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Even though new infrastructure is being developed to meet demand, 

increased urbanization and vehicle ownership have increased the conges-

tion levels in Indian cities. Attracting more travelers to public transport  

is an option to reduce congestion but still remains a challenge, mainly 

because of the uncertainty of service. A reliable and accurate system for 

predicting vehicle arrival can help make public transportation more 

attractive. An accurate prediction method should be used to provide 

reliable information to passengers, and accuracy depends on the input 

data used. Therefore, identifying the optimum inputs and incorporat-

ing them in the prediction method become important. The optimum 

number of inputs required for best prediction performance was identi-

fied with an analytical approach. A model-based algorithm motivated 

by the Kalman filter was used to predict bus travel time with the use of 

GPS data. A case study was conducted on two selected bus routes in the 

city of Chennai, India, to evaluate the prediction accuracy of the proposed 

method. Results obtained from the algorithm were promising and showed 

the prediction accuracy to be 65 min for a prediction window of 30 min 

in 92% of instances. The predicted travel time can be used to provide real-

time bus arrival information to the public through various media, including 

web pages, mobile applications, and display boards.

Rapidly increasing vehicle congestion has been deteriorating the qual-

ity of life of people in urban areas of many developed and developing 

countries, including India. Caused mainly by rapid changes in urban-

ization, economy levels, vehicle ownership, and population growth, 

congestion leads to problems such as increased travel time, air pollu-

tion, and fuel use as well as decreased accessibility and mobility. To 

relieve congestion, demand-side and supply-side approaches can be 

adopted (1, 2). Supply-side approaches concentrate on infrastructure 

expansion (e.g., constructing more roads or adding more lanes to exist-

ing roads). Demand-side approaches concentrate on how to use the  

existing system and facilities more efficiently (e.g., congestion pricing).

Because infrastructure expansion cannot meet the growth in vehicle 

ownership, demand-side solutions such as better traffic operations 

and management must be explored. Intelligent transportation sys-

tem technologies are gaining popularity for managing urban traffic, 

and one functional area is Advanced Public Transportation Systems  

(APTS) applications, which primarily use intelligent transportation 

system technologies to attract more travelers to public transportation. 

One attractive, popular application is predicting accurate bus travel 

times and providing that information (i.e., bus arrival times) to pas-

sengers. This application benefits passengers by reducing their wait-

ing time at bus stops (and associated uncertainties) and allowing 

them to make reasonable travel arrangements when planning a trip. 

However, the information provided to passengers should be reliable 

to be effective. The present study concentrates on this area of pre-

dicting bus travel times for the development of accurate passenger 

information systems.

Commonly used prediction techniques can be classified primarily as 

model-based, instantaneous, and data-driven techniques. Model-based 

techniques require fewer data than data-driven and instantaneous 

approaches. However, regardless of the amount of data required, 

the significant input should be used optimally to improve prediction 

accuracy. Schweiger reports that the accuracy of prediction methods 

greatly depends on the input data (3). Thus, identifying the optimum 

input data and incorporating them in the prediction method hopefully 

would improve prediction accuracy. The present study used an ana-

lytical approach to identify the optimum number of inputs required 

for best performance and used the same in a mathematical model that 

was developed to predict bus travel time.

LITERATURE REVIEW

The most widely used models for predicting bus travel time can 

be broadly classified in four categories: historic average, statistical, 

machine learning, and model based.

Historic Average Models

Historic average models use past travel times to predict future travel 

times (4–6). The main assumptions are that traffic patterns are 

cyclical and that the ratio between traffic parameters in a particular 

link remains constant over time. These models perform best under 

expected traffic conditions; performance suffers if the traffic pattern 

in the area of interest is not relatively stable.

Statistical Models

Statistical techniques, which include time series and regression 

methods, are popular for predicting bus travel time. Time series–based 
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prediction methods assume that the future traffic patterns will be 

similar to observed historical traffic patterns. Their accuracy greatly 

depends on the correspondence between real-time and historical traf-

fic patterns (6). Variations in the relationship between real-time and 

historical travel time data can significantly reduce prediction accuracy. 

These techniques require a large amount of reliable data.

Bhandari develops stochastic time series–based autoregressive 

and delay-propagation methods to predict bus arrival time by using 

7 months of automatic vehicle location (AVL) data (7). Suwardo and 

Kamaruddin develop an autoregressive integrated moving average 

method to predict bus travel time from 1 year of AVL data collected 

from an expressway (8); this technique requires a large amount of 

reliable data for model development. In contrast, regression models 

forecast parameters with mathematical functions between the vari-

able of interest and the parameters that affect it. Abdelfattah and Khan 

develop linear and nonlinear regression methods by using simulated 

data to predict bus travel time, delays, and the influence on prediction 

of various factors that affect delay (9). Patnaik et al., who develop a 

regression model to predict bus travel time by considering the number 

of stops, dwell times, the number of boarding and alighting passen-

gers, and weather descriptors as independent variables, discover that 

weather is not an important input parameter for travel time prediction 

(10). Jeong and Rilett develop five regression methods to predict bus 

travel time by considering schedule adherence, distance, and dwell 

time as independent variables (4). Chang et al. use nearest neighbors 

nonparametric regression to predict bus travel time between bus stops 

(11). Ramakrishna et al. use 25 trips of GPS data to develop a multiple 

linear regression method for bus travel time prediction under hetero-

geneous traffic conditions; their results indicate that the other models 

outperform regression models (5).

Unlike historic average models, statistical models work satisfacto-

rily under unexpected traffic conditions. Prediction accuracy depends 

on identifying and applying suitable variables. Thus, the applicability 

of regression models is limited because variables in the transportation 

field are highly intercorrelated.

Machine Learning Models

Machine learning approaches can address complex and nonlinear 

relationships between predictors. Two of the popular machine learn-

ing approaches for travel time prediction are artificial neural networks 

(ANNs) and support vector machines (SVMs). An ANN is a massively 

distributed processor made up of simple processors and has a natural 

tendency to store experimental knowledge to make it available for 

later use.

Chien et al. develop an enhanced ANN method to predict bus 

arrival time dynamically with two ANN models (one trained with 

link-based data and the other trained with stop-based data), implement 

the method, and validate results with simulated data (6). Chen et al. 

develop an ANN method to predict travel time between two points 

with automatic passenger counter data (12). In general, ANN is use-

ful for prediction when mathematically formulating the relation-

ship between inputs and outputs is difficult. However, it requires a 

large database and can be used to predict traffic parameters without 

explicitly addressing the traffic process.

SVMs are supervised learning models with associated learning 

algorithms that can analyze data and recognize patterns in data that 

are used for classification and regression. Even though other machine 

learning approaches such as ANN have been extensively studied, few 

SVM applications are reported in the transportation field. Bin et al. pro-

pose an SVM method as a new neural network algorithm to predict bus  

travel time; they predict the arrival time from the travel time of a cur-

rent segment and the latest travel time of the next segment (13). Chun-

Hsin et al. compare the performances of support vector regression and 

other baseline predictors; results show that the support vector regres-

sion predictor can significantly reduce the relative mean and squared 

errors, but SVMs require a large amount of computation time (14).

Model-Based Models

Model-based approaches develop models that can capture system 

dynamics by establishing mathematical relationships between appro-

priate variables. One major advantage of the model-based approach is 

that, with limited data, the model can deliver the overall traffic state in 

both time and space domains of a system. Many model-based studies 

use estimation techniques such as Kalman filtering to estimate traffic 

parameters (e.g., density and travel time). The Kalman filtering tech-

nique (KFT) has an elegant mathematical representation and can be 

used effectively to accommodate traffic fluctuations with their time-

dependent variables (6). It has been used extensively to estimate bus 

arrival times and is the basis for predicting future values or for 

improving the estimates of variables from earlier times (11, 14–16).

Wall and Dailey develop an algorithm to predict bus travel time 

by developing an algorithm that contains two components (tracking 

with KFT and prediction with statistical analysis); they use a com-

bination of data obtained from AVL and a historical database (17). 

Cathey and Dailey use bus data collected on different days at the 

same time of day as inputs to predict bus travel time with KFT; their 

algorithm had three components (tracker, filter, and predictor), and 

they compared results from historic, regression, and ANN models 

(15). Shalaby and Farhan develop a method to predict bus travel time 

by using only 5 weekdays’ worth of automatic passenger counter and 

AVL data on a specific bus route in downtown Toronto, Canada (16). 

They use the data obtained from VISSIM to validate results obtained 

from the prediction algorithm; the study compared the results with 

historic, regression, and ANN methods. Focusing mainly on com-

paring historical path–based and link-based travel time predictions, 

Chien and Kuchipudi develop a method based on Kalman filtering to 

predict bus travel time by using historical and real-time travel time 

data (18). Results show that for peak-hour travel time prediction,  

the historical path–based data performed better.

Chu et al. integrate the data obtained from loop detectors and probe 

vehicles to develop a method to predict bus travel time by applying the 

adaptive KFT (19). The algorithm was tested in a stretch of freeway 

by using the PARAMICS microscopic model. Nanthawichit et al. also 

integrate the data obtained from loop detectors and vehicles out fitted 

with GPS probes to obtain traffic parameters with KFT (20). This 

method performed better than historic, regression, and ANN methods. 

Son et al. develop a method that uses KFT to predict bus travel time 

from one bus stop to the stop line at the next signalized intersection 

(21). Yu et al. develop several methods (SVM, ANN, k–nearest neigh-

bor algorithm, and linear regression) to predict bus travel time on the 

basis of the running time of multiple routes (22). Zhu et al. develop a 

method to predict bus travel time from bus stop delays and signalized 

intersection delays associated with total travel times; they consider 

traffic flow, signal delay, and dwell times as variables (23).

Most of the previous studies were carried out under homogeneous, 

lane-disciplined traffic conditions. In contrast, Indian traffic condi-

tions are very different. Because traffic is heterogeneous in nature 

(a lack of lane discipline complicates the issue) and the growing 
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number of vehicles leads to hectic traffic conditions, especially dur-

ing peak hours, models for homogeneous traffic conditions may not 

work accurately under Indian traffic conditions. Therefore, models 

that can capture and study stochastic behavior must be developed. 

The present study is one step in this direction. In the first part of this 

study, the optimum number of inputs for the accurate prediction of 

travel time was determined. In the second part of the study, real-time 

travel time was predicted with the identified inputs.

DATA COLLECTION AND ANALYSIS

GPS devices commonly are used to collect data for real-time APTS 

applications. For the present study, Metropolitan Transport Com-

mission buses in the city of Chennai, India, were fitted with GPS units 

to transmit real-time data. Two bus routes were selected. Route 19B 

connects Saidapet, a major area in the southern part of the city, with 

suburban Kelambakkam; it is about 30 km long, has 20 bus stops 

and 13 intersections, and has an average headway of 15 min. Route 5C 

connects two major areas—Tharamani bus depot in the southern part 

of the city and the Parry’s Corner depot in the northern part—with 

nine major bus stops and 14 intersections; it is around 15 km long 

and has an average headway of 30 min. The two routes differ in  

geometric characteristics, volume levels, and land use characteristics 

(Figure 1). The road stretches are highly heterogeneous, with a mix 

of motorized vehicles (e.g., passenger cars, buses, trucks, auto rick-

shaws, and two-wheelers) and nonmotorized vehicles (e.g., cycles 

and animal-drawn carts).

GPS data, collected every 5 s from 6 a.m. to 8 p.m. over 15 days, 

include the GPS unit identification, a time stamp, and the latitude 

and longitude of the location at which the entry was made. Data 

were transmitted in real time via general packet radio service. The 

collected data were stored in a sequential query language database 

as separate files for each day. From GPS data, the distance between 

two consecutive entries was calculated with the Haversine formula 

(25), which gives the great circle distance (d) between two points on 

a sphere from their latitudes and longitudes:

d r ( )( ) ( )= ϕ − ϕ + ϕ ϕ λ − λ2 arcsin haversin cos cos haversin

(1)

2 1 1 2 2 1

where

 r = radius of Earth (6,378.1 km);

 φ1, φ2 = latitude of Points 1 and 2, respectively; and

 λ1, λ2 = longitude of Points 1 and 2, respectively.

Thus, the processed data consist of the travel times and the cor-

responding distances between consecutive locations of all buses. 

The entire section was divided into smaller 100-m subsections, and 

the time taken to cover each subsection was calculated with the linear 

interpolation technique.

METHOD

The prediction model for bus arrival time adopted in this study is 

based on that of Vanajakshi et al. (26), in which a spatially dis-

cretized evolution model was proposed to predict bus travel time with 

Kalman filtering (27). The entire route was discretized into smaller 

sub sections, and the test vehicle travel time in the current subsection 

was obtained by using the travel time data of the two previous vehicles 

(denoted as PV1 and PV2). However, the basic assumption made in  

that model was that the travel time in a particular subsection is affected 

by the travel time only in the previous one subsection, which need 

not be true.

The present study theoretically analyzed the relaxation of this 

assumption by using many previous subsections (k − 1, k − 2, k − 3, 

and so forth) and identified the optimum number of previous sub-

sections that must be considered. In this case, the system equations 

consider the travel time from a series of subsections before the 

subsection under consideration (27):

x wk = ++ ia x (2)1

z x vk k= + (3)

where

 xk+1 = travel time taken to cover (k + 1)th subsection,

 a =  vector that relates the travel time in (k + 1)th subsection to 

travel time in previous n subsections [kth to k − (n − 1)th],

 zk = measured travel time in kth subsection,

 x =  vector that represents the travel time in corresponding 

subsections, and

 w, v =  process disturbance and process noise, respectively, 

assumed to be characterized by normal distributions with 

zero mean their corresponding variances Q and R.

Also, for an nth-order model, a = [ak, ak−1, . . . , ak−(n−1)]
T and x = 

[xk, xk−1, . . . , xk−(n−1)]
T.

The Kalman filtering equations may be time-update or measurement- 

update. Time-update equations use the model and system inputs to 

predict the estimate a priori; measurement-update equations use the  

5C Route

15 km

19B Route

30 km

FIGURE 1  19B and 5C bus routes (24).
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output measurements to obtain the estimate a posteriori (27). Thus, 

two sets of data are required to implement the scheme presented 

earlier: one for the time-update equations and another for the 

measurement-update equations. The data obtained from the previ-

ous two buses (PV1 and PV2) were used in this study to calculate  

a for each subsection and estimate the travel time of the test vehicle 

a posteriori. Thus, to predict the bus travel time in the (k + 1)th 

subsection with the state equation, one must know the coefficient 

vector a, which varies dynamically from subsection to subsection. 

This estimation is discussed next.

To estimate coefficients of the state space equation (i.e., vector a), 

consider the state equation for an nth-order model (Equation 2) to pre-

dict the state variable in the (k + 1)th subsection. In this, the coefficient 

corresponding to the (k − m)th subsection can be assumed to be

a
n

x

x
m nk m

k

k m

( )= ≤ ≤ −−
+

−

1
0 1 (4)

1
PV1

PV1

where

 ak−m =  parameter that relates travel time in the (k − m)th 

subsection to travel time in the (k + 1)th subsection,

 n = order of the model,

 xk+1 
PV1 and x k−m 

PV1 = subsection travel times obtained from PV1, and

 m = number of previous subsections considered.

The concept of this relationship is explained later with a second-

order linear model (i.e., the travel time in a particular subsection was 

assumed to depend on the travel times in the previous two subsections). 

Therefore, if n = 2 in Equation 2, then
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This expression can be interpreted as a line in three-dimensional 

space passing through the origin and an arbitrary point (xk+1, xk, xk−1). 

A line passing through a known point in space (x0, y0, z0) and parallel 

to the vector with components (a, b, c) can be represented as the 

following:
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Simplifying the earlier equation gives
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Because the point (x0, y0, z0) is from the most recently available 

historical data here, the known point (x0, y0, z0) can be written as 

(x k+1 
PV1, x k

PV1, x k−1 
PV1). Therefore, the equations become
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Adding Equations 9 and 10 gives the following:
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also is true for a first-order model. That is,
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When the same jth-order model is applied to estimate xk [i.e., k is 

replaced with (k − 1)] in Equation 16,
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Therefore, the relationship also is true for order j + 1 (n = j + 1):
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Thus, by mathematical induction, this relationship also is true for 

any order n:
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After the coefficients are calculated, the a priori values and then 

the a posteriori values can be estimated. Consider a study route with a 

total of N subsections. To identify the optimum number of subsections 

required as input to predict the travel time for the next subsection, 

a thorough analysis was carried out by establishing a relationship 

between travel time of the subsection of interest and the previous 

many subsections (G = 1, 2, 3, . . . , (N − 1)), as shown in Equation 2 

with a Gth-order model. The proposed algorithm was implemented 

by building a relationship between the travel times of the next sub-

sections and the previous many subsections by increasing the num-

ber of previous number of subsections (G) one at a time until the 

prediction accuracy of that particular subsection and trip reaches an 

optimum value. The steps of the algorithm are listed in Figure 2.

RESULTS

Results obtained by implementing the earlier algorithm were com-

pared with measured travel time data. The entire section was divided 

into N subsections of equal length (100 m). However, the data indi-

cate a minimum distance of at least 500 m between consecutive bus 

stops. Therefore, the final comparison was made for travel times with 

500-m subsections by adding the predicted travel times from the 

corresponding values for 100-m travel times.

The prediction was carried out over a 2-week period. Prediction 

accuracy was quantified as mean absolute percentage error (MAPE) 

and mean absolute error (MAE), mainly because the final impact was 

to be evaluated at selected bus stops (which are at varying distances). 

Thus, measures such as MAPE and MAE that can normalize the 

effect of such variations were preferred to evaluate the performance of 

the prediction method for uniform subsections (100 m long). MAPE 

and MAE can be calculated as

X X

X

N

s

i

N

∑
=

−

=MAPE (22)

TVM

TVM1

X X

N

s

i

N

∑
=

−
=MAE (23)

TVM

1

where

 Xs =  predicted travel time obtained from the prediction algo-

rithm to cover a given subsection,

 XTVM = corresponding travel time measured from the field, and

 N = number of subsections under consideration.

Figure 3 shows the variation in MAPE by considering various 

numbers of previous subsections (G = 1, 2, 3, . . . , (N − 1)) to predict 
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the next subsection travel time for a sample test period of 1 week 

for Routes 19B and 5C. Results indicate that MAPE decreases with 

increases in the number of previous subsections. However, the error 

reduction was marginal after two subsections, and the error increased 

in a few cases, too. Therefore, the optimum number of previous sub-

sections was determined to be two, and this number (G = 2) was used 

for further analysis. Figure 4 compares a sample of predicted and 

measured travel times over 500-m subsections with the corresponding 

MAPE values for sample trips on the two study routes. Predicted values 

closely match the measured data.

Figure 5 shows the error reduction for peak and off-peak trips while 

considering two subsections instead of one. Results show reduced 

error in most subsections because of the use of data from two previous 

subsections instead of one. Errors are reduced up to 8% for off-peak 

trips (Figure 5a) and up to 5% for peak trips (Figure 5b) when data 

from the two previous subsections are used as inputs instead of from 

only one previous subsection.

Because the main interest of the present study was to predict bus 

travel time and provide the arrival information of the same bus to 

the next bus stops, a performance was evaluated by comparing the 

E TV( ) = x̂
+ (1)

E xTY 1( ) − x̂ 1( )( )
2

= P + 1( )

START

Divide the entire section into N

subsections of equal length.

For subsection k = 1:

Yes NoFor k = 1…(N – 1),

if k<G

Equations to calculate a priori estimate and

error variance:

Equations to calculate the a posteriori estimate

and error variance:
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+
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Equations to calculate the a priori and 

a posteriori estimates and variances:
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FIGURE 2  Flowchart representing the proposed method (E 5 expected travel time; TV 5 test vehicle; 
x̂ 5 travel time; K 5 Kalman gain; P 5 error variance; z 5 latest available measurement from the field; 
2 and 1 in superscript 5 a priori and a posteriori estimates, respectively).
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deviation of the predicted arrival time and the observed arrival time 

of the bus at all bus stops during a 14-day test period on the selected 

study route. Data from the literature indicate that, for a bus with a 

1.5-h journey, 5 min is an acceptable level of prediction accuracy (7).  

According to Warman, passengers will tolerate up to ±5 min if 88% 

of the predicted times are less than ±5 min (28). The TriMet Transit 

Tracker System reports that passengers tolerate a waiting time of 

2 to 4.5 min at bus stops (29). Therefore, an accuracy of ±5 min is 

considered the acceptable error limit in this study. Figure 6 shows the 

frequency (as a percentage) of times when the deviation was less than  

±1 min, less than ±2 min, less than ±3 min, less than ±4 min, and less 

than ±5 min for two selected bus stops on Route 19B (Karapakkam 

and Saidapet) by using the proposed approach. Results indicate that 

prediction error was ±5 min in 92% of the cases.

Another important question was how far in advance a prediction 

could be made to inform passengers waiting at bus stops about bus 

arrival times. Results are presented in Figure 7 as MAPE and MAE at 

prediction horizons from 2 to 30 min. Table 1 shows the percentages 

of times the deviation was less than ±5 min for selected bus stops 

when the prediction was made 30 min ahead. Results indicate that 

predictions were within ±5 min for 92% of instances at the Saidapet 

bus stop, which is the farthest from the route origin. Also, errors are 
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still within 25% MAPE and ±5 min MAE, respectively, indicating 

acceptable performance for a prediction horizon up to 30 min.

SUMMARY AND CONCLUSIONS

The main aim of APTS is to attract passengers to public transpor-

tation and, in turn, reduce congestion on urban roads. One way to 

make public transportation more attractive is to provide accurate 

information about bus arrival times. Prediction accuracy depends 

mainly on optimal inputs and a suitable prediction method. This 

study developed a method for predicting travel time after identify-

ing the optimal inputs. A KFT-motivated algorithm was used to pre-

dict bus travel time by using GPS-based data from public transport 

buses in Chennai, India. Results show that the error reduction was 

marginal when more than the previous two subsections were con-

sidered. Also, the error reduction when previous two subsections 

were considered was minimal compared with the case considering 

only one previous subsection. Therefore, for field implementation, 

the previous one subsection travel time may be used to reduce 

computational effort.

The present study used travel time data from the previous two buses 

alone to predict the travel time of the next bus, without consider-

ing historical and current time data. Thus, current traffic conditions, 

as well as repeating patterns in travel time (e.g., peak and off-peak 

traffic), may not be captured in the prediction process. The proposed 

method may be further improved by explicitly incorporating section-

specific characteristics (e.g., bus stops and signals) and by automating 

prediction results.

The results obtained from the algorithm seem promising and can 

be used to implement an APTS application. The predicted travel 

time obtained from the proposed algorithm can be expressed as time 

remaining or actual clock time and can be displayed at bus stops, on 

buses, through web portals, or in SMS text messages.
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