = d(A,B) for some y ∈ B}
B0 = {y ∈ B : d(x, y) = d(A,B) for some x ∈ A}.

For sufficient conditions which ensure the non-emptiness of A0 and B0, one can
refer to [7].

Let (A,B) be a pair of non-empty subsets of (X, d) such that A0 6= ∅. Then
the pair (A,B) is said to have the P -property [11] if and only if
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d(x1, y1) = d(A,B)

d(x2, y2) = d(A,B)

}
⇒ d(x1, x2) = d(y1, y2),

where x1, x2 ∈ A0 and y1, y2 ∈ B0.
It is easy to verify that for a non-empty subset A of (X, d), the pair (A,A)

has the P -property. Every pair of non-empty closed convex subsets of a real
Hilbert space H has the P -property (see [11]).

Consider a directed graph G where the set V (G) of its vertices coincides
with X, the set E(G) of its edges is such that E(G) ⊇ ∆ (where ∆ = {(x, x) :

x ∈ X}) and E(G) has no parallel edges. We denote by G̃ the undirected graph
obtained from G by ignoring the direction of edges. For given two vertices x
and y, we say that there is a path in G of length N (where N ∈ N ∪ {0})
between them if there exists a sequence (xi)Ni=0 such that x0 = x, xN = y and
(xi−1, xi) ∈ E(G) ∀ i = 1, 2, . . . , N . The graph G is called connected if there is

a path between any two vertices and weakly connected if G̃ is connected. For
x ∈ V (G) = X, we denote

[x]NG = {y ∈ X : there is a path in G of length N from x to y} .

3. Main results

Throughout this section we assume that (X, d) is a metric space endowed
with a directed graph G where V (G) = X, E(G) ⊇ ∆ and G has no parallel
edges. We now introduce a notion of Banach contraction (for non-self map)
with respect to the graph G for which we prove our main results.

Definition 3.1. Let A and B be two non-empty subsets of (X, d). A mapping
T : A → B is said to be a Banach G-contraction or simply G-contraction if
for all x, y ∈ A, x 6= y with (x, y) ∈ E(G):

(a) d(Tx, Ty) ≤ αd(x, y) for some α ∈ [0, 1);

(b)
d(x1, Tx) = d(A,B)

d(y1, T y) = d(A,B)

}
⇒ (x1, y1) ∈ E(G), for all x1, y1 ∈ A.

Theorem 3.2. Let (X, d) be complete metric space, A and B be two non-empty
closed subsets of (X, d) such that (A,B) has the P -property. Let T : A→ B be
a G-contraction such that T (A0) ⊆ B0. Assume that for some N ∈ N,

(i) there exist x0 and x1 in A0 such that there is a N -length path (yi0)Ni=0 ⊆ A0

in G between them and d(x1, Tx0) = d(A,B);
(ii) for any sequence {sn}n∈N in A with sn → s and sn+1 ∈ [sn]NG , there is a

subsequence (snk
)k∈N such that (snk

, s) ∈ E(G) ∀k ∈ N.

Then there exists a sequence {xn}n∈N with d(xn+1, Txn) = d(A,B) for n ∈ N,
converging to a best proximity point of T . Furthermore, T has a unique best
proximity point if for any two elements x and y in A0, there exists a path
(yi)li=0 ⊆ A0 in G̃ between them.
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Proof. By (i), there exist two points x0, x1 ∈ A0 such that d(x1, Tx0) = d(A,B)
and a sequence (yi0)Ni=0 containing points of A0 such that y00 = x0, y

N
0 = x1

and (yi−10 , yi0) ∈ E(G) ∀1 ≤ i ≤ N . As y10 ∈ A0 and T (A0) ⊆ B0, there exists
y11 ∈ A0 such that d(y11 , Ty

1
0) = d(A,B). Similarly, for i = 2, · · · , N , there

exists yi1 ∈ A0 such that d(yi1, T y
i
0) = d(A,B).

As (y00 = x0, y
1
0) ∈ E(G) and T is a G-contraction, it follows from the above

that (x1, y
1
1) ∈ E(G). In a similar way, it follows that (yi−11 , yi1) ∈ E(G) for

i = 2, · · · , N . Let x2 = yN1 . Thus (yi1)Ni=0 is a path from x1(= y01) to x2(= yN1 ).
Again, for each i = 1, 2, · · · , N , since yi1 ∈ A0 and Tyi1 ∈ T (A0) ⊆ B0, there

exists yi2 ∈ A0 such that d(yi2, T y
i
1) = d(A,B). Also, we have d(x2, Tx1) =

d(A,B). As shown in the previous paragraph, it follows that (x2, y
1
2) ∈ E(G)

and (yi−12 , yi2) ∈ E(G) ∀i = 2, · · · , N . Set x3 = yN2 . Thus (yi2)Ni=0 is a path
from x2(= y02) to x3(= yN2 ).

Continuing in this manner for all n ∈ N, we obtain a sequence {xn}n∈N
where xn+1 ∈ [xn]NG and d(xn+1, Txn) = d(A,B) by producing a path (yin)Ni=0

from xn(= y0n) to xn+1(= yNn ) in such way that

(3.1) d(yin+1, Ty
i
n) = d(A,B) ∀ i = 0, · · · , N.

Using the P -property of (A,B), it follows from equation (3.1) that for each
n ∈ N,

(3.2) d(yi−1n , yin) = d(Tyi−1n−1, Ty
i
n−1) ∀ 1 ≤ i ≤ N.

Now for any positive integer n,

d(xn, xn+1) = d(y0n, y
N
n )

≤ d(y0n, y
1
n) + d(y1n, y

2
n) + · · ·+ d(yN−1n , yNn )

=

N∑
i=1

d(yi−1n , yin) =

N∑
i=1

d(Tyi−1n−1, T y
i
n−1).

Since for all n ∈ N and 1 ≤ i ≤ N , (yi−1n−1, y
i
n−1) ∈ E(G) and T is a G-

contraction, it follows from the above inequalities that for n ∈ N,

d(xn, xn+1) ≤ α
N∑
i=1

d(yi−1n−1, y
i
n−1) for some α ∈ [0, 1).

Repeating the process, it follows that for all n ∈ N,

d(xn, xn+1) ≤ αn
N∑
i=1

d(yi−10 , yi0) = Mαn where M =

N∑
i=1

d(yi−10 , yi0).

Now for m ≥ n, n ∈ N,

d(xn, xm) ≤ d(xn, xn+1) + · · ·+ d(xm−1, xm)

≤ Mαn + · · ·+Mαm−1

= Mαn[1 + · · ·+ αm−n−1] ≤M αn

1− α
.
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Hence {xn}n∈N is a Cauchy sequence. Therefore {xn}n∈N converges to some
point x∗ ∈ A as n → ∞. By (ii), there is a subsequence (xnk

)k∈N such that
(xnk

, x∗) ∈ E(G) ∀k ∈ N. Hence,

d(Txnk
, Tx∗) ≤ αd(xnk

, x∗) for k ∈ N.

Thus taking k →∞, Txnk
→ Tx∗. Using the continuity of the metric function,

we get d(xnk+1
, Txnk

) → d(x∗, Tx∗) as k → ∞. Now {d(xnk+1
, Txnk

)} is
nothing but a constant sequence with value d(A,B). Therefore d(x∗, Tx∗) =
d(A,B).

Suppose that p and q are two best proximity points of T . Consider two
sequences {pn}n∈N and {qn}n∈N where pn = p and qn = q for all n ≥ 1.
Clearly, d(pn+1, Tpn) = d(A,B) and d(qn+1, T qn) = d(A,B) for all n ≥ 1. As
p, q ∈ A0, it follows from the hypothesis that there is a path (yi1)Mi=0 ⊆ A0 in

G̃ between p1 = p and q1 = q. For each i = 1, 2, · · · ,M − 1, since yi1 ∈ A0

and T (yi1) ∈ T (A0) ⊆ B0, we can obtain {yin}n∈N such that d(yin+1, T y
i
n) =

d(A,B) ∀n ∈ N. It is easy to verify that T is also a G̃-contraction. Also, we

have (yi−11 , yi1) ∈ E(G̃) for 1 ≤ i ≤M . Thus it follows that (yi2)Mi=0 is a path in

G̃ between p2(= y02) and q2(= yM2 ). Similarly, it follows that ∀n ∈ N, (yin)Mi=0

is a path in G̃ from pn(= y0n) to qn(= yMn ). Now for n ∈ N,

d(p, q) = d(pn+1, qn+1) ≤
M∑
i=1

d(yi−1n+1, y
i
n+1) =

M∑
i=1

d(Tyi−1n , T yin)

≤ α

M∑
i=1

d(yi−1n , yin) ≤ · · · ≤ αn
M∑
i=1

d(yi−11 , yi1). [where α ∈ [0, 1)]

This implies that p = q and this completes the proof. �

Remark 3.3. Theorem 3.2 still holds true if we replace the condition (ii) by the
continuity of the function T on the set A.

The above Theorem 3.2 yields the following result due to Jachymski [4].

Theorem 3.4 (see [4]). Let (X, d) be complete and f : X → X be a map such
that for all x, y ∈ X with (x, y) ∈ E(G), (fx, fy) ∈ E(G) and d(fx, fy) ≤
kd(x, y) where k ∈ [0, 1). Assume that for any {yn}n∈N in X with yn → y∗

and (yn+1, yn) ∈ E(G) ∀n ≥ 1, there exists a subsequence {ynp}p∈N such that
(ynp

, y∗) ∈ E(G) for all p ∈ N. Then the following statements hold:

(i) {fn(x)}n∈N converges to a fixed point of f if (x, fx) ∈ E(G);
(ii) if G is weakly connected and there exists x0 ∈ X such that (x0, fx0) ∈

E(G), then ∀x ∈ X, {fn(x)}n∈N converges to a unique fixed point of f .

Further, we get the following result due to V. Sankar Raj [11] as a corollary
to the Theorem 3.2 by taking E(G) = X ×X.

Corollary 3.5 ([11, Theorem 3.1]). Let (X, d) be a complete metric space, A
and B be two non-empty closed subsets of (X, d) such that A0 6= ∅ and (A,B)
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satisfies P -property. Suppose that T : A→ B is such that T (A0) ⊆ B0 and

(3.3) d(Tx, Ty) ≤ kd(x, y) ∀x, y ∈ A and for some k ∈ [0, 1).

Then there exists a unique x∗ in A such that d(x∗, Tx∗) = d(A,B). Further,
for any fixed x0 ∈ A0, there exists a sequence {xn}n∈N with d(xn, Txn−1) =
d(A,B) for n ∈ N, converging to x∗.

The following example shows that our Theorem 3.2 is an extension of the
above result due to V. Sankar Raj [11].

Example 3.6. Consider X = R2 with usual metric and suppose that

A =
{(

0, 1
n

)
: n ∈ N

}
∪ {(0, 0)},

B =
{(

1, 1
n

)
: n ∈ N

}
∪ {(1, 0)}.

It is easy to check that the pair (A,B) has the P -property. Suppose that a
map T : A→ B is defined as follows:

T ((0, x)) =
(

1, x2

)
, for all (0, x) ∈ A with x 6= 1,

T ((0, 1)) = (1, 1).

Consider a graphG with V (G) = X and E(G) = {(x, y) ∈ X×X : d(x, y) < 1
2}.

Let x = (0, x′) and y = (0, y′) be two elements in A with (x, y) ∈ E(G). Then,

d(T (x), T (y)) = d

((
1,
x′

2

)
,

(
1,
y′

2

))
≤ 1

2
d(x, y).

If x1 = (0, x′1) and y1 = (0, y′1) are two elements in A such that

d(x1, T (x)) = d(y1, T (y)) = dist(A,B).

Then by using the P -property of (A,B), it follows from the above equation
that d(x1, y1) = d(T (x), T (y)) ≤ 1

2d(x, y) < 1
2 . Hence the pair (x1, y1) ∈ E(G).

This proves that T is a non-self G-contraction with α = 1
2 . Clearly, (X, d) is

complete and A and B are closed subsets of X. Also, note that in this case
A0 = A,B0 = B and T (A0) = T (A) ⊆ B = B0. Let x0 = (0, 12 ), x1 = (0, 14 )
and N = 1. Then d(x1, T (x0)) = dist(A,B) = 1 and the pair (x1, x0) ∈ E(G).
Hence, the condition (i) of Theorem 3.2 holds. Also, let {sn}n∈N be a sequence
in A such that sn → s as n→∞. Then there exists a positive integer M such
that d(sn, s) <

1
2 ∀n ≥M . Let nk = M + k for k ≥ 1. Consequently, {snk

}k∈N
is a subsequence of the sequence {sn}n∈N such that (snk

, s) ∈ E(G) ∀k ∈ N.
This implies that the condition (ii) of Theorem 3.2 is also satisfied. Therefore
Theorem 3.2 guarantees the existence of a best proximity point of T . Note that
(0, 0) and (0, 1) are two best proximity points. However,

d(T (0, 0), T (0, 1)) = d((1, 0), (1, 1)) = 1 > kd((0, 0), (0, 1)),

for any k ∈ [0, 1). This proves that T does not satisfy the contractive condition
(3.3).
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4. Applications

Let A and B be two non-empty subsets of a metric space (X, d). A mapping
f : A → B is called (ε, k)-uniformly locally contractive [2] (where k ∈ [0, 1)
and ε > 0) if d(fx, fy) ≤ kd(x, y) for all x, y ∈ A with d(x, y) < ε. An (ε, k)-
uniformly locally contractive mapping need not be a contraction, for example
one can refer to [2, 8]. As an application of Theorem 3.2, we now establish the
following result for uniformly locally contractive mappings.

Theorem 4.1. Let (X, d) be complete metric space, A and B be closed subsets
of (X, d) such that A0 6= ∅ and (A,B) satisfies P -property. Suppose that
T : A → B is an (ε, k)-uniformly locally contractive mapping satisfying
T (A0) ⊆ B0. Then T has a unique best proximity point if the space (A0, d) is
ε-chainable, that is, given a, b ∈ A0, there exist N ∈ N and a sequence (yi)Ni=0

in A0 such that y0 = a, yN = b and d(yi−1, yi) < ε for each i = 1, 2, · · · , N .

Proof. Consider the graph G where V (G) = X and E(G) as follows:

E(G) = {(x, y) ∈ X ×X : d(x, y) < ε}.
It is clear that E(G) ⊇ ∆ and G has no parallel edges. Also, in this case

G = G̃. Let x, y ∈ A be such that (x, y) ∈ E(G) and for all x1, y1 ∈ A,

d(x1, Tx) = d(A,B) and d(y1, T y) = d(A,B).

Since (x, y) ∈ E(G), d(Tx, Ty) ≤ kd(x, y) where k ∈ [0, 1). Hence and by the
P -property of (A,B), we have d(x1, y1) < ε. Therefore T is a G-contraction.
Since A0 6= ∅ and T (A0) ⊆ B0, there exist x0 and x1 in A0 such that
d(x1, Tx0) = d(A,B). The ε-chainability of (A0, d) implies that there exist
a natural number N and a sequence (yi)Ni=0 containing points of A0 such that
y0 = x0, yN = x1 and d(yi−1, yi) < ε for i = 1, · · · , N . Thus (yi)Ni=0 ⊆ A0

is a path in G between x0 and x1. If {sn}n∈N is a sequence in A such that
sn → s, then there exists M ∈ N such that d(sn, s) < ε ∀n ≥M . Hence we can
obtain a subsequence {snp

}p∈N such that (snp
, s) ∈ E(G) ∀p ∈ N. Also, it is

clear from the ε-chainability of (A0, d) that for every x, y ∈ A0, there is a path

(qi)li=0 ⊆ A0 in G̃ (i.e., G) between them. Thus T has a unique best proximity
point by Theorem 3.2. �

As a corollary to the above theorem, we get the following theorem due to
Edelstein [2] by considering A = B = X.

Theorem 4.2 ([2, Theorem 5.2]). Let (X, d) be a complete metric space. An
(ε, k)- uniformly locally contractive mapping f : X → X has a unique fixed
point if (X, d) is ε-chainable.

In the last part of this section we establish the following result for non-self
contractive mapping on a partially ordered metric space.

Let (X, d) be a metric space endowed with a partial order � and A and B
be two non-empty subsets of (X, d). By X�, we denote the following set:

X� = {(x, y) ∈ X ×X : x � y or x � y}.
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Following [10], we say that a mapping T : A → B is a proximally monotone
mapping if for all x1, x2 ∈ A with x1 � x2:

d(y1, Tx1) = d(A,B)

d(y2, Tx2) = d(A,B)

}
⇒ (y1, y2) ∈ X�, for all y1, y2 ∈ A.

Theorem 4.3. Let (X, d) be complete metric space, A and B be two closed
subsets of (X, d) such that (A,B) has the P -property. Let T : A → B be a
proximally monotone map such that T (A0) ⊆ B0 and

d(Tx, Ty) ≤ kd(x, y) for all x � y and for some k ∈ [0, 1).

Assume that either T is continuous on A or for any {yn}n∈N in A with yn → y∗

and (yn, yn+1) ∈ X� for n ∈ N, there exists (ynp)p∈N such that (ynp , y
∗) ∈

X� for p ∈ N. Then T has a best proximity point if there exist x0 and x1
in A0 such that d(x1, Tx0) = d(A,B) and (x0, x1) ∈ X�. Moreover, the best
proximity point of T is unique if for x, y ∈ A0, there exists z ∈ A0 such that
(x, z), (y, z) ∈ X�.

Proof. By considering the graph G where V (G) = X and

E(G) := {(x, y) ∈ X ×X : x � y ∨ y � x},
the proof follows by Theorem 3.2 and Remark 3.3. �

The above result includes the fixed point results for mappings on a partially
ordered metric space due to Ran and Reurings [12] and J. J. Nieto and R. R.
López [9].
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