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An iterated version of Lavrent’iev’s method for
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Abstract — An iterated version of the Lavrentiev’s method, in the setting of a Ba-
nach space, is suggested for obtaining stable approximate solutions for the ill-posed
operator equation Au = v, when the data A and v are known only approximately. In
the setting of a Hilbert space with appropriate a priori parameter choice, the suggested
procedure yields order optimal error estimates. An iterated version of Tikhonov regu-
larization yielding order optimal error estimate is a special case of the procedure. The
assumption on the approximating operators show that the finite dimensional system
arising out of it would be of smaller size for larger iterates. This aspect is compared
with an assumption of [3] for a degenerate kernel method for integral equations of the
first kind.

1. INTRODUCTION

Many inverse problems in science and engineering can be modelled as an ill-
posed operator equation

Tx = y (1.1)

where T : X → Y is a bounded linear operator between Hilbert spaces X and Y
with its range R(T ) not closed in Y (c. f. [1, 3]). A prototype of such an equation
is the Fredholm integral equation of the first kind,

∫ b

a

k(s, t)x(t) dt = y(s), a ≤ s ≤ b (1.2)
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with non-degenerate kernel k(· , · ). In this case the operator K : L2[a, b] →
L2[a, b], defined by

(Kx)(s) =

∫ b

a

k(s, t)x(t) dt, a ≤ s ≤ b (1.3)

is a compact operator of infinite rank, and therefore the integral equation
Kx = y is ill-posed.

Regularization procedures are employed to obtain stable approximate solu-
tions for an ill-posed equation (1.1). Tikhonov regularization is one of the widely
used such procedure. In Tikhonov regularization, one solves the equation

(T ∗T + αI)xα = T ∗y. (1.4)

If the available data ỹ is an approximation to the actual data y, then one solves
the equation

(T ∗T + αI)x̃α = T ∗ỹ. (1.5)

in place of (1.4). Suppose y ∈ D(T †) = R(T ) + R(T )⊥, the domain of the
Moore –Penrose generalized inverse T † of T , and ỹ ∈ Y is such that ‖y− ỹ‖ ≤ δ
for a known error level δ > 0. Then we have (see [2]):

• xα → x̂ = T †y as α → 0,

• ‖xα − x̃α‖ ≤ δ/
√
α,

• x̂ = (T ∗T )νx0, 0 < ν ≤ 1, for some x0 ∈ X , implies

‖x̂− xα‖ ≤ ‖x0‖αν

so that, with α = c0δ
2/(2ν+1) for some c0 > 0,

‖x̂− x̃α‖ ≤ (c0‖x0‖+ 1/
√
c0)δ

2ν/(2ν+1). (1.6)

Also, the above rate O(δ2ν/(2ν+1)) is optimal.

Recall that x̂ = T †y is the unique solution inN(T )⊥ of the operator equation

T ∗Tx = T ∗y,

and the operator T ∗T : X → X is positive and self-adjoint. In case the given
operator T itself is positive and self adjoint, then one may use the Lavrentiev’s
method in which one solves the equations

(T + αI)uα = y (1.7)

and
(T + αI)ũα = ỹ (1.8)

in place of (1.4) and (1.5) respectively. In this case it is known [10] that if
y ∈ R(T ), then
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• uα → x̂ as α → 0,

• ‖uα − ũα‖ ≤ δ/α, and

• x̂ = T νu0, 0 < ν ≤ 1, for some u0 ∈ X , implies

‖x̂− uα‖ ≤ ‖u0‖αν

so that, with α = c0δ
1/(ν+1) for some c0 > 0,

‖x̂− x̃α‖ ≤ (c0‖x0‖+ 1/c0)δ
ν/(ν+1). (1.9)

It is also known that the above rate O(δν/(ν+1)) is optimal.

The purpose of this paper is to investigate an iterated version of the Lavren-
tiev’s method in the setting of a Banach space to obtain stable approximations
for the solution of an ill-posed operator equation when both the operator in-
volved (which represents the modelling of the problem) and the data, the right
hand side of the equation, are known only approximately. If the space is a
Hilbert space, then we show, under approrpriate a priori choice of the parame-
ter, that the method yields order optimal error estimate. An iterated verison of
Tikhonov regularization yielding order optimal error estimate is a special case
of the procedure.

The operator equation under discussion is

Au = v, v ∈ R(A) (1.10)

where A : X → X is a bounded linear operator on a Banach space X with its
range R(A) not necessarily closed in X . It is a consequence of Bounded Inverse
Theorem that if R(A) is not closed, then A can not have a continuous inverse,
so that in such case the above equation is ill-posed.

Regularization of the above equation has been studied by Schock [9] under
the assumptions

(a) (−∞, 0) ⊆ ρ(A);

(b) ∃M > 0 such that ‖(A+ αI)−1‖ ≤ M/α for all α > 0;

(c) R(A) dense in X .

Clearly the assumption (a) implies that the equation

(A+ αI)ũα = ṽ, α > 0 (1.11)

is uniquely solvable for every ṽ ∈ X . Thus the above equation is well-posed. In
applications ṽ ∈ X is the availbale data in place of v with some known error
level δ > 0, i. e., ‖v − ṽ‖ ≤ δ.

Note that the conditions (a), (b), (c) on A are satisfied if X is a Hilbert
space and A : X → X is a positive operator. Thus in this case, the regularized
equation (1.11) is the well-studied Lavrentiev’s regularized equation. The above
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consideration includes the case of the normal equation T ∗Tx = T ∗y associated
with an ill-posed operator equation Tx = y, where T : X → Y is a bounded
linear operator between (possibly different) Hilbert spaces with its range not
necessarily closed in Y .

It is to be remarked that consideration of ill-posed equations in the setting of
a Banach space is important in view of its applications to Abel integral equations
[7, 8].

In the second section we show that the conditions (a)–(c) assumed on A
imply that A is injective, and hence the equation (1.10) is uniquely solvable
for every v ∈ X . Thus results of [10] are valid without explicit assumption of
injectivity. For the sake of completion of exposition we include these results
along with their proofs.

In applications, it is also the case that the operator A is either not available
exactly, or to obtain numerical solutions it is often necessary to approximate
the operator using a sequence of finite rank operators. In many such cases, for
example, projection based methods and degenerate kernel methods for integral
equations, one has a sequence (An) of bounded operators such that

‖A−An‖ → 0 as n → ∞.

Thus in place of (1.11), the equation to be solved is

(An + αI)ũα,n = ṽ, α > 0 (1.12)

for large enough n. In this context it is to be mentioned that Groetsch [3]
considered a degenerate kernel method for the case of Tikhonov regularization
of the integral equation (1.2) wherein the An is obtained by approximating
the kernel of the integral operator K∗K by a convergent quadrature rule. The
results of Groetsch have been generalized by Nair [5] and Nair and Schock [6]. In
order to obtain the optimal result, a condition on (An) required by Groetsch [3]
is

‖A−An‖ = O(α2).

A natural question is whether we can modify (1.12) so that the new procedure
requires small n than the former. The present paper is important in this context.

We introduce an iterated form of (1.12), namely

(An + αI)u(j)
α,n = ṽ + (An −A)u(j−1)

α,n , j = 1, . . . , k

with u
(0)
α,n = 0. We show that the requirement on An for the existence, conver-

gence and error estimates for the kth iterate is

‖A−An‖ = O(α1+1/k).

Applications of the main theorems in second and third sections are consid-
ered in fourth and fifth sections for Levrentiev’s regularization and Tikhonov
regularization respectively, and optimal order estimates are derived under suit-
able a priori choice of the parameter.
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2. REGULARIZATION IN BANACH SPACES

Let X be a complex Banach space and A : X → X be a bounded linear operator
such that

(a) (−∞, 0) ⊆ ρ(A);

(b) ∃M > 0 such that ‖(A+ αI)−1‖ ≤ M/α forall α > 0;

(c) R(A) is dense in X .

For v ∈ X , we consider the operator equation

Au = v.

First we prove a basic result.

Theorem 2.1. For α > 0, let Rα = α(A + αI)−1. Then we have the
following.

(i) If v ∈ R(A) with v = Au, u ∈ X , then

‖Rαv‖ ≤ α(1 +M)‖u‖.

(ii) For every v ∈ X ,
Rαv → 0 as α → 0.

(iii) A is injective.

Proof. (i) Let v = Au, u ∈ X . Then, for every α > 0, we have

Rαv = α(A + α)−1Au = αu − α2(A+ α)−1Au.

Therefore, using the assumption (b),

‖Rαv‖ ≤ α(1 +M)‖u‖.

(ii) If v ∈ R(A), then by the result in‘(i), Rαv → 0 as α → 0. Also, by the
assumption (b), ‖Rα‖ ≤ M for every α > 0. Hence, using the assumption (c),
it follows that

Rαv → 0 as α → 0

for every v ∈ X .
(iii) Suppose u ∈ X is such that Au = 0. Then we have

(A+ αI)u = αu,

so u = Rαu, and by (ii), u = Rαu → 0 as α → 0. Hence u = 0. This proves
that A is injective.

Now let v ∈ R(A). Then by the above theorem, there exists a unique û ∈ X
such that

Aû = v (2.1)
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and by the assumption (a), for every α > 0, there exists a unique uα ∈ X such
that

(A+ αI)uα = v. (2.2)

Theorem 2.2 (Schock). For v ∈ R(A), let û, uα for α > 0 be as in (2.1)
and (2.2) respectively. Then

‖û− uα‖ → 0 as α → 0.

If û ∈ R(A) with û = Aw, w ∈ X , then

‖û− uα‖ ≤ α(1 +M)‖w‖.

Proof. Follows from Theorem 2.1 by observing that

û− uα = α(A + αI)−1û = Rαû.

By the assumption (c) and Theorem 2.1(iii), it follows from Bounded Inverse
Theorem, that

A−1 : R(A) → X is continuous ⇐⇒ R(A) = X.

Thus equation (2.1) is ill-posed whenever R(A) 
= X , whereas (2.2) is a well-
posed equation.

Theorem 2.2 shows that uα is an approximation of û for small enough α,
and

‖û− uα‖ = O(α)

whenever û ∈ R(A).
In applications the data v ∈ R(A) may not be available exactly; one may

have an approximation ṽ of v. In such situation what one considers in place of
the equation (2.2) is

(A+ αI)ũα = ṽ. (2.3)

Theorem 2.3 (Schock). Let û and uα and ũα, α > 0, be as in (2.1), (2.2)
and (2.3) respectively. Then

‖û− ũα‖ ≤ ‖û− uα‖+
M

α
‖v − ṽ‖.

If û ∈ R(A), ‖v − ṽ‖ ≤ δ for a given δ > 0 and α = c0
√
δ for some constant

c0 > 0, then
‖û− ũα‖ ≤ [(1 +M)‖w‖+ c0M ]

√
δ,

where û = Aw, w ∈ X .

Proof. From (1.4) and (2.3) we have

uα − ũα = (A+ αI)−1(v − ṽ)
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so that

‖uα − ũα‖ ≤ M

α
‖v − ṽ‖.

Hence

‖û− ũα‖ ≤ ‖û− uα‖+
M

α
‖v − ṽ‖.

The rest of the results follow from Theorem 2.2.

3. ITERATED REGULARIZED APPROXIMATION

PROCEDURE

Let A : X → X be a bounded linear operator on a complex Banach space X
satisfying the assumptions (a), (b), (c) of Section 2. Without loss of generality,
we assume that M = 1. Let (An) be a sequence of bounded linear operators
on X such that

‖A−An‖ → 0 as n → ∞.

Lemma 3.1. For 0 < α ≤ ‖A‖ and n ∈ N, let Dα,n = (A+αI)−1(An−A).
If

‖A−An‖ ≤ α

2

for some positive integer k, then we have the following

(i) −1 
∈ σ(Dα,n);

(ii) −α 
∈ σ(An);

(iii) ‖(I +Dα,n)
−1Dα,n‖ ≤ 2

α‖A−An‖.

Proof. The assumption on α and An implies that ‖A−An‖ ≤ α/2, so that

‖Dα,n‖ ≤ ‖A−An‖
α

≤ 1

2
.

Hence −1 
∈ σ(Dα,n), so that from the relation

An + αI = (A+ αI)(I +Dα,n)

it follows that −α 
∈ σ(An). Also, we have

‖(I +Dα,n)
−1Dα,n‖ ≤ ‖Dα,n‖

1− ‖Dα,n‖
≤ 2‖Dα,n‖ ≤ 2

α
‖A−An‖.

Theorem 3.2. For v ∈ X , let û, uα and ũα be as in (2.1), (2.2), and (2.3)
respectively, and let 0 < α ≤ ‖A‖. Let n = n(α) be a positive integer such that

‖A−An‖ ≤ α

2
. (3.1)
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Then the equation

(An + αI)u(j)
α,n = ṽ + (An −A)u(j−1)

α,n , j = 1, . . . , k (3.2)

with u
(0)
α,n = 0 is uniquely solvable for j = 1, 2, . . .. If, in addition,

‖A−An‖ ≤ α

2

( α

‖A‖
)1/k

(3.3)

for some k ∈ N, then

‖û− u(k)
α,n‖ ≤ 2

(

‖û− uα‖+ ‖uα − ũα‖
)

.

Proof. By Lemma 3.1 (ii), −α 
∈ σ(An) so that equation (3.2 is uniquely
solvable for j = 1, 2, . . .. From (3.2), with j = k, we have

u(k)
α,n = ũα +Dα,nu

(k−1)
α,n −Dα,nu

(k)
α,n

so that

(I +Dα,n)u
(k)
α,n = ũα +Dα,nu

(k−1)
α,n .

Also,

(I +Dα,n)ũα = ũα +Dα,nũα.

Hence

ũα − u(k)
α,n = Qα,n(ũα − u(k−1)

α,n = Qk
α,nũα, (3.4)

where

Qα,n = (I +Dα,n)
−1Dα,n.

Now using the relation

(A+ αI)uα = v = Aû,

it follows that

uα =
1

α
A(û − uα)

so that

ũα =
1

α
A(û − uα)− (uα − ũα).

Thereore from (3.4), we have

ũα − u(k)
α,n =

1

α
Qk

α,nA(û− uα)−Qk
α,n(uα − ũα).

Thus,

û− u(k)
α,n = (û− uα) + (uα − ũα) + (ũα − u(k)

α,n)

=
(

I +
1

α
Qk

α,nA
)

(û− uα) +
(

I −Qk
α,n

)

(uα − ũα)
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so that

‖û− u(k)
α,n‖ =

(

1 +
1

α
‖Qk

α,nA‖
)

‖û− uα‖+
(

1 + ‖Qα,n‖k
)

‖uα − ũα‖. (3.5)

Now, Lemma 3.1(iii) and the assumption 0 < α ≤ ‖A‖ imply that

‖Qα,n‖ ≤ 2

α
‖A−An‖ ≤ 1 and ‖Qα,n‖ ≤ 2

α
‖A−An‖ ≤

( α

‖A‖
)1/k

so that
1

α
‖Qk

α,nA‖ ≤ ‖Qα,n‖k‖A‖
α

≤ 1.

Thus
‖û− u(k)

α,n‖ ≤ 2
(

‖û− uα‖+ ‖uα − ũα‖
)

.

Remarks.

(a) We observe that

‖Qα,nA‖ = ‖(I +Dα,n)
−1Dα,nA‖

≤ 2‖Dα,nA‖
= 2‖(A+ αI)−1(A−An)A‖

≤ 2

α
‖(A−An)A‖,

so that

1

α
‖Qk

α,nA‖ ≤ 1

α
‖Qα,n‖k−1‖Qα,nA‖

≤ 1

α

( 2

α
‖A−An‖

)k−1

‖Qα,nA‖

≤ 2

α2
‖(A−An)A‖

( 2

α
‖A−An‖

)k−1

.

Using this estimate in relation (3.5), we can replace the condition (3.3) in The-
orem 3.2 by

2

α2
‖(A− An)A‖

( 2

α
‖A−An‖

)k−1

≤ 1. (3.6)

Note that

2

α2
‖(A−An)A‖

( 2

α
‖A−An‖

)k−1

≤ ‖A‖
α

( 2

α
‖A−An‖

)k

.

There are examples for which

‖(A−An)A‖ << ‖A‖ ‖A−An‖.

For instance, consider the case when X is a Hilbert space, A : X → X is a
compact operator and (Pn) is a sequence of orthogonal projections such that
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‖x − Pnx‖ → 0 as n → ∞ for every x ∈ X . Taking An = APn, we have
‖A−An‖ = ‖A(I − Pn)‖ and

‖(A−An)A‖ = ‖A(I − Pn)A‖ ≤ ‖A(I − Pn)‖ ‖(I − Pn)A‖.

Thus, in this case,

‖(A−An)A‖ ≤ ‖(I − Pn)A‖ ‖A−An‖.

Note that, by the assumptions on A and (Pn),

‖A−An‖ → 0 and ‖(I − Pn)A‖ → 0

as n → ∞. Hence, the condition (3.6) take the form

‖(I − Pn)A‖
α

( 2

α
‖A−An‖

)k

≤ 1.

Clearly, this assumption is weaker that (3.3).
In case the operator A is self adjoint as well, then ‖(I − Pn)A‖ = ‖A−An‖

so that the above condition is same as

‖A−An‖ ≤ α

2k/(k+1)

which is guaranteed by the initial assumption ‖A − An‖ ≤ α/2. Thus, in this
particular example, the additional assumption (3.3) is redundant.

4. APPLICATION TO LAVRENTIEV’S REGULARIZATION

Let X be a Hilbert space, A : X → X be a positive self adjoint operator with
its range R(A) dense in X , and v ∈ R(A).

Now the following result can be deduced from Theorem 3.1 and the results
listed in Section 1.

Theorem 4.1. Let (An) be a sequence of bounded operators on X such
that

‖A−An‖ → 0 as n → ∞.

Assume that

• u ∈ R(Aν) with u = Aνu0 for some ν ∈ (0, 1] and u0 ∈ Xm

• 0 < δ ≤ (‖A‖/c)1+ν for some c ≥ 1, and

• n ∈ N is such that

‖A−An‖ ≤ c

2

( c

‖A‖
)1/k

δ(k+1)/k(ν+1)

for some k ∈ N. Then, with α = cδ1/(ν+1),

‖u− u(k)
α,n‖ ≤ 2

(

c‖u0‖+ 1/c
)

δν/(ν+1).
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5. APPLICATION TO TIKHONOV REGULARIZATION

Let X and Y be Hilbert spaces, T : X → Y be a bounded linear operator with
its range R(T ) dense in Y and y ∈ R(T ). Let δ > 0 and ỹ ∈ Y be such that
‖y − ỹ‖ ≤ δ. For α > 0, let xα and x̃α be as in (1.4) and (1.5) respectively.
Taking

A = T ∗T, v = T ∗y and ṽ = T ∗ỹ

the following result can be deduced from Theorem 3.1 and the results listed in
Section 1.

Theorem 5.1. Let (An) be a sequence of bounded linear operators on X
such that

‖A−An‖ → 0 as n → ∞.

Assume that

• x̂ ∈ R(Aν) with x̂ = Aνx0 for some ν ∈ (0, 1] and x0 ∈ X ,

• 0 < δ ≤ (‖A‖/c)1+2ν for some constant c ≥ 1, and

• n ∈ N is such that

‖A−An‖ ≤ c

2

( c

‖A‖
)1/k

δ2(k+1)/k(2ν+1)

for some k ∈ N. Then, with α = cδ2/(2ν+1),

‖x̂− u(k)
α,n‖ ≤ 2(c‖x0‖+ 1/

√
c)δ2ν/(2ν+1).

6. CONCLUDING REMARKS

• We observe that, with appropriate a priori choice of the parameter α, the
estimates in Theorems 4.1 and 5.1 are of the same order as in (1.9) and (1.6)
respectively, which are obtained with no perturbation of the the operator.

• As mentioned in the introduction, Groetsch [3] considered a degenerate ker-
nel method for the case of Tikhonov regularization of the integral equation (1.2)
wherein the An is obtained by approximating the kernel of the integral op-
erator K∗K by a convergent quadrature rule. He obtained the optimal or-
der O(δ2/3) for y ∈ R(K∗K) under the assumption

α = cδ2/3 and ‖A−An‖ = O(δ4/3)

whereas the optimal result in Theorem 5.1 holds under weaker assumption
on (An). For example, the order O(δ2/3) is obtained for y ∈ R(K∗K) under the
assumption

α = cδ2/3 and ‖A−An‖ = O(δ2(k+1)/3k).

This implies that the system required for solving the kth iterate is smaller for
k > 1.
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