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1. Introduction

One of the fundamental notions of metric graph theory is that of the interval function : V x V — 2" of a connected graph
G = (V, E),whereI(u, v) is the set of vertices on shortest paths between u and v in G. The term interval function was coined
in [16], which is the first extensive study of this function. The notion already existed long before. We do not know for sure,
but one of the first occurrences might be the thesis of W.D. Duthie [ 11] of 1940 on “Segments in Ordered Sets”, see also [12].
He characterized distributive lattices by postulates or ‘axioms’ on segments. This work was pursued by Sholander [26,27] in
the early 1950s. Sholander studied median semilattices using segments. Median semilattices can also be studied as graphs:
the Hasse diagram of a median semilattice is precisely a median graph (and vice versa). This was done for the first time by
Avann in 1963 (who called the graph a ‘unique ternary distance graph’), and later independently by Nebesky in 1971, and
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Mulder [15,19,16] in 1978-1980. Sholander also presented a set of axioms on segments that characterizes the segments
(intervals) of a tree. But he gave a partial proof for this characterization. Only recently, in 2011, a completion of this proof
was presented by Chvatal, Rautenbach and Schafer [10].

Sholander also pursued another line of study in his papers [26,27], viz. that of betweenness in the language of ternary
relations. This generalized results by Pitcher and Smiley [25]. Sholander used this notion of betweenness to characterize
median betweenness, a structure that is equivalent to median semilattices and median graphs, see e.g. [20,16,21]. Amongst
the results in [26] was a characterization of a tree betweenness. A new characterization of a tree betweenness was obtained
recently by Burigana [2], with a short new proof by Chvatal et al. [10].

The focus of Sholander was on sets of axioms with as few axioms as possible. This was also the approach of later authors,
see [20,10]. In this approach the axioms are necessarily of rather complex nature. In[16] and later work a different approach
was taken: here the choice has been to find axioms that are as elementary as possible, and also such that they are applicable
in the most general setting, not that of only very well-structured graphs or ordered sets (such as median graphs and median
semilattices), see e.g. [22-24,6]. In [16] five simple and elementary properties of the interval function were given that are
now known as the ‘five classical’ axioms for the interval function. In [18] the interval function of a connected graph is
characterized by a set of axioms that includes these five classical, elementary axioms. The approach in [ 18] was as follows.
First as much as possible was deduced using the five classical axioms only. Then the road blocks were determined that
prevented any further consequence. From these road blocks two more axioms were inferred that, together with the five
classical axioms, characterize the interval function of a connected graph. These two extra axioms were more complicated,
but still minimal in the sense that weaker axioms would not do the trick.

In [14] a similar approach for betweenness was chosen: using axioms as simple as possible to study betweenness in a
broad context. As opposed to the above idea of betweenness as a ternary relation, a betweenness in [ 14] was formulated in
terms of a function R : V x V — 2. One advantage of this approach is that now it could be used in other contexts. In [17]
a unifying approach for moving around in discrete structures such as graphs and partially ordered sets was presented: a
transit function R : V x V — 2V satisfying three elementary axioms. It includes all of the above functions, but also other
so-called path functions, like the induced path function J, see [6,7], where J(u, v) consists of the vertices on induced paths
between u and v. Recently in [4] characterizations of some graph classes were obtained using betweenness axioms on the
interval function and on the induced path function.

In this paper we return to the interval function. Above we mentioned the Sholander characterization (with a completion
of the proof by Chvatal et al.) by a set of axioms with as few axioms as possible. Here we choose the other approach (from
[16,14,18]): try to find a set of axioms that are each as simple and elementary as possible. We present a characterization
of the interval function of a block graph. All but one of the axioms are simple and elementary in the sense that these are
the axioms for a betweenness from [ 14]. As corollaries we obtain two new characterizations in the case of trees. Our sets of
axioms have one axiom in common with the Sholander set for trees. In our characterizations the remaining axioms form an
actually weaker set than those in the Sholander characterization.

A betweenness sensu Sholander is a special type of a ternary relation 8 on V, where a triple (u, x, v) is in 8 means that
x is between u and v. We can translate this into a function R : V x V — 2V by defining R(u, v) to be the set of all x between
u and v. The axioms on B then translate to axioms on R. With this translation in mind we study the tree betweenness of
Burigana [2] and Chvatal et al. [ 10]. Below we obtain another characterization of the interval function of a tree that involves
axioms that are actually weaker than the axioms of Sholander and those of Burigana/Chvatal et al. For more information on
tree betweenness and other literature we refer the reader to their papers [26,2,10].

We investigate the independence of the axioms in our various characterizations. We present our results in the context
of transit functions. Besides this we present a characterization of the interval function of a path and a star.

2. Axioms on transit functions

Throughout this paper V is a finite nonempty set. A transit function on V is a functionR : V x V — 2", where 2" is the
power set of V, satisfying the following three axioms.

(t1) u € R(u, v), forallu, vin V.
(t2) R(u, v) = R(v, u), forallu, vin V.
(t3) R(u,u) = {u}, foralluin V.

The third axiom could be deleted. It is usually added to exclude degenerate cases. For instance, the function F(u, v) = V,
for all u, v in V, satisfies the first two axioms, but will not enlighten us about any aspect of an underlying structure. In the
sequel we will see that in many relevant cases (t3) follows from other axioms. If G = (V, E) is a graph with vertex set V,
then we say that R is a transit function on G. The underlying graph Gy of a transit function R is the graph with vertex set V,
where two distinct vertices u and v are joined by an edge if and only if R(u, v) = {u, v}. Note that in general G and Gg need
not be isomorphic graphs, see [17]. For one instance of this phenomenon we refer to Example 18.

The notion of transit function was introduced in [17] as a unifying concept for many functions on graphs that have been
studied so far, e.g. the (geodesic) interval function I, the induced path function J, see [6,7], the triangle-path function T,
see [5,9], the all-paths function A, see [3]. It was also meant to create a framework for new problems and ideas. The four
mentioned functions are all so-called path transit functions, because they are defined in terms of paths in G. See [17,8] for
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further information on path transit functions. In [17] the problem is proposed to characterize any transit function in terms
of transit axioms, that is, axioms in terms of the function only, independent of the graph on which the function is defined.
Nebesky [21] obtained a very interesting impossibility result: there does not exist a characterization of the induced path
function J of a connected graph using transit axioms only.

Our focus in this paper is on the interval function. Let G = (V, E) be a graph with distance function d, where d(u, v) is
the length of a shortest u, v-path or u, v-geodesic. Then the interval function I of G is defined by

Ic(u,v) = {x | d(u, x) +d(x, v) = d(u, v)},

that is, the set of vertices lying on shortest paths between u and v. When no confusion arises we usually write I instead of I.

The geodesic intervals I(u, v) in G inherently have the structure of a betweenness (defined below), but arbitrary transit
functions may not have these properties. The following betweenness axioms were introduced in [ 14] to capture basic aspects
of the idea of betweenness. The first of these tells us that, if x is between u and v but distinct from v, then v is not between
u and x. The second tells us that, if x is between u and v and y is between u and x, then y is between u and v.

(b1) x € R(u,v),x #v = v € R(u, x), forallu, v, xin V.
(b2) x € R(u, v) = R(u,x) C R(u, v),forallu, v,xin V.

A betweenness in the sense of [14] is a function R : V x V — 2V satisfying (t1), (t2) and these two betweenness axioms.
Below we will see that this notion is weaker than the betweenness considered by Sholander [26,27], Burigana [2] and Chvatal
et al. [10]. The idea behind the betweenness in the sense of [14] is that it is also applicable to transit functions different
from the interval function. For instance, in [14,6,7] the case is studied for which graphs the induced path function J is a
betweenness, that is, satisfies the axioms (b1) and (b2). Note that axioms (t1) and (b1) imply axiom (t3). So a betweenness
is a transit function.

In the first extensive study of the interval function [16] five simple properties of the interval function I(u, v) of any
connected graph were presented. In [18] these properties were coined as the five classical axioms on I. These five transit
axioms are (t1) and (t2), the betweenness axiom (b2), and the following two axioms.

(c4) x € R(u, v) = R(u,x) NR(x, v) = {x}, forallu, v, xin V.
(c5) x € R(u, v),y € R(u,x) = x € R(y, v),forallu, v,x,yin V.

Obviously, axioms (t1) and (c4) imply (t3). So any function satisfying the five classical axioms is a transit function. First
we present two simple implications for the classical axioms and (b1).

Proposition 1. Axioms (t1), (t2) and (c4) imply axiom (b1).

Proof. LetR : V x V — 2V be a function on V satisfying axioms (t1), (t2) and (c4). Let x be in R(u, v) with x # v. By (c4),
we have R(u, x) N R(x, v) = {x}. From (t1) and (¢t2), it follows that v lies in R(x, v). Since v # x, we have that v is not in
R(u,x). O

From this proposition it follows that any transit function satisfying the five classical axioms is a betweenness in our sense.

Proposition 2. Axioms (t1), (t2), (t3) and (c5) implies axiom (c4).

Proof. First we prove that (t3) and (c5) imply (b1). Let x be a vertex in R(u, v) distinct from v. If v were in R(u, x), then by
taking y = v in (c5), we would get x in R(v, v). By (t3) we have R(v, v) = {v}. But this contradicts x and v being distinct.

Next let x be in R(u, v), and let y be any vertex in R(u, x) distinct from x. From (c5) it follows that x is in R(y, v). But now
(t2) and (b1) imply that y is not in R(x, v). Thus we have [R(u, x) — {x}] "R(x, v) = @. Hence R(u, x) NR(x, v) = {x} by (t1),
and we are done. O

Note that we used (t3) in the above proof. If (t3) is not assumed then it turns out that axioms (c4) and (c5) are independent.
First we consider the degenerate function R(u, v) = V on a graph with at least 3 vertices. This function trivially satisfies (¢t 1),
(t2) and (c5), but clearly does not satisfy (t3) or (c4). Next we present two examples that show that the converse of neither
Proposition 1 nor Proposition 2 is true. In particular, Example 4 shows that (c4) does not imply (c5). The induced path interval
J(u, v) is the set of all vertices on induced paths between u and v. This defines the induced path function] : V x V — 2V,

Example 3 (A Betweenness R That Does Not Satisfy (c4)). The k-fan F; consists of a path P on k vertices and an additional
vertex y adjacent to all vertices on the path. Take k > 5. We consider the induced path function J on Fy. It is straightforward
to check that ] is a betweenness on this fan (satisfies axioms (t1), (t2), (b1) and (b2)). This also follows trivially from any of
the main results in [7]. Let u and v be the end vertices of P, and let x be a vertex on P that is not adjacent to u or v. Then y
belongs to both J(u, x) and J (x, v). Obviously, J(u, v) = V. So this choice of vertices u, v, x does not satisfy axiom (c4). O

Example 4 (A Betweenness R That Does Not Satisfy (c5)). Take the 4-fan as in Example 3. So P is a u, v-path of length 3, and
y is adjacent to all four vertices of P. It is straightforward to check that the induced path function J of this 4-fan satisfies
(c4). But it does not satisfy (c5): now take x to be the vertex on P adjacent to v. Then y is in J(u, x), but x is notin J(y, v) =
v,v}. O
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Both examples and propositions were already given in [13].

In [18] a characterization of the interval function of a connected graph is given involving the five classical axioms, see
the Introduction for more information on this.

Already as early as 1952 Sholander [26] gave a characterization of the interval function of a tree, although without a
complete proof. In his paper intervals were still called segments. The completion of the proof was presented by Chvatal
et al. in [10]. Sholander’s axioms were the following three axioms.

(S) There exists an x such that R(u, v) N R(v, w) = R(v, x), forall u, v, win V.
(T) R(u, v) € R(u, w) = R(u, v) NR(v, w) = {v},forallu, v, win V.
(U)R(u, x) NR(x, v) = {x} = R(u, x) UR(X, v) = R(u, v), forallu, v, xin V.

Sholander [26] proved that his axioms (S) and (T) imply the five classical axioms. So any functionR : V x V — 2V satisfying
(S) and (T) is a betweenness in our sense. Proposition 1 and Example 3 show that our concept of a betweenness is an
essentially weaker concept than a Sholander function R satisfying axioms (S) and (T).

Sholander [26] also considered ternary relations B on a set V. We can translate such a ternary relation into a function
R:V x V — 2" by defining R(u, v) to be the set of all x for which (u, x, v) is in 8. With this translation in mind, Sholander
introduced a betweenness as a function R satisfying axiom (t3) and the following additional axiom.

(C) x e R(u,v),y € R(x,z) = x € R(v,y)orx € R(z, u), forallu, v, x,y,zin V.

It turns out that this axiom is quite strong: Sholander proved that axioms (t3) and (C) imply axioms (t1), (t2), (b1), (b2)
and the following axiom.

() y e R(u,x),x € R(y,v),y #x = x € R(u, v), forallu, v, x,yin V.

This axiom was called axiom (JO) in [4]. In Section 4 we will see that our four betweenness axioms do not imply axiom
(7). So our concept of betweenness from [ 14] is also weaker than a Sholander betweenness. Another Sholander axiom has
become known as modularity, see also [16,1,28].

(Mod) R(u, v) NR(v, w) NR(w, u) # @, forallu, v, win V.

Sholander gave a characterization of a “tree betweenness”. Phrased in our terminology it reads as follows: a functionR : V xV
— 2V is the interval function of a tree if and only if it satisfies (t3), (C) and (Mod).

In [2] Burigana presented a slightly different axiom set that characterizes a tree betweenness in the Sholander tradi-
tion. His proof comprised more than four pages. Chvatal et al. [ 10] presented a one-page proof, and also deleted one axiom
that followed from the remaining axioms. We rephrase these results in our functional terminology. The Burigana/Chvatal
et al. approach is different than ours. They consider the function R* that can be obtained from our function R by setting
R*(u, v) = R(u, v) — {u, v}. The underlying graph of R* is then defined by: uv is an edge if u # v and R*(u, v) = (. Note
that at first sight this looks like a converse of our axiom (t1). But the effect is that, if we translate everything into our termi-
nology, then (t1) and (t3) are presumed throughout. Also note that x € R*(u, v) implies that u, x, v are all distinct. Taking
into account this different approach the axiom set of Burigana consists of analogues of the axioms (t 1), (t2), (t3), (b1), (c5),
(7)) and (Mod). The analogues of (t2), (b1), (c5) and (7") can be obtained in a simple way: just presume that all variables
involved in the axiom are distinct. Axiom (b1) is superfluous and does not occur in the result of Chvatal et al. [10]. A small
step in the proof of Chvatal et al. is that axioms (7°), (c5) and (t2) imply (b2).

In Section 4 we present a characterization of the interval function of a tree where the axiom set involves weaker axioms
than the Burigana/Chvatal et al. characterization: we replace axiom (c5) by the two axioms (c4) and (b2) and we replace
the modularity axiom by a much weaker axiom. Moreover (t3) is now superfluous.

3. The interval function of a block graph

First we recall some definitions. A graph is separable if it contains a cut vertex, that is, a vertex, the removal of which
increases the number of components. A block in a connected graph is a maximal non-separable subgraph. Hence a block is
either a K; or a maximal 2-connected subgraph. A connected graph G is a block graph if every block in G is a complete graph.
Loosely speaking it is a tree-like structure of cliques. Trivially complete graphs and trees are block graphs. In this section we
characterize the interval function of a block graph.

In [7] the following lemma is proved. Unfortunately, the use of some of the axioms was not made explicit. Hence, and also
for the sake of completeness, we give a full proof of the lemma here. Note that in [7] it was used to study the question for
which graphs the induced path function J is a betweenness. So this lemma applies to more functions than just the interval
function I.

Lemma 5. Let R be a betweenness on V. Then the underlying graph Gg of R is connected.

Proof. Let u and v be any two distinct vertices in Gg. We prove the existence of a u, v-path in G by induction on |[R(u, v)|.
Note that by (t1) and (t2) we have u, v € R(u, v),so |R(u, v)| > 2.1f |R(u, v)| = 2,thenR(u, v) = {u, v}.So by the definition
of Gy there is an edge between u and v, which constitutes a u, v-path.

Assume that |[R(u, v)| > 2. Then there is a vertex x in R(u, v) distinct from u and v. By (b1) we have v & R(u, x). By (b2)
we have R(u, x) € R(u, v). So |R(u, x)| < |R(u, v)|. By induction, there is a u, x-path. Similarly, by (¢2), (b1) and (b2), we
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have |R(x, v)| < |R(u, v)|. Hence by induction there is also an x, v-path. These two paths together form a u, v-walk, which
contains a u, v-path, and we are done. O

Note that in the proof of Lemma 5 we need both betweenness axioms (b1) and (b2) to make the induction work. To charac-
terize the interval function of a block graph we introduce the following axiom, which is weaker than Sholander’s axiom (U).

(U*) R(u, x) NR(x, v) = {x} = R(u, v) € R(u,x) UR(X, v), forallu, v,xin V.

The 3-fan, also known as diamond or kite, is usually denoted by K4 — e, since it can be obtained from K, by deleting one
edge. For any path P, the vertex set of P is denoted by V (P). Now we are ready to prove our main result.

Theorem 6. Let R : V x V — 2V be a function on V. Then R satisfies axioms (t1), (t2), (b1), (b2) and (U*) if and only if Gg is
a block graph and R = Ig,.

Proof. First let R be the interval function of a block graph G. Clearly we have Gy = G. Moreover, R being an interval function,
R satisfies axioms (t 1), (t2), (b1) and (b2). Since G is a block graph, R(u, v) = V(P), where P is the unique shortest u, v-path.
Assume that R(u, x) N R(x, v) = {x}. Then there are two possibilities. First x is on P. In this case R(u, x) U R(x, v) = R(u, v).
Second x is adjacent to two consecutive vertices y and z on P. In this case R(u, v) = V(P) = [R(u, x) U R(x, v)] — {x}. So
axiom (U*) is satisfied.

Conversely assume thatR : V x V — 2" is a betweenness satisfying axiom (U*). Note that Gy is connected by Lemma 5.
So, if d is the distance function of Gg, then d(u, v) is finite for any two vertices u and v in V. By axioms (t1) and (t2) we
have R(u, v) = R(v, u) and u, v € R(u, v). Moreover a betweenness satisfies (t3). We use these facts in the sequel without
mention. We split the proof in a number of claims.

Claim 1. If P is an induced u, v-path in Gg, then R(u, v) C V(P).

We use induction on the length £(P) of P. If £(P) = 0, then u = v, and R(u, u) = {u} = V(P).If £(P) = 1,thenu and v
are adjacent. So by definition R(u, v) = {u, v} = V(P). Now assume that £(P) > 2. Let x be the neighbor of v on P, and let P/
be the subpath of P between u and x. By induction, we have R(u, x) C V(P’). Hence v is not in R(u, x). So R(u, x) NR(x, v) =
R(u, x) N {x, v} = {x}. By axiom (U*), we have R(u, v) C R(u, x) UR(x, v) € V(P") U {x, v} = V(P).

Claim 2. Gy does not contain an induced cycle of length at least 4.

Assume the contrary, and let C be an induced cycle of length at least 4. Take two non-adjacent vertices u and v on C. Then
we have two internally disjoint induced paths P and Q in C between u and v. By Claim 1 we have R(u, v) € V(P) as well as
R(u, v) € V(Q). This implies that R(u, v) cannot contain any internal vertex of P and also not any internal vertex of Q. So
we have R(u, v) = {u, v}. But this is impossible, since u and v are not adjacent. This settles Claim 2.

Claim 3. Gy does not contain an induced K5 — e.

Assume the contrary. Let u and v be the two non-adjacent vertices, and let x and y be the other two vertices. By Claim 1
we have R(u, v) C {u, x, v} and R(u, v) C {u, y, v}. Since u and v are not adjacent, we have a contradiction.
Claim 4. Gy is a block graph.

By Claim 2 and 3 every block in Gy is a complete graph. Hence, Gg being connected, it is a block graph.
Claim 5. R = Ig,.

Write I = Ig,. Since Gy is a block graph, there is a unique shortest path between any two vertices in Gg. So by Claim 1
we have R(u, v) C I(u, v). We prove that R(u, v) = I(u, v) by induction on d(u, v). First we have R(u, u) = {u} = I(u, u).
If d(u, v) = 1, then by definition we have R(u, v) = {u, v} = I(u, v). If d(u, v) = 2 with x the common neighbor of u and
v, then by Claim 1 we have R(u, v) C {u, x, v}. But we also have R(u, v) # {u, v}. So R(u, v) = {u, x, v} = I(u, v). Now let
d(u, v) > 3, and let P be the shortest u, v-path. Hence we have R(u, v) C I(u, v) = V(P). Since u and v are not adjacent,
there must be a vertex z on P distinct from u and v thatis in R(u, v). Assume that R(u, v) £ I(u, v) = V(P). Then there must
be a vertex y on P that is not in R(u, v). We may choose z and y to be adjacent on P. Without loss of generality y is between u
and z on P. By axiom (b2), we have R(u, z) € R(u, v). So y does not belong to R(u, z). Now, z being an internal vertex of the
shortest u, v-path P, we have d(u, z) < d(u, v). So, by induction, R(u, z) = I(u, z). But, y being on the shortest path between
u and z, we have that y is in I(u, z). This yields a contradiction and settles Claim 5, by which the proof is complete. O

4. The interval function of a tree

In this section we present three new characterizations of the interval function of a tree. The first two are corollaries of
Theorem 6. As an intermediate result, we characterize the interval function of a graph that is a tree or a complete graph. We
consider the following new axiom. It is just in between our axiom (U*) and Sholander’s axiom (U).

(U") R(u, x) N R(x, v) = {x}, R(u, v) # {u, v} = R(u, x) UR(X, v) = R(u, v), forall u, v, xin V.
It is straightforward to check that, if R is the interval function of a triangle K3, then it satisfies (U’). So we can expect a broader

class than just the trees. The graph consisting of a triangle and an extra vertex adjacent to exactly one vertex of the triangle
is called a paw.

Theorem 7. Let R : V x V — 2V be a function on V. Then R satisfies axioms (t1), (t2), (b1), (b2) and (U’) if and only if Gy is a
tree or a complete graph and R = Ig,.
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Proof. First let R be the interval function of a graph G that is a tree or a complete graph. Clearly we have Gz = G. Moreover,
R being an interval function, R satisfies axioms (t1), (t2), (b1) and (b2). If G is a tree, then R(u, v) = V(P), where P is the
unique u, v-path. So R(u, x) N R(x, v) = {x} holds if and only if x is on P. Hence R(u, x) U R(x, v) = R(u, v). Now let G be a
complete graph. Then R(u, v) = {u, v}, for any two distinct vertices u and v. So axiom (U’) is trivially satisfied.

Conversely assume thatR : V x V — 2" is a betweenness satisfying axiom (U’). By Theorem 6 the underlying graph G is
ablock graph, and R is the interval function of Gg. Assume that Gk contains an induced paw S. Let u be the vertex of degree 1
in S, let w be the vertex of degree 3in S, and let x and v be the vertices of degree 2 in S. Then we have R(u, x) = {u, w, x} and
R(x, v) = {x, v} and R(u, v) = {u, w, v}. Clearly, the vertices u, x, v violate axiom (U’). So Gy does not contain an induced
paw. This implies that Gy is either a tree or a complete graph with at least three vertices. O

Now we present two new characterizations of the interval function of a tree. Both involve axiom (U), and some of the
five elementary classical axioms.

Theorem 8. Let R : V x V — 2V be a function on V. Then R satisfies axioms (t1), (t2), (b1), (b2) and (U) if and only if Ggisa
tree and R = Ig,.

Proof. If Gy is a tree and R is the interval function of G, then it is straightforward to check that R is a betweenness satisfying
axiom (U).

For the converse note that axiom (U’) is weaker than axiom (U). Hence by Theorem 7 the underlying graph Gg of R is
either a tree or a complete graph and R = I,. But (U) clearly forbids a triangle in G. So Gg is a tree. O

Note that our Example 3 shows that axioms (t1), (t2), (b1) and (b2) are weaker than axioms (S) and (T). So Theorem 8
is actually a new characterization of the interval function of a tree. For our second characterization we need another lemma.
It turns out that we can replace the two betweenness axioms (b1) and (b2) by the single classical axiom (c4).

Lemma 9. Axioms (c4) and (U) imply axiom (b2).

Proof. Let R : V x V — 2" be a function on V satisfying axioms (c4) and (U). Take x in R(u, v). By (c4), we have
R(u, x) N R(x, v) = {x}. Hence by (U) we have R(u, x) U R(x, v) = R(u, v). Therefore R(u, x) € R(u,v). O

Using Proposition 1 and Lemma 9 the following Theorem is an immediate corollary of Theorem 8.

Theorem 10. Let R : V x V — 2V be a function on V. Then R satisfies axioms (t1), (t2), (c4) and (U) if and only if Gy is a tree
andlg, = R.

From what we have so far we deduce another characterization of the interval function of a tree that involves some of the
axioms and a condition on the underlying graph Gg. So it is not a fully axiomatic characterization.

Proposition 11. Let R : V x V — 2V be a function satisfying the three axioms (t1), (t2) and (U). Then each component of Gg
is a tree, and R = Iy on each component H of Gg.

Proof. We only give a sketch of the proof, because many of the arguments are similar to those in the proof of Theorem 6.
The first step is to prove that, for any induced u, v-path P, we have R(u, v) = V(P). This can be done by induction on the
length of P similar as in Claim 1. As second step we prove that Gg does not contain an induced cycle of length at least 4, using
the same arguments as in Claim 2. By (U) it is trivial that G does not contain a triangle. Hence each component is a tree. By
the first step we have that R is the interval function on each component. O

Note that in the last step of this proof we did not need axiom (b2). That R is the interval function on each component just
follows from Step 1 and the fact that the component is a tree. In the proof of Claim 5 in Theorem 6 we really needed axiom
(b2). With this Proposition in hand, we can replace axioms (b1) and (b2) in Theorem 8 and axiom (c4) in Theorem 10 by
the condition that Gy is connected.

Theorem 12. Let R : V x V — 2" be a function on V. Then Gy is connected and R satisfies axioms (t1), (t2) and (U) if and only
if Grisatreeandlg, =R

We have now presented three axiomatic characterizations that use axiom (U): Sholander’s from 1952 with a full proof
in [10] and our two above. Axiom (U) is rather strong, because in itself it almost forces that there be a unique path between
any two vertices. To explore the reach of the axiom we consider the following example.

Example 13. Let C = uy — u; — --- — uy — uq be a directed cycle on k vertices with k > 3. Write V = {uy, uy,
..., Ug}. We define the function R : V x V — 2" as follows. For vertices u and v, the set R(u, v) is the set of vertices on the
directed path from u to v in C. Then R satisfies axioms (t1), (t3), (b1), (b2), (c4), (c5) and (U) but not (t2). It also satisfies
the axiom (t1'), viz. v lies in R(u, v). In the directed cycle there is a unique directed path between any two vertices. But
clearly Cisnotatree. O

An interesting point arises here: by replacing axiom (t2) by (t1’) as in Example 13, we could develop results on such
functions with a directed graph as underlying graph. What can be done in this case? We will not pursue this question here.
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Next we consider the Burigana/Chvatal et al. characterization of the interval function of a tree: a functionR : V. x V — 2V
on V satisfies axioms (t1), (t2), (t3), (c5), (T") and (Mod) if and only if Gy is a tree and I, = R. A close inspection of the proof
of Chvatal et al. shows that the modularity axiom (Mod) is used in just one small step of the proof. One might wonder “how
necessary” this axiom is. It turns out that we can replace modularity by a much weaker axiom, see below. Moreover we
can replace (c5) by the weaker axioms (c4) and (b2). Note that we now get axiom (t3) for free. Thus we get another new
characterization of the interval function of a tree, which in this case is a stronger result than the Burigana/Chvatal et al. result.

(tf) R(u, x) = {u, x}, R(x, v) = {x, v} = x € R(u, v), foru, v, xin V.

The effect of this axiom is that triangles are forbidden: if ux and xv are edges and u # v, then |(R(u, v))| > 3, so u and v are
not adjacent.

Theorem 14. Let R : V x V — 2" be a function on V. Then R satisfies axioms (t1), (t2), (b2), (c4), (tf) and (Y') if and only if
Ggis atree and R = Ig,.

Proof. First let R be the interval function of a tree. Then it is straightforward to check that R satisfies the six mentioned
axioms.

Conversely assume that R : V x V — 2V is a function satisfying the six axioms. By Proposition 1 we also have that R
satisfies (b1). Hence by Lemma 5 the underlying graph G of R is connected. Again we prove a number of claims.

Claim 1. If P is an induced u, v-path, then V(P) € R(u, v).

The proof is by induction on the length £(P) of P. For £(P) < 1 the claim is obvious. So let £(P) = 2 and let x be the
common neighbor of u and v on P. Axiom (tf) implies that x lies in R(u, v).

Now let £(P) > 3. Let x be a vertex on P distinct from u and v that is not a neighbor of u and let Q be the subpath of P
between u and x. Then £(Q) < £(P). So by induction we have V(Q) C R(u, x). Take any vertex y on Q distinct from u and
x, and let Q' be the subpath between y and v. We have £(Q") < £(P), so by induction we have V(Q") C R(y, v). Then y is
in R(u, x) and x is in R(y, v). So by axiom (7") we have x in R(u, v). Thus we have shown for every vertex on P that it is in
R(u, v), except for the neighbor z of u on P. To prove that z also belongs to R(u, v), we just reverse the roles of u and v in the
previous argument and rename z as x.

Claim 2. Gy does not contain an induced cycle.

As observed above, axiom (tf) implies that Gy is triangle-free. Assume that Gy contains an induced cycle C of length at
least 4. Let u be a vertex of C, and let x and w be the neighbors of u on C. Finally let v be the neighbor of x on C distinct from
u. Then these four vertices are distinct, and v is on an induced path on C between x and w. So by Claim 1 we have x in R(u, v)
and v in R(x, w). Hence by axiom (7") we have v in R(u, w). But this is impossible, uw being an edge.

Thus we have proved that Gy is a connected cycle-free graph, hence a tree. What is left is to prove that I, = R. Write
I = Ig,. Take two vertices u and v and let P be the path in Gg between u and v. By Claim 1 we have I(u, v) = V(P) C R(u, v).
Take any vertex z not on P. First assume that v is on the u, z-path Q. By Claim 1 we have v € V(Q) < R(u, z). So by (b1)
it follows that z is not in R(u, v). A similar argument holds when u is on the v, z-path in Gg. Second let z be such that there
exists an internal vertex x on P that is also on the u, z-path as well as the z, v-path in Gg. Now we have x in R(u, z) as well
as in R(z, v). So if z were in R(u, v), then we would get a conflict with (c4). Hence in all cases it turns out that z is not in
R(u, v).Soindeed] =R. O

Note that the function R in Example 13 also trivially satisfies axioms (7") and (tf).

We make one observation here. Loosely speaking axioms (U) and (7") on their own almost force the underlying graph
to be cycle-free. In a manner of speaking they are heavy duty axioms. So we pose the question: can we replace axiom (U),
respectively (7°), in the above theorems by a set of weaker axioms, each one of which does not yet ‘force’ the underlying
graph to be cycle-free?

5. Independence of axioms

In Section 2 we observed some implications among the axioms. For instance axioms (t1) and (b1) imply (t3), and also
axioms (t1) and (c4) imply (t3). In Proposition 1 and Lemma 9 we deduced two other implications. In this section we try to
establish independence of the axioms in our results.

Our first example shows trivially that axiom (t1) is independent.

Example 15 (R Does Not Satisfy (t1)).
Let V be a set with |[V| > 2, and let z be a fixed vertex in V. We define the function R by R(u, v) = {z}, forall u, vin V.
Clearly R does not satisfy (t1). But R satisfies axioms (t2), (b1), (b2), (U), (c4), (') and (tf) trivially. O

Example 13 shows that axiom (t2) is independent of the other axioms in Theorems 8 and 14. Hence it is also independent
of the other axioms in Theorems 6 and 7.

Take any connected graph G that is not a block graph. Its interval function I is a betweenness, and also satisfies axiom
(c4). Hence by Theorems 6-8 respectively, axioms (U*), (U’) and (U) are trivially independent of the other axioms in our
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theorems. If we take G to be triangle-free, then I also satisfies axiom (tf). But G not being a block graph, hence not a tree, its
interval function I cannot satisfy (7°). So axiom (7") is independent of the other axioms in Theorem 14.

The following example shows that axiom (b1) is independent of the other axioms in Theorems 6-8. It also shows that
(c4) is independent of the other axioms in Theorem 14.

Example 16 (R Does Not Satisfy (b1) or (c4)).Let V be aset with |V| > 3. Define the functionR : VxV — 2V byR(u, v) =V,
for all distinct u, v € V(G), and R(u, u) = {u}, for all u in V. Then R trivially satisfies (t1), (t2), (b2), (T") and (tf). Now, for
any x distinct from u and v, we have R(u, x) N R(x, v) = V # {x}. So in this case (U) is trivially satisfied. If x = u, then
R(u, u) UR(u, v) = {u} UR(u, v) = R(u, v). So again (U) is satisfied. Similarly, if x = v, axiom (U) is satisfied. Now take
distinct u, v. Then R(u, v) = V. So it contains a vertex x distinct from u and v. Hence R(u, x) = V = R(u, v), so that axiom
(b1) is not satisfied. Trivially also (c4) is not satisfied. O

Next we show the last independence of the axiom set in our main Theorem 6 on block graphs.

Example 17 (R Does Not Satisfy (b2)).

Let G be the graph consisting of the path P = uguy ... uy and an isolated vertex z, with k > 1. So G is not connected,
and P is a path of even length at least 2. We define the transit function R on G as follows. It has G as underlying graph, and
on P it is just the interval function Ip of P. So far only the intervals between z and any vertex on P are yet undetermined. We
define R(u;, z) = R(z, u;) = {u;, Uj+1, - - -, Uirk, 2}. Here we assume that the indices are taken modulo n = 2k + 1, that is
Usk+1 = Ug, and so forth. Loosely speaking, R(u;, z) consists of z, u; and the k vertices of P following u; (modulo n). We call
these vertices the k followers of u; on P.

Clearly R satisfies (t1) and (t2). On P it satisfies (b1), (b2) and (U) as well. Now we check the cases where intervals of
the type R(u, z) or R(z, v), with u and v on P, are involved. Take x in R(u, z) distinct from z. Then R(u, x) = Ip(u, x), so that it
does not contain z. Take x in R(z, u) distinct from u, say u = u; and x = u;,, with £ < k. Then u; is not among the k followers
of x on P. So u is not in R(z, x). So R satisfies (b1) overall. Clearly, u(i+1)+k = Uit+1) lies in R(ui1, z) but not in R(u;, ).
Hence R(u;1, z) is not contained in R(u;, z). Therefore R does not satisfy (b2).

Finally we show that R satisfies (U*). Consider R(u, x) N R(x, v). We only have to check the cases that z is among u, x, v.
First suppose that z = x. Then R(u, z) and R(z, v) both contain k + 1 vertices on P. Hence they have at least one common
vertex on P. So |R(u, z) N R(z, v)| > 2,and (U*) is trivially satisfied. Now suppose that z = u, say. Letx = u; and v = u;. In
order that we have R(z, x) NR(x, v) = {x}, we need v to be on the part of P between u and u; such that v does not belong to
the k followers of x on P. But now R(z, x) UR(x, v) contains z and the vertices of P between u; and u;. So it contains R(z, v),
and again (U*) is satisfied. O

Note that we have thus established independence of most of the axioms in our theorems. For one important case we do
not have an answer yet. Is axiom (b2) independent of axioms (t1), (t2), (b1) and (U)? We do not know whether these four
axioms imply (b2) or not. Similarly, what if we replace (U) by (U’)? Also we do not know whether (b2) is independent of
the other axioms in Theorem 14. This remains an open problem. Here we present some partial answers on this question of
independence. Proposition 11 tells us that, if (t1), (t2) and (U) are satisfied, then each component of Gy, is a tree. What we
cannot prove is that Gg is connected. For this we seem to need both (b1) and (b2) or other axioms that would do the trick.
So any example that would show that (b2) is independent of the other four axioms in Theorem 8 must have a disconnected
underlying graph. We present two examples that show some independencies.

Example 18 (R Satisfies (t1), (t2) And (U) But Neither (b1) Nor (b2)). Let C be an odd cycle of length 2k + 1 with k > 2,
and let V be the vertex set of C. We define R(u, u) = {u}, for all u in V. For distinct u and v, we define R(u, v) to be the set
of all vertices on the longest u, v-path in C. Note that Gy is the edgeless graph. Clearly R satisfies (t1) and (t2). We have
R(u, u) U R(u, v) = R(u, v). So in this case (U) is trivially satisfied. Now take distinct u, x, v. Let y be the neighbor of x in
R(u, x). To avoid that y is also in R(x, v), we must have that u is on the longest x, v-path. Therefore R(u, x) N R(x, v) # {x},
so that again (U) is trivially satisfied.

To see that (b1) is not satisfied, take three vertices u, x, v such that xu and uv are edges. Then R(u, v) = V = R(u, x). For
(b2) not being satisfied take u and v to be two vertices at distance 2 with y as common neighbor. Let x be the neighbor of u
distinct from y. Now R(u, v) = V — {y} and x lies in R(u, v), but we have R(u,x) = V. O

Example 19 (R Satisfies (t1), (t2) And (b1) But Neither (U) Nor (b2)).

Let S be the paw with vertex set V = {u, v, w, x} with u the vertex of degree 1 and x the vertex of degree 3. Let R be
the transit function with S as underlying graph defined as follows for the two non-adjacent pairs: R(u, v) = {u, v, w} and
R(u, w) = {u, w, x}. Now w is in R(u, v), but R(u, w) is not a subset of R(u, v). So (b2) is not satisfied. Moreover R(u, v) N
R(v, x) = {v}, but R(u, v) UR(v,x) =V # {u, x} = R(u, x). So (U*) does not hold, and in particular (U) does not hold. It is
easy to verify that (b1) holds. O

6. The interval function of special classes of trees

Two vertices that have maximum distance in a connected graph G = (V, E) are called diametrical. Of course diametrical
pairs of vertices exist in any connected graph. In some graphs they play a special role. It might be that there is a pair u, v in G
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such thatI(u, v) = V. Such a pair is necessarily diametrical. Graphs having such a pair are abundant. Some special instances
are such different graphs as paths, hypercubes and even cycles. The hypercubes and the even cycles even have the property
that any vertex is in such a pair. The following axiom catches the existence of such a pair.

(D) There exist p and q in V such that R(p, q) = V.

If we combine this axiom with the ones that make Gy a block graph, then obviously we get a path. So we have the following
result.

Theorem 20. Let R : V x V — 2V be a function on V. Then R satisfies axioms (t1), (t2), (b1), (b2), (U*) and (D) if and only if
Ggis a path and Ig, = R.

Here we would like to suggest the following question: is there a characterization of the interval function of a hypercube
involving (almost) only elementary axioms amongst which axiom (D)?

There is another subclass of the trees that admits a characterization involving an extra axiom, viz. the stars K; , with
n > 1.1t turns out that with this extra axiom (St) we can weaken axiom (U). This weaker axiom (p2) is on the other hand
stronger than axiom (tf).

(St) |R(uq, uz) NR(vq, v2)| = 1, for all distinct uq, uy, vy, vo in V.
(p2) R(u, x) = {u, x}, R(x, v) = {x, v} = R(u, v) = R(u, x) UR(x, v), forallu, v, xin V.

Note that axiom (p2) in itself does not guarantee that R(u, v) = V(P), for any shortest u, v-path P in Gg. For instance let
G be a graph without induced C,4 or K, — e. Then the interval function of G satisfies (p2). Trivially (p2) forbids triangles.

Theorem 21. Let R : V x V — 2" be a function on V. Then R is a betweenness satisfying axioms (p2) and (St) if and only if Gg
isa Ky, aK; orastarand R = Ig,.

Proof. It is straightforward to check that the interval function of a star is a betweenness satisfying the two extra axioms.

Assume that R is a betweenness satisfying the extra axioms (St) and (p2).If |V| = 1or 2, then Gg = K; or K;, respectively,
and we are done. So let |V| > 3. By Lemma 5 we know that Gy is connected. Moreover, Gy is triangle-free due to axiom (p2).
Let u and v be non-adjacent vertices having a common neighbor x. Then by (p2) we have R(u, v) = {u, x, v}. Now it follows
that Gy does not contain a C4 or K4 — e as an induced subgraph. For, assume the contrary, and let u and v be non-adjacent
vertices in this subgraph and x and y be their common neighbors in the subgraph. Then we would have R(u, v) = {u, x, v} =
{u,y, v}, a contradiction.

Also G does not contain a path on four vertices as induced subgraph. Assume to the contrary that uxvy is such a path.
Then we have R(u, v) = {u, x, v} and R(x, y) = {x, v, y}. But this contradicts axiom (St). Hence Gy also does not contain
an induced cycle of length at least 5. From all this we deduce that the blocks of Gy are complete graphs, so that it is a block
graph. If there were two distinct cut vertices, then we would get an induced path of length at least 3. Since this is impossible,
Gr contains at most one cut vertex. Finally, G being triangle-free, each block of G is a K;. Hence Gg isa star. O

7. Concluding remarks

We obtained a characterization of the interval function of a block graph. As a consequence, we obtained a characterization
of the interval function of a tree that used weaker and more elementary axioms than Sholander’s classical result on “tree
segments” of 1952. We also presented a characterization of the interval function of stars, in which the heavy duty axiom (U)
is replaced by two simpler axioms. Another characterization of the interval function of a tree improved upon the character-
izations of Burigana and Chvatal et al. Moreover we presented a number of examples that showed various independencies
of axiom sets. But it is still open whether axiom (b2) is independent of the other axioms in Theorem 8, viz. axioms (t1), (t2),
(b1) and (U), or whether it is independent form the other axioms in Theorem 14.

Along the way we mentioned a few interesting open problems. For instance, can we avoid the heavy duty axioms (U)
and (7°) in the case of trees? Is there a characterization of the interval function of the hypercube that involves axiom (D)?
What can we do when we replace axiom (t2) with the dual (t1') of (t1), with (t1") being the axiom: v € R(u, v), for u, v in
V? As Example 13 shows, we then move into the area of directed graphs. These are just a few of the many open problems
that are still abundant in this area.

References

[1] HJ. Bandelt, H.M. Mulder, Pseudo-modular graphs, Discrete Math. 62 (1986) 245-260.
[2] L. Burigana, Tree representation of betweenness relations defined by intersection and inclusion, Math. Social Sci. 185 (2009) 5-36.
[3] M. Changat, S. Klavzar, H.M. Mulder, The all-paths transit function of a graph, Czech. Math. J. 51 (126) (2001) 439-448.

[4] M. Changat, AK. Lakshmikuttyamma, ]. Mathews, I. Peterin, P.G. Narasimha-Shenoi, G. Seethakuttyamma, S. Spacapan, A forbidden subgraph
characterization of some graph classes using betweenness axioms, Discrete. Math. 313 (2013) 951-958.

[5] M. Changat, J. Mathew, On triangle path convexity in graphs, Discrete Math. 206 (1999) 91-95.

[6] M. Changat, J. Mathew, H.M. Mulder, Induced path transit function, betweenness and monotonicity, Electron. Notes Discrete Math. 15 (2003) 62-65.

[7] M. Changat, J. Mathew, H.M. Mulder, Induced path function, monotonicity and betweenness, Discrete Appl. Math 158 (2010) 426-433.

[8] M. Changat, H.M. Mulder, G. Sierksma, Convexities Related to Path Properties on Graphs, Discrete Math. 290 (2005) 117-131.


http://refhub.elsevier.com/S0012-365X(15)00016-3/sbref1
http://refhub.elsevier.com/S0012-365X(15)00016-3/sbref2
http://refhub.elsevier.com/S0012-365X(15)00016-3/sbref3
http://refhub.elsevier.com/S0012-365X(15)00016-3/sbref4
http://refhub.elsevier.com/S0012-365X(15)00016-3/sbref5
http://refhub.elsevier.com/S0012-365X(15)00016-3/sbref6
http://refhub.elsevier.com/S0012-365X(15)00016-3/sbref7
http://refhub.elsevier.com/S0012-365X(15)00016-3/sbref8

894 K. Balakrishnan et al. / Discrete Mathematics 338 (2015) 885-894

[9] M. Changat, G.N. Prasanth, J. Mathews, Triangle path transit functions, betweenness and pseudo-modular graphs, Discrete Math. 309 (2009)

1575-1583.

[10] V. Chvétal, D. Rautenbach, P.M. Schéfer, Finite Sholander trees, trees, and their betweenness, Discrete Math. 311 (2011) 2143-2147.

[11] W.D. Duthie, Segments in Ordered Sets (Ph.D. Thesis), Princeton University, 1940, 27 pp.

[12] W.D. Duthie, Segments of ordered sets, Trans. AMS 51 (1942) 1-14.

[13] AK.Lakshmikuttyamma, Geodesic and Induced Path Transit Functions, their Generalizations, betweenness Axioms and Related Graph Classes (Ph.D.
Thesis) University of Kerala, Trivandrum, 2013.

[14] M.A. Morgana, H.M. Mulder, The induced path convexity, betweenness and svelte graphs, Discrete Math. 254 (2002) 349-370.

[15] H.M. Mulder, The structure of median graphs, Discrete Math. 24 (1978) 197-204.

[16] H.M. Mulder, The Interval Function of a Graph, MC Tract 132, Mathematisch Centrum, Amsterdam, 1980.

[17] H.M. Mulder, Transit functions on graphs (and posets), in: M. Changat, S. KlavZar, H.M. Mulder, A. Vijayakumar (Eds.), Convexity in Discrete Structures,
in: Ramanujan Math. Soc. Lect. Notes Ser., vol. 5, Ramanujan Math. Soc., Mysore, 2008, pp. 117-130.

[18] H.M. Mulder, L. Nebesky, Axiomatic characterization of the interval function of a graph, European J. Combin. 30 (2009) 1172-1185.

[19] H.M. Mulder, A. Schrijver, Median graphs and Helly hypergraphs, Discrete Math. 25 (1979) 41-50.

[20] L. Nebesky, Graphic algebras, Comment. Math. Univ. Carolinae 11 (1970) 533-544.

[21] L. Nebesky, The induced paths in a connected graph and a ternary relation determined by them, Math. Bohem. 127 (2002) 397-408.

[22] L. Nebesky, Characterization of the set of all shortest paths in a connected graph, Math. Boh. 119 (1994) 15-20.

[23] L. Nebesky, Characterization of the interval function of a connected graph, Czech. Math. J. 44 (1994) 173-178.

[24] L. Nebesky, A characterization of the interval function of a (finite or infinite) connected graph, Czech. Math. J. 51 (2001) 635-642.

[25] E. Pitcher, M.F. Smiley, Transitivities of betweenness, Transactions AMS 52 (1942) 95-114.

[26] M. Sholander, Trees, lattices, order, and betweenness, Proc. Amer. Math. Soc. 3 (1952) 369-381.

[27] M. Sholander, Medians and betweenness, Proc. Amer. Math. Soc. 5 (1952) 801-807.

[28] M.LJ. van de Vel, Theory of Convex Structures, North Holland, Amsterdam, 1993.


http://refhub.elsevier.com/S0012-365X(15)00016-3/sbref9
http://refhub.elsevier.com/S0012-365X(15)00016-3/sbref10
http://refhub.elsevier.com/S0012-365X(15)00016-3/sbref11
http://refhub.elsevier.com/S0012-365X(15)00016-3/sbref12
http://refhub.elsevier.com/S0012-365X(15)00016-3/sbref13
http://refhub.elsevier.com/S0012-365X(15)00016-3/sbref14
http://refhub.elsevier.com/S0012-365X(15)00016-3/sbref15
http://refhub.elsevier.com/S0012-365X(15)00016-3/sbref16
http://refhub.elsevier.com/S0012-365X(15)00016-3/sbref17
http://refhub.elsevier.com/S0012-365X(15)00016-3/sbref18
http://refhub.elsevier.com/S0012-365X(15)00016-3/sbref19
http://refhub.elsevier.com/S0012-365X(15)00016-3/sbref20
http://refhub.elsevier.com/S0012-365X(15)00016-3/sbref21
http://refhub.elsevier.com/S0012-365X(15)00016-3/sbref22
http://refhub.elsevier.com/S0012-365X(15)00016-3/sbref23
http://refhub.elsevier.com/S0012-365X(15)00016-3/sbref24
http://refhub.elsevier.com/S0012-365X(15)00016-3/sbref25
http://refhub.elsevier.com/S0012-365X(15)00016-3/sbref26
http://refhub.elsevier.com/S0012-365X(15)00016-3/sbref27
http://refhub.elsevier.com/S0012-365X(15)00016-3/sbref28

	Axiomatic characterization of the interval function of a block graph
	Introduction
	Axioms on transit functions
	The interval function of a block graph
	The interval function of a tree
	Independence of axioms
	The interval function of special classes of trees
	Concluding remarks
	References


