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An iterative procedure for solving the Riccati equation
A2R−RA1 = A3 +RA4R

by

M. Thamban Nair (Madras)

Abstract. Let X1 and X2 be complex Banach spaces, and let A1 ∈ BL(X1), A2 ∈
BL(X2), A3 ∈ BL(X1, X2) and A4 ∈ BL(X2,X1). We propose an iterative procedure
which is a modified form of Newton’s iterations for obtaining approximations for the so-
lution R ∈ BL(X1,X2) of the Riccati equation A2R−RA1 = A3 +RA4R, and show that
the convergence of the method is quadratic. The advantage of the present procedure is
that the conditions imposed on the operators A1, A2, A3, A4 are weaker than the corre-
sponding conditions for Newton’s iterations, considered earlier by Demmel (1987), Nair
(1989) and Nair (1990) in the context of obtaining error bounds for approximate spec-
tral elements. Also, we discuss an application of the procedure to spectral approximation
under perturbations of the operator.

1. Introduction. Let X1 and X2 be complex Banach spaces, and let

A1 : X1 → X1, A2 : X2 → X2, A3 : X1 → X2, A4 : X2 → X1

be bounded linear operators. We shall specify conditions on the above op-
erators so that the Riccati equation

A2R−RA1 = A3 +RA4R

has a unique solution R ∈ BL(X1,X2), and also introduce an iterative pro-
cedure for obtaining Rk ∈ BL(X1,X2), k = 1, 2, . . . , such that

‖R− (R1 + . . .+Rk)‖ → 0 as k →∞,
and

‖R− (R1 + . . .+Rk+1)‖ ≤ α‖R− (R1 + . . .+Rk)‖2

for some α > 0.
The above Riccati equation arises naturally when looking for an invariant

subspace of a bounded linear operator having a specified complementary
subspace. To see this let A : X → X be a bounded linear operator on a
complex Banach space X and P0 : X → X be a (bounded linear) projection

2000 Mathematics Subject Classification: 45B05, 47A10, 65F35, 65R20.

[15]



16 M. T. Nair

operator. Suppose

X1 = P0(X), X2 = (I − P0)(X).

Let R : X1 → X2 be a bounded linear operator and P : X → X be defined
by

Px = P0x+RP0x, x ∈ X.
Then it can be easily seen that P is a projection operator along X2. More-
over, P (X) is invariant under A if and only if R satisfies the Riccati equation

(1.1) A2R−RA1 = A3 +RA4R,

where A1 : X1 → X1, A2 : X2 → X2, A3 : X1 → X2, A4 : X2 → X1 are
given by

A1 = P0A|X1 , A2 = (I − P0)A|X2 , A3 = (I − P0)A|X1 , A4 = P0A|X2 .

(For details one may see [5] or [6].) Thus the problem of finding the invariant
subspace P (X) is equivalent to solving the Riccati equation (1.1).

Now suppose that (Sk) is a sequence of bounded linear operators from
X1 to X2 such that

‖R− Sk‖ → 0 as k →∞,
where R : X1 → X2 satisfies (1.1). Then the operators

Pk := P0 + SkP0, k = 1, 2, . . . ,

are projections along X2, and we have

‖P − Pk‖ → 0 as k →∞.
Recall from Kato [2] that, for subspaces M1 and M2 of X, if we define

the distance from M1 to M2 as

sep(M1,M2) := sup{dist(x,M2) : x ∈M1, ‖x‖ = 1},
then gap(M1,M2), the gap between M1 and M2, is given by

gap(M1,M2) = max{sep(M1,M2), sep(M2,M1)}.
If we set

Mk = Pk(X), M = P (X),

then it follows that

sep(Mk,M) ≤ ‖R− Sk‖, gap(Mk,M) ≤ ‖P − Pk‖ = ‖(R− Sk)P0‖.
Thus the convergence of (Sk) to R implies the convergence of (Mk) to M in
the sense of sep and gap.

In practical situations, what one would initially have is an approximate
spectral subspace M0, in the sense that M0 is a spectral subspace of a per-
turbed operator A0. In such a situation, the projection P0 may be the spec-
tral projection with M0 = P0(X) associated with a spectral set Λ0 of A0.
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Then, what one would like to look for is a spectral subspace M associated
with a spectral set Λ of A.

The application of our results, with suitable conditions on M0, does in
fact give a sequence (Mk) of subspaces and a sequence (Λk) of closed subsets
of the complex plane defined by

Λk = σ(P0A|Mk
), k = 1, 2, . . . ,

such that

sep(Mk,M)→ 0, gap(Mk,M)→ 0,

sep(Λk, Λ) := sup{dist(λ,Λ) : λ ∈ Λk} → 0

as k →∞, where M is the spectral subspace of A associated with a spectral
set Λ.

In all the above discussed results, the crucial role is played by the size
of the quantity

ε :=
‖A3‖ · ‖A4‖

δ2 .

Here, δ := sep(A1, A2) is defined by

sep(A1, A2) =
{

0 if 0 ∈ σ(T )
1/‖T−1‖ otherwise,

where T : BL(X1,X2)→ BL(X1,X2) is defined by

T (B) = A2B −BA1, B ∈ BL(X1,X2).

It is to be remarked that iterative procedures for approximately solving
Riccati equation (1.1) and the corresponding problem of approximating an
invariant subspace/spectral subspace have been considered by many authors
(see e.g. Stewart [9], Demmel [1], Nair [5], [6], [7]). The results in Stewart
[9] and Nair [5] are based on a Piccard-type iteration, namely,

(1.2) A2Rk+1 −Rk+1A1 = A3 +RkA4Rk, R0 = 0,

and provide linear convergence under the assumption that ε < 1/4. Dem-
mel [1] and Nair [7] use Newton’s method, namely,

(1.3) (A2 −RkA4)Rk+1 −Rk+1(A1 +A4Rk) = A3 −RkA4Rk, R0 = 0,

and obtain quadratic convergence whenever ε < 1/12. Note that the
quadratic convergence of the iteration in (1.3) is achieved not only by im-
posing a stronger assumption on the matrices A1, A2, A3, A4, but also by
requiring to solve the equation each time with new coefficient matrices.

In [6], the author considered two iterative procedures which modify the
iterations (1.2) and (1.3) and obtained improved estimates together with
linear convergence if ε < 1/4 and quadratic convergence in the case of
ε < (

√
3− 1)/4.
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The new iterative procedure suggested in this paper is

(1.4) A
(k)
2 Rk+1 −Rk+1A

(k)
1 = RkA4Rk,

where
A

(k)
1 = A

(k−1)
1 − A4Rk, A

(k)
2 = A

(k−1)
2 −RkA4,

and R1 is the unique solution of

A
(0)
2 R1 −R1A

(0)
1 = A3 with A

(0)
1 = A1, A

(0)
2 = A2.

Of course, in this procedure, the coefficient matrices also have to be com-
puted at each step of the iteration. But the advantage over existing Newton-
type methods is that the conditions on the matrices A1, A2, A3, A4 are
weaker. We show, in fact, that the iterative procedure (1.4) is valid for
ε < 1/4, and it provides quadratic convergence whenever ε < 3/16. Observe
that

1
12

<

√
3− 1
4

<
3
16

<
1
4
.

2. Basic definitions and preliminary results. Let X, X1 and X2 be
complex Banach spaces. We denote by BL(X1,X2) the space of all bounded
linear operators from X1 into X2, and denote BL(X,X) by BL(X).

The following result is, by now, well known in the literature. The “if”
part was proved by Rosenblum [8] for A1, A2 in a Banach algebra, and the
“only if” part was proved by Stewart [9] while obtaining error bounds for
invariant subspaces of a closed linear operator in a Hilbert space. Stewart’s
result was extended by Nair [4] (quoted in [5]) to Banach space operators,
with an alternate proof.

Proposition 2.1. For A1 ∈ BL(X1), A2 ∈ BL(X2), consider the map
T : BL(X1,X2)→ BL(X1,X2) defined by

T (B) = A2B −BA1, B ∈ BL(X1,X2).

Then 0 6∈ σ(T ) if and only if σ(A1) ∩ σ(A2) = ∅.
For A1 ∈ BL(X1) and A2 ∈ BL(X2), define

sep(A1, A2) =
{

0 if 0 ∈ σ(T ),
1/‖T−1‖ otherwise,

where T is as in Proposition 2.1. Using the standard perturbation theory ar-
guments (cf. Kato [2]), we obtain the following result (see e.g. Nair [4], [5]).

Proposition 2.2. Let A1, V1 ∈ BL(X1) and A2, V2 ∈ BL(X2). Then

sep(A1 + V1, A2 + V2) ≥ sep(A1, A2)− ‖V1‖ − ‖V2‖.
In particular , if

sep(A1, A2) > 0, ‖V1‖+ ‖V2‖ < sep(A1, A2),
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then the operator

B 7→ (A2 + V2)B −B(A1 + V1), B ∈ BL(X1,X2),

is invertible.

For closed subsets Λ1 and Λ2 of the complex plane, define

sep(Λ1, Λ2) := sup{dist(λ,Λ2) : λ ∈ Λ1}.
We note that for ω > 0,

sep(Λ1, Λ2) < ω ⇔ Λ1 ⊆ {z : dist(z, Λ2) < ω}.
Let A ∈ BL(X) and Λ be a spectral set of A, i.e., Λ is a subset of the

spectrum σ(A) of A such that both Λ and σ(A) \ Λ are closed subsets of
the complex plane. Then (cf. Taylor [10]) there exists an open subset Ω of
the complex plane such that its boundary Γ consists of a finite number of
simple closed contours and

σ(A) ∩ (Ω ∪ Γ ) = Λ.

The range of the spectral projection (cf. Kato [2], Limaye [3])

PΛ =
−1
2πi

�

Γ

(A− zI)−1 dz

is called the spectral subspace of A associated with the spectral set Λ.
Here is a characterization of a spectral subspace which is found to be

useful in spectral approximation (cf. Nair [4], [5]).

Proposition 2.3. For A ∈ BL(X), let P ∈ BL(X) be a projection
whose range M = P (X) is invariant under A. Then M is a spectral subspace
of A if and only if

σ(PA|P (X)) ∩ σ((I − P )A|(I−P )(X)) = ∅,
and in that case the associated spectral set is σ(PA|P (X)) and

σ(A) = σ(PA|P (X)) ∪ σ((I − P )A|(I−P )(X)).

3. Existence of the solution. Let A1 ∈ BL(X1), A2 ∈ BL(X2), A3 ∈
BL(X1,X2) and A4 ∈ BL(X2,X1). Assume that

δ := sep(A1, A2) > 0.

Let
γ = ‖A3‖, η = ‖A4‖, ε = ηγ/δ2.

In the following we shall make use of the function

g(t) =
{

1 if t = 0,
(1−

√
1− 4t)/(2t) if 0 < t ≤ 1/4.
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It follows that 1 ≤ g(t) ≤ 2 for 0 ≤ t ≤ 1/4, and s = g(t) satisfies the
relation

ts2 − s+ 1 = 0.

Theorem 3.1. If ε < 1/4, then the Riccati equation

A2R−RA1 = A3 +RA4R

has a unique solution R ∈ BL(X1,X2) which satisfies the relation

‖R‖ ≤ γ

δ
g(ε).

Proof. By the assumption δ := sep(A1, A2) > 0, the operator T on
BL(X1,X2) defined by

T (B) = A2B −BA1, B ∈ BL(X1,X2),

is invertible. Let

D =
{
B ∈ BL(X1,X2) : ‖B‖ ≤ γ

δ
g(ε)

}
.

For B ∈ D, let
F (B) = T−1(A3 +BA4B).

Then we have

‖F (B)‖ ≤ ‖T−1‖(‖A3‖+ ‖A4‖ · ‖B‖2) ≤ 1
δ

[
γ + η

(
γ

δ
g(ε)

)2]

=
γ

δ
(1 + ε(g(ε))2) =

γ

δ
g(ε).

Thus F maps the complete metric space D into itself. Therefore, the proof
will be completed once it is shown that F : D → D is a contraction. For
this, let B1, B2 ∈ D and observe that

F (B1 −B2) = T−1(B1A4B1 −B2A4B2)

= T−1[B1A4(B1 −B2) + (B1 −B2)A4B2].

Therefore,

‖F (B1 −B2)‖ ≤ ‖T−1‖(‖B1A4‖+ ‖A4B2‖)‖B1 −B2‖

≤ 1
δ
η(‖B1‖+ ‖B2‖)‖B1 −B2‖ ≤ 2εg(ε)‖B1 −B2‖.

Since 2εg(ε) = 1−
√

1− 4ε < 1, it follows that F is a contraction mapping
on D.

4. The iterative procedure. We keep the notation of the previous
sections and the assumption δ > 0. Recall that then the operator T is
invertible. We also observe that if γ = 0, then R = 0 is the unique solution
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of the Riccati equation A2R−RA1 = A3 +RA4R. Therefore, hereafter, we
assume that γ > 0.

First we prove a technical result.

Proposition 4.1. Let r1 = γ/δ and ε < 1/4. Then the relations

2ηrk + 2η(r1 + . . .+ rk) < δ,

rk+1 :=
ηr2
k

δ − 2η(r1 + . . .+ rk)
<
rk
2

hold iteratively.

Proof. Note that 4ηr1 = 4εδ < δ, so that r2 is well defined and

r2 = r1

(
ηr1

δ − 2ηr1

)
<
r1

2
.

Thus the result is proved for k = 1. Assume the result for some k = n− 1,
n ∈ {2, 3, . . .}. Then for k = n we have

2ηrk + 2η(r1 + . . .+ rk) < 2ηr1

(
1

2k−1 + 1 +
1
2

+
1
22 + . . .+

1
2k−1

)

= 4ηr1 = 4εδ < δ.

Hence rk+1 is well defined and

rk+1 =
ηr2
k

δ − 2η(r1 + . . .+ rk)
= rk

(
ηrk

δ − 2η(r1 + . . .+ rk)

)
<
rk
2
.

Theorem 4.2. Let ε < 1/4, A(0)
1 = A1, A(0)

2 = A2 and (rk) be the
sequence of nonnegative numbers defined in Proposition 4.1. Let R1 be the
unique element in BL(X1,X2) such that

A
(0)
2 R1 −R1A

(0)
1 = A3.

If ε < 1/4, then the following hold iteratively.

(i) If A
(k)
1 = A

(k−1)
1 − A4Rk and A(k)

2 = A
(k−1)
2 −RkA4, then

δk := sep(A(k)
1 , A

(k)
2 ) > δ − 2η(r1 + . . .+ rk) > 0.

(ii) Let Rk+1 be the unique element in BL(X1,X2) such that

A
(k)
2 Rk+1 −Rk+1A

(k)
1 = RkA4Rk.

Then
‖Rk+1‖ ≤

η

δ − 2η(r1 + . . .+ rk)
‖Rk‖2 ≤ rk+1.

In particular ,

‖Rk+1‖ ≤
η

δ(1− 4ε)
‖Rk‖2.
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Proof. Clearly,
‖R1‖ = ‖T−1(A3)‖ ≤ γ

δ
.

Then, by Propositions 2.2 and 4.1,

δ1 := sep(A(1)
1 , A

(1)
2 ) ≥ sep(A(0)

1 , A
(0)
2 )− 2ηr1 = δ − 2ηr1 > 0.

Hence there exists a unique R2 ∈ BL(X1,X2) such that

A
(1)
2 R2 −R2A

(1)
1 = R1A4R1,

and it satisfies

‖R2‖ ≤
‖A4‖ · ‖R1‖2

δ1
≤ η

δ − 2ηr1
‖R1‖2 ≤

ηr2
1

δ − 2ηr1
= r2.

Assume the result for all integers up to k − 1, k ≥ 2. Then for k, define

A
(k)
1 = A

(k−1)
1 − A4Rk, A

(k)
2 = A

(k−1)
2 −RkA4.

Then ‖Rk‖ ≤ rk, and by Propositions 2.2 and 4.1,

δk := sep(A(k)
1 , A

(k)
2 ) ≥ δk−1 − 2ηrk ≥ δ − 2η(r1 + . . .+ rk) > 0.

Hence there exists a unique Rk+1 ∈ BL(X1,X2) such that

A
(k)
2 Rk+1 −Rk+1A

(k)
1 = RkA4Rk.

Then

‖Rk+1‖ ≤
‖A4‖ · ‖Rk‖2

δk
≤ η

δ − 2η(r1 + . . .+ rk)
‖Rk‖2

≤ ηr2
k

δ − 2η(r1 + . . .+ rk)
= rk+1.

Since rj+1 < rj/2 for j = 0, 1, 2, . . . , we have

2η(r1 + . . .+ rk) = 4ηr1

(
1− 1

2k

)
≤ 4εδ,

so that
‖Rk+1‖ ≤

η

δ(1− 4ε)
‖Rk‖2.

Next we obtain an estimate for the error ‖R− (R1 + . . .+Rk)‖, and also
specify an additional condition under which ‖R − (R1 + . . .+ Rk)‖ → 0 as
k → ∞. For this purpose let R(0) = R and for k ∈ {1, 2, . . .}, let R(k) =
R(k−1) −Rk, i.e.,

R(k) = R− (R1 + . . .+Rk).

Theorem 4.3. Let ε < 1/4. Then, for k = 1, 2, . . . ,

‖R(k)‖ ≤ η

δ(1− 4ε)
‖R(k−1)‖2.

Moreover ,
‖R(k)‖ ≤ γ

δ
g(ε)β2k−1, β =

ε

1− 4ε
g(ε).
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If , in addition, ε < 3/16, then

‖R(k)‖ → 0 as k →∞.
Proof. First we note that the Riccati equation

A2R−RA1 = A3 +RA4R

takes the form

A
(k)
2 R(k) −R(k)A

(k)
1 = RkA4Rk +R(k)A4R

(k)

for k = 1, 2, . . . , where A
(k)
1 and A

(k)
2 are defined iteratively as in Theo-

rem 4.2. Thus, considering the the map

Tk : B 7→ A
(k)
2 B −BA(k)

1 , B ∈ BL(X1,X2),

for k = 1, 2, . . . , it follows that

R(k) = T−1
k (RkA4Rk +R(k)A4R

(k)) = Rk+1 + T−1
k (R(k)A4R

(k)),

so that

R(k) = R(k−1) −Rk = [Rk + T−1
k−1(R(k−1)A4R

(k−1))]−Rk
= T−1

k−1(R(k−1)A4R
(k−1)).

Hence, from the estimate for sep(A(k)
1 , A

(k)
2 ) from Theorem 4.2,

‖R(k)‖ ≤ ‖T−1
k−1‖ · ‖A4‖ · ‖R(k−1)‖2 ≤ η

δ(1− 4ε)
‖R(k−1)‖2.

Now let
α =

η

δ(1− 4ε)
, r =

γ

δ
g(ε).

Recall from Theorem 3.1 that

‖R(0)‖ = ‖R‖ ≤ γ

δ
g(ε) = r.

Then from the relation ‖R(k)‖ ≤ α‖R(k−1)‖2 it follows that

‖R(k)‖ ≤ rβ2k−1, β := αr =
ε

1− 4ε
g(ε),

for k = 0, 1, 2, . . . Note that β < 1 if and only if ε < 3/16.

Remark. Denote the sequences of approximations of R obtained by our
procedure (1.4) and the Newton’s iteration (1.3) by (Sk) and (S̃k) respec-
tively. Then the error bound obtained in Theorem 4.3 based on (1.4) can be
written using the order function as

‖R− Sk‖ = O(β2k−1), β =
ε

1− 4ε
g(ε),

whereas the result obtained by Demmel [1] for ε < 1/12 based on (1.3) is
(cf. Nair [6], Theorem 4.2)
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‖R− S̃k‖ = O(µ2k−1), µ =
3
2
εg(ε).

We may observe that β < µ whenever ε < 1/12. Thus, our result not
only requires weaker assumptions on the coefficient operators, but also the
estimate obtained is better for those values of ε for which Demmel’s result
is applicable.

5. Application to spectral variation. Let A : X → X be a bounded
linear operator on a complex Banach space X and M0 be a closed subspace
of X. We would like to impose conditions on M0 such that it is close to a
spectral subspace, and then obtain a sequence (Mk) of closed subspaces of
X which converges to a spectral subspace in the sense of gap.

For M0 to be close to a spectral subspace of A we assume the following.

Assumption 1. There exists a closed subspace N0 such that

(5.1) X = M0 ⊕N0.

Let P0 : X → X be the projection onto M0 along N0 and let
[
A11 A12

A21 A22

]

be the matrix representation of A with respect to the decomposition (5.1),
i.e., if we take

Q1 = P0, Q2 = I − P0, X1 = Q1(X), X2 = Q2(X),

the operators Aij : Xj → Xi are defined by

Aijx = QiAx, x ∈ Xj .

Recall that

• M0 is invariant under A if and only if A21 = 0, and
• M0 is a spectral subspace of A if and only if σ(A11) ∩ σ(A22) = ∅ and

A21 = 0.

Assumption 2.

(5.2) σ(A11) ∩ σ(A22) = ∅.
This assumption is equivalent to the condition

δ := sep(A11, A22) > 0.

It is to be mentioned that the condition (5.2) is satisfied if, for example,
A is an “approximation” of another operator A0, and M0 is a spectral sub-
space of A0 with corresponding spectral projection P0. To see this suppose
that

A = A0 + V
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and let [
A

(0)
11 A

(0)
12

A
(0)
21 A

(0)
22

]
,

[
V11 V12

V21 V22

]

be the matrix representations (w.r.t. the decomposition (5.1)) of A0 and V
respectively. Since P0 is a spectral projection of A0, we have

A
(0)
12 = 0 = A

(0)
21 and δ0 := sep(A(0)

11 , A
(0)
22 ) > 0.

Thus [
A11 A12

A21 A22

]
=
[
A

(0)
11 + V11 V12

V21 A
(0)
22 + V22

]
.

By Proposition 2.2, it follows that δ ≥ δ0 − ‖V11‖ − ‖V22‖.
Hence Assumption 2 is satisfied if

‖V11‖+ ‖V22‖ < δ0.

Note that if the last inequality is satisfied, then

ε =
‖A21‖ · ‖A12‖

δ2 ≤ ‖V21‖ · ‖V12‖
(δ0 − ‖V11‖ − ‖V22‖)2 .

If we use the notation

A1 = A11, A2 = A22, A3 = −A21, A4 = A12,

then the definitions of δ and ε in this section agree with those in the previous
section.

Suppose ε < 1/4, and R and Rk are as in the last section. Define

P = P0 +RP0, M = P (X),

and for k = 1, 2, . . . , let

Pk = P0 + (R1 + . . .+Rk)P0, Mk = Pk(X).

Then, by Theorem 4.3, taking Mk = Pk(X), we have

sep(Mk,M) ≤ γ

δ
g(ε)β2k−1, gap(Mk,M) ≤ ‖P0‖

γ

δ
g(ε)β2k−1,

for k = 1, 2, . . . If, in addition, ε < 3/16, then

sep(Mk,M)→ 0, gap(Mk,M)→ 0 as k →∞.
It can be seen that

PA|P (X) = P (A11 +A12R)|P (X),

(I − P )A|(I−P )(X) = (I − P )(A22 +RA12)|(I−P )(X),

so that

σ(PA|P (X)) = σ(A11 + A12R), σ((I − P )A|(I−P )(X)) = σ(A22 +RA12).

Hence, by Proposition 2.3, M = P (X) is a spectral subspace of A with the
associated spectral set Λ := σ(A11 + A12R) provided
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σ(A11 +A12R) ∩ σ(A22 +RA12) = ∅.
But this is true because

sep(A11 + A12R,A22 +RA12) ≥ δ − 2η‖R‖ ≥ δ(1− 2εg(ε)) > 0.

Next let
B = A11 + A12R, Bk = A11 + A12Sk,

where Sk = R1 + . . .+Rk, k = 1, 2, . . . Then we have

‖B −Bk‖ ≤ ‖R− (R1 + . . .+Rk)‖ → 0 as k →∞.
Thus, by the upper semicontinuity of the spectrum (cf. Kato [2], Chapter IV,
Remark 3.3), it follows that

sep(σ(Bk), σ(B))→ 0 as k →∞.
Acknowledgements. I thank the referees for many useful comments

on the earlier versions of this paper.
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