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The first step in developing any algorithm to retrieve the atmospheric temperature and humidity para-
meters at various pressure levels is the simulation of the top of the atmosphere radiances that can be
measured by the satellite. This study reports the results of radiative transfer simulations for the multi-
channel infrared sounder of the proposed Indian satellite INSAT-3D due to be launched shortly. Here, the
widely used community software k Compressed Atmospheric Radiative Transfer Algorithm (kCARTA) is
employed for performing the radiative transfer simulations. Though well established and benchmarked,
kCARTA is a line-by-line solver and hence takes enormous computational time and effort for simulating
the multispectral radiances for a given atmospheric scene. This necessitates the development of a much
faster and at the same time, equally accurate RT model that can drive a real-time retrieval algorithm. In
the present study, a fast radiative transfer model using neural networks is proposed to simulate radiances
corresponding to the wavenumbers of INSAT-3D. Realistic atmospheric temperature and humidity pro-
files have been used for training the network. Spectral response functions of GOES-13, a satellite similar
in construction, purpose and design and already in use are used. The fast RT model is able to simulate
the radiances for 1200 profiles in 18 ms for a 15-channel GOES profile, with a correlation coefficient
of over 99%. Finally, the robustness of the model is tested using additional synthetic profiles generated
using empirical orthogonal functions (EOF).

1. Introduction hence is participatory in nature. Hence, an algo-

rithm needs to be developed in order to simulate

Remote sensing of the earth’s atmosphere has been
a subject of interest for several decades for many
researchers from diversified areas. The parameters
of interest related to earth’s atmosphere to be
retrieved from satellite observations, include tem-
perature of earth’s atmosphere at various pres-
sure levels and humidity. The first step in the
inverse analysis of radiation is to model the radia-
tive heat transfer emerging from the earth’s surface
and passing through the atmosphere consisting of
mixture of several gases. The latter can emit and
absorb the radiation in the infrared region, and

the radiances (or brightness temperature by invert-
ing the Planck’s function) that would be measured
by a typical sounder for different wavenumbers.
The process that facilitates this simulation of
infrared radiances for a given set of atmospheric
parameters is known as the forward model. The for-
ward model is then coupled with an optimization
tool to accomplish the retrievals.

Many studies on infrared-based retrievals are
available. In literature, one of the earliest works
in the retrieval of temperature profile was done by
Smith et al. (1972). In this work, the authors have

Keywords. Radiative transfer; infrared; multi spectral; INSAT 3D; neutral network.

J. Earth Syst. Sci. 121, No. 4, August 2012, pp. 891-901
© Indian Academy of Sciences

891



892

used a dynamic forecasting algorithm using data
from Nimbus IV Satellite Infrared Spectrometer.
This algorithm measures the deviations from an
initial guess profile, and iteratively minimizes the
radiance residues.

Yeh et al. (1985) developed an inversion method
to retrieve temperature profiles under any cloudy
situation and several case studies were done with
data obtained from NOAA-6 and TIROS-N High
Resolution Infrared Sounder (HIRS/2). Liou et al.
(1992) proposed a direct inversion (DI) method
that avoids the need for a first guess profile.
This method uses convolution theory and applies
Laplace transforms to arrive at temperature profile
determination.

Li (1994) applied a one term variational method
for the RTE, to determine the successive form
of temperature weighting functions by consider-
ing surface emissivity and solar reflectivity. Geo-
stationary Operational Environmental Satellite
(GOES)-8 and GOES-9 sounders were launched
to retrieve atmospheric temperature and water
vapour profiles and the results are documented in
this study.

Among the most recent studies, Machado et al.
(1998) presented a new technique for the fast
computation of near monochromatic atmospheric
transmittances in the infrared, utilizing com-
pressed look-up tables, that is well suited for
nadir viewing satellite and airplane observations.
A Singular Value Decomposition (SVD) technique
was used to transform very large monochro-
matic look-up tables of absorption coefficients
into a compressed representation that is almost
100 times smaller. This technique became the
basis of the radiative transfer solver k Compressed
Atmospheric Radioactive Transfer Algorithm-
(kCARTA) developed by the same team.

Andrieu and Arnaud Doucet (2000) presented
a simulated annealing based approach for maxi-
mum a posteriori parameter estimation of Hid-
den Markov Models (HMM). Crewell et al. (2002)
developed a synergetic algorithm which incor-
porates measurements from various instruments
in comparison with other retrieval algorithms.
The comparison of different retrieval methods
reveals the weakness of neural network retrievals in
unusual situations.

Suggs et al. (2003) emphasize that the knowl-
edge of surface emissivity in the GOES Imager
and Sounder infrared channels that receive energy
from the earth’s surface is necessary for an accu-
rate retrieval of the atmospheric temperature and
moisture profiles. The authors further observed
that the Land surface temperature (LST) and total
precipitable water (TPW) retrievals are especially
sensitive to emissivity assumptions because they
rely almost exclusively on these window channel
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measurements. In order to retrieve these atmo-
spheric and surface geophysical parameters, the
authors have considered a priori estimates of
surface emissivity for forward radiative transfer
calculations. However, the surface is assumed to be
a gray-body with a constant emissivity (spatially
and for all channels) in their calculations.

Jiang et al. (2005) and Blackwell (2005) show
the wuse of neural networks for the retrieval
of temperature and moisture profiles from the
radiances of the high spectral sounding measure-
ments. This strengthens the belief that Artificial
Neural Network can work as a good retrieval tool.

There were many Indian satellite missions in
the past. However, unlike previous geostationary
meteorological satellites launched by the Indian
Space Research Organisation (ISRO), the INSAT-
3D which is due for launch in 2012, will permit
programmable scanning of a special sector, with
defined N-S and E-W coordinates. Scanning will
also be faster and the data will be at a higher
resolution compared to the currently operational
satellites (Katti et al. 2006). In view of this, the
geophysical products derived during the scanning
will be more accurate and of higher resolution. The
proposed INSAT-3D satellite scans the earth’s
atmosphere in 19 channels whose wavenum-
bers are similar to the Geostationary Opera-
tional Environmental Satellite (GOES) launched
by National Oceanic and Atmospheric Administra-
tion (NOAA). The GOES has 19 different chan-
nels of which one is an imager and three channels
are suited for the cloudy sky conditions (CIMSS
GOES 13 science report 2006). Since wavenumbers
corresponding to the infrared sounder of INSAT-
3D are similar to that of GOES, the wavenumbers
corresponding to the GOES are used in the present
study.

In order to carry out the forward calculations,
a freely distributed and widely used kCARTA has
been used that depicts the physics as seen by a
satellite. The layer averaged thermodynamic prop-
erties of the participating gases in the atmosphere
such as pressure, humidity, temperature, together
with the concentrations of the trace gases at vari-
ous altitudes such as carbon dioxide, methane and
ozone constitute the input. kCARTA is used to
solve the radiative transfer equation under clear
sky conditions. Clear sky condition simulations
are carried out since the earth’s atmosphere is
opaque in cloudy conditions when scanned using
an IR sounder. The output from the kCARTA con-
tains the simulated values of the radiances over a
wavenumber ranging from 630 to 2680 cm™! with
an interval of 0.0025 cm ™. Hence, for a given set of
temperature and humidity conditions in the atmo-
sphere, kCARTA simulates 820,000 radiances at
their corresponding wavenumbers.
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As mentioned earlier, of the 19 channels on
GOES, one is an imager and three channels are
suited for cloudy sky conditions. Hence, in the
present study which involves multispectral infrared
sounder, only 15 channels are considered. The
GOES measures the radiances at these 15 cho-
sen wavenumbers, however the kKCARTA simulates
radiances at 820,000 wavenumbers for the same
range. Hence, in the present study, radiances at
wavenumbers corresponding to the 15 channels of
the GOES sounder instrument are simulated. The
instrument’s response for the variation in intensity
at a wavelength A about d\ is known as the Spec-
tral Response Function. In the present work SRF's
have also been accounted. The radiances obtained
from kCARTA are integrated over the SRF in the
given wavenumber range. A large database is gen-
erated by simulating the radiances using kCARTA
for the temperature and humidity profiles mea-
sured from five different sources. Finally, a much
faster algorithm based on neural network is pro-
posed to speed up the calculations involved in the
simulations of the infrared radiances. This is neces-
sitated by the requirement of repeated calculations
of brightness temperatures for accomplishing the
retrievals.

2. The forward model

The Radiative Transfer Equation (RTE) is the
governing equation for the propagation of electro-
magnetic radiation through an absorbing, emitting
and scattering medium. In the present work, we

893

consider the propagation of electromagnetic radi-
ation in the infrared range to compute the radi-
ances or brightness temperatures leaving the top
of the atmosphere at various infrared frequencies
for a given atmospheric state, as shown in figure 1.
Since the focus of the work is on developing a fast
radiative transfer model for clear sky conditions,
scattering terms in the RTE are neglected.

The intensity of the radiation emerging from the
earth’s surface and passing through an emitting
and absorbing medium is given by the RTE;

dl,

K dr —Knly + enliy

(1)
In equation (1), I is the diffuse radiance field, x
is the absorptivity, € is the emissivity and 7 is the
optical depth. The cosine of the zenith angle 6 is
denoted as p and n refers to wavenumber. The first
term on the right hand side of equation (1) rep-
resents the attenuation in the intensity of outgo-
ing radiation due to absorption by the participat-
ing gases. The second term represents the augmen-
tation of intensity due to emission by the partic-
ipating gases by virtue of its temperature. I, is
the spectral intensity of the black body given by
the Planck’s function in terms of wavenumber and
temperature as:

I, = U
" exp (can/T) — 1

(2)

where ¢; and ¢y are first and second radiation
constants, respectively.
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Figure 1. Schematic of the layered atmosphere model without scattering.
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Figure 2. Schematic of a plane parallel medium.

Following the Kirchoff’s law for an isothermal
medium and substituting for I,,, the radiative
transfer equation becomes:

dI,
Har

5
C1-M

exp (can/T) — 1

Figure 2 shows the one dimensional inhomogeneous
atmosphere with a participating medium of thick-
ness L bounded by two parallel surfaces at differ-
ent temperatures. The bottom surface represents
the ocean surface characterized by a sea surface
temperature given by:

T, =T, + po (4)

(3)

= —kKyly + Ky -

where T is the sea surface temperature, 7; is the
temperature at the first level, ‘p’ is a random num-
ber with 0 mean, and ‘o’ is the standard deviation
which is assumed to be constant, 2 K. For computa-
tional purposes, the vertical atmosphere is divided
into 96 layers of varying thickness in which the
atmosphere is considered to be homogeneous. The
participating medium is considered to be non-gray.

An exact solution exists for the RTE given by
equations (1-3) under clear sky conditions. How-
ever, in order to solve the RTE, the optical thick-
nesses of the different layers and absorptivity of
various gases at the different wavenumbers need
to be known accurately. In the present work, the
open source Fortran Code called kCARTA was
used for solving the RTE. The kCARTA software
uses look-up tables for determining the absorptive
coefficients of the various gases involved. The look-
up tables are compressed using a Singular Value
Decomposition (SVD) technique, to produce the
kCompressed database. The point spacing of the
current database is 0.0025 cm ™!, which is an aver-
age over five points spaced at 0.0005 cm ™. To com-
pute the absorption coefficients for a given profile,

the look-up tables are spline (cubic) interpolated in
temperature, and scaled in gas absorber amount.
The software is set to produce the radiances over a
wavenumber span ranging from 630 to 2800 cm™?.
Radiances are simulated at one hundred pressure
layers from 1100 to 0.005 mbar. The pressure
layers considered in present study are similar to the
pressure levels used for the Atmospheric Infrared
Sounder (AIRS) Fast Forward Model, for which
kCARTA is used as the ‘Reference Forward Model’.
The gases considered in the present analysis are the
trace gases namely carbon dioxide, ozone, water
vapour and methane. The concentration of carbon
dioxide is kept constant while all other radiatively
significant gases have variable concentrations.

The input profile is first processed through
KLAYER, a function which converts point pro-
files to layer averaged temperature profiles. The
KLAYER routine converts the atmospheric pro-
file to Radiative Transfer Profile (RTP) format
which is compatible with kCARTA program. This
RTP file along with the name list containing the
wavenumber range and emissivity information is
input into the main program of kCARTA which
calculates the radiances in the infrared region as
specified.

In the present study, simulations are carried
out at wavenumbers corresponding to the GOES
Sounder instrument to mimic the ‘measurements’
of the radiances leaving the top of the atmosphere
(TOA). Table 1 gives the details about the channels
that are considered in the present study.

2.1 Spectral response functions

Spectral response functions (SRF) show the
behaviour of an instrument at a particular
wavenumber v about dv. Figure 3 shows the 18
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Table 1. Channels and their details used for simulations in the fast
forward model.

Channel Wavelength Wavenumber Principal absorbing
no. (pum) (ecm™ L ) constituents
1 14.71 680 CO2 band

2 14.37 696 CO2 band

3 14.06 711 CO3 band

4 13.96 733 COg2 band

5 13.37 748 CO32 band

6 12.66 790 Water vapour
7 12.02 832 Water vapour
8 11.03 907 Window

9 9.71 1030 Ozone

10 7.43 1345 Water vapour
11 7.02 1425 Water vapour
12 6.51 1532 Water vapour
13 4.57 2188 N2, O

14 4.52 2213 Ns, O

15 4.45 2247 COq
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Figure 3. The SRFs for the 18 channels of the GOES infrared sounder (reproduced from CIMSS GOES 12 science report
2006).

SRFs corresponding to the 18 wavenumbers of Donald and Timothy (2007). The SRF for a par-
GOES on the electromagnetic spectrum. In the ticular channel is incorporated as:

present work, it is assumed that the SRFs of

INSAT-3D closely match those of GOES. The

SRFs for the first 15 channels are considered in / F(v)B(v,T.)dv :/ F()R((w)dv (5)
the present analysis which are obtained from the 0 0
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where F' is the SRF, B is the Planck’s black
body intensity for a given temperature T, and R
is the intensity of emitted energy at wavenumber
v measured by the instrument. Since the interval
of wavenumber is the same on both sides of the
equation, the convolved radiance turns out to be:

s LEW-RE)

SFW) ©)

3. Need for the fast forward model

Forward calculations are an integral part of any
retrieval problem. Retrieval algorithms can be
broadly classified into two types: (i) statistics based
and (ii) physics based. Physics-based retrieval algo-
rithms are widely used in remote sensing applica-
tions due to their robustness and their ability to
solve the non-linear inversion problem, particularly
for temperature and water vapour profile retrieval.

Physics-based algorithms suffer from the draw-
back that it is necessary to execute the for-
ward model repeatedly for each retrieval in order
to find the ‘best’ profile that matches with the
satellite observations. Therefore, the time involved
in the forward calculations becomes critical in
the retrieval algorithm. However, the computation
time involved in simulating the radiances using
kCARTA is very high since kCARTA is a line-by-
line method. It has been observed that it takes
about 58 s to simulate the radiances at differ-
ent wavenumbers for a given atmospheric scene
on an Intel Xeon based Linux machine. However,
infrared sounders typically make a measurement of
about 16 pixels or profiles every second per orbit
(Donald and Timothy 2007). Hence, in order to
develop an algorithm to retrieve the atmospheric

Input layer

Hidden layer
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profiles, there is a critical need to speed up the
computational time involved in the forward calcu-
lations for real time processing of satellite images
with a view to estimate the vertical atmospheric
structure. Hence, a fast, accurate and robust radia-
tive transfer model to simulate the radiances in
the atmosphere becomes a necessity. In the present
work, an artificial neural network (ANN) based fast
forward model is proposed to replace the kKCARTA.

4. Artificial neural networks (ANN) based
fast forward model (AFFM)

Neural networks have been a simple and effective
technique to establish a relationship between the
input and the corresponding target values. In the
present study, an ANN based fast forward model
(AFFM) is proposed to speed up the forward cal-
culations. A simple neural network architecture is
shown in figure 4. The input layer consists of 193
neurons corresponding to the 96 temperatures and
96 humidity parameters along with the sea surface
temperature, while the output layer has 15 neurons
corresponding to the 15 brightness temperatures.
One hidden layer is used for training the network in
the present study. Statistics based methods such as
ANN are largely data driven and hence the gener-
ation of database for retrievals forms a very crucial
step.

4.1 Generation of database

In the present study, vertical profiles are con-
sidered at 96 layers of the atmosphere between
the surface of the earth and up to a height of
80 km. The realistic database consists of layer-
wise information for temperature, humidity, ozone

Output layer

» O

96 Temperatures
+
96 Humidity

15 Brightness Temperatures

O >O

>O

Figure 4. A simple neural network architecture of the forward model depicting the input layer, output layer and the hidden

layer.



ANN based fast radiative transfer model

1600
1400 -

1200 -
1000 -
800 |
600
400 -
200 - I
o '

ECMWF PROF NOAA TIGR

Figure 5. Distribution of realistic database of atmospheric
temperature and humidity profiles.

and gaseous constituents such as carbon dioxide,
methane and ozone. Temperature and humidity
profile data from NOAA, Thermodynamic Initial
Guess Retrieval (TIGR), RadioSonde, OzoSonde
and European Centre for Medium Range Forecasts
(ECMWF) are considered to develop the fast for-
ward model. The total number of profiles collected
from these sources amounts to 11,450. A special
request was placed to Laboratoire de Meteorologie
Dynamique (LMD), France in order to obtain this
data. Figure 5 shows the distribution of the realis-
tic database. Of these 11,450 profiles, 3876 profiles
corresponding to the tropical region bounded by
+25° latitude alone are considered in this study.

An a priori database is generated by executing
the kCARTA for the 3876 profiles. The datasets
are classified into two sets: the first set of data
consisting of 2676 profiles is used for training the
network while the remaining are used for testing
purposes. The input consists of 193 parameters;
96 values of temperatures and 96 values of humid-
ity along with the sea surface temperature at var-
ious vertical levels in the atmosphere. The output
consists of 15 brightness temperatures simulated
by the kCARTA for the corresponding input pro-
files. The inputs and the outputs are normalized
against their respective maximum and minimum
values before they are input to the network with
the following expression:

P (i) — P

Pmm
Pmax -

(7)
where P is either input or output parameter, P, (7)
refers to the normalized parameter, P, and Py,
refer to the maximum and minimum values of
the parameters, respectively. The back propaga-
tion neural network toolbox available in the com-
mercial package MATLAB is used for training and
simulation of the network.
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5. Generation of synthetic profiles

In the present study, apart from the need to expand
the existing database, the generation of synthetic
profiles is also necessitated to analyze the robust-
ness of the fast forward model proposed. The ini-
tial dataset of radiosonde profiles are decomposed
using the method of Empirical Orthogonal Func-
tions (EOF) to generate the synthetic database.
The corresponding eigen profiles and the statistics
of the expansion coefficients are used to numeri-
cally generate synthetic profiles that obey the same
statistics (with the same mean, variability and
cumulative eigenvectors) as the initial dataset.
The temperature and humidity profiles are gen-
erated separately using EOF. Stochastic temper-
ature profiles are numerically generated using the
following equation (Tatarskaia et al. 1997)

T (2) = (T (=) + z C0T () /AT

k=1,2,...,9

(8)

where the superscript T identifies temperature
quantities, the angle brackets (---) describe an
average over the ensemble of radiosonde profiles
in a particular classification, ¢Z(z;) is the eigen
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Figure 6. Comparison of % variance for the synthetic and
radiosonde profiles for (a) temperature and (b) humidity.
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profile evaluated at an altitude z;,, AT are the eigen
values and (, are non-zero mean Gaussian random
numbers with unit variance.

Humidity profiles are generated in a similar way.
However, in contrast to temperature, excursions in
the humidity can be very large, at times larger
than the mean. This can pose a problem because it
can lead to negative values which are not realistic.
To circumvent this problem, the following trans-
formation proposed by Tatarskaia et al. (1997) is
used:

g=1Ina, 9)

where a is the normalized absolute humidity
(absolute humidity /maximum humidity across the
height for the profile under consideration). The
EOF decomposition procedure for humidity is then
identical to temperature but ¢ is used instead of a.
At the final step, we simply invert the results using
equation (9), i.e.,

a(zy) = exp {(111@ (21)) + > Gt (21) v/ )\L““}
= (10)

It was seen that the statistics of the 10,000
synthetic profiles generated are consistent with
the corresponding statistics of the initial dataset.
Figure 6(a and b) shows the comparison of the
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Figure 7. Limiting range for (a) radiosonde temperature
and (b) radiosonde humidity.
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Figure 8. Comparison of standard deviation of radiosonde
and synthetic profiles for (a) temperature and (b) humidity.

Y%variance explained by the dataset of the tem-
perature and humidity respectively across various
pressure levels for the synthetic and the realistic
database. Figure 7(a and b) compares the domain
of the radiosonde profiles generated for both the
temperature and humidity respectively. Figure 8(a
and b) shows the comparison between the standard
deviations for radiosonde and synthetic profiles for
both temperature and humidity. It can be seen that
the cumulative variance of the numerically gen-
erated parameters agrees well with those of the
initial dataset. Furthermore, the mean and the
standard deviation of the synthetic profiles gener-
ated agree with the initial dataset with a correla-
tion coefficient of over 99%.

6. Results and discussion

The back propagation neural network toolbox
available in MATLAB is used for training and sim-
ulation of the network. The network is trained
for 2500 epochs. Six different architectures have
been tried in the present work and the network
performances are given in table 2. The root mean
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Table 2. Network performance of various architectures.

ANN architecture RMSE (K) R?
193-10-15 2.663 0.999
193-13-15 1.396 0.999
193-20-15 2.832 0.999
193-30-15 3.254 0.999
193-40-15 2.868 0.999
193-50-15 2.582 0.999
10’
10°
E 10"
£
E ]0—:'
S 0
10"5-
¥ 50 000 150 2000 2500

Number of iterations

Figure 9. Training performance of the fast forward model.

square error (RMSE) T, at a level k is calcu-

lated as:
(T
Tk \/Zz—l ( S

n

- Tai)2

(11)

where T}; and T,; correspond to the simulated and
actual brightness temperatures respectively and n
corresponds to the number of profiles in the testing
dataset.

From table 2, it can be seen that the architecture
with 13 neurons in the hidden layer has the least
RMSE of 1.3961 K. This network is considered as
the ‘best’ network and hence further simulations
are done with 13 neurons in the hidden layer.

Figure 9 shows the variation of the mean square
error (MSE) with epochs. It can be seen that the
MSE has reached an acceptable value after 2500
epochs and further iterations are not necessary.
The network is then tested for the remaining 1200
profiles in the dataset. Figure 10 shows the par-
ity plot of the brightness temperatures. From the
figure, it is clear that the brightness temperatures
simulated using the proposed fast forward model
agree very well with those simulated by kCARTA
and are devoid of any bias. Table 3 shows the bias
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Figure 10. Parity plot between ANN simulated and
kCARTA simulated brightness temperatures.

and the RMSE of the brightness temperature sim-
ulated at the 15 GOES channels using the fast for-
ward model. It can be seen from table 3 that the
accuracy of the fast forward model is about 1.39 K
which confirms the adequacy of the neural network
to capture the physics associated with the radia-
tive transfer in the clear sky atmosphere accurately
with a correlation coefficient of over 0.99.

Also a comparison of the neural network model
with RTTOVv10 has been made for the same set
of input profiles. The time taken for computing the
radiances of 3876 profiles (with 15 channels) using
RTTOVv10 was 0.4 s (this includes computation
time as well as the time taken to write the data to
a file) whereas the neural network model was able
to complete in 0.165 s. The time taken in RTTOV
may vary depending on the input profile used for
analysis. Profiles with temperatures and humidity
exceeding the limits (as specified in the RTTOV
manual) may need extrapolation of the coefficients
for computation which may consume time. Also,
the 96 pressure levels of kKCARTA were interpo-
lated into 51 RTTOV pressure levels using a cubic
interpolation method. The RTTOV radiances are
based on this 51 level data. The RMSE shown in
table 3 was calculated with kCARTA radiances as
the reference model and with the same profiles as
input.

In order to analyze the robustness of the model,
the ‘training set’ was expanded systematically in
steps of 4000 profiles by adding the synthetic
profiles numerically generated using EOF.
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Table 3. RMSE of brightness temperatures for various channels.

Channel Wavelength Wavenumber RMSE Bias
no. (um) (em™") (K) (K)

1 14.71 680 0.557 0.00215
2 14.37 696 0.406 7.64E-05
3 14.06 711 0.483 —0.00023
4 13.96 733 0.409 —0.00077
5 13.37 748 0.415 —0.0018

6 12.66 790 0.821 —0.00111
7 12.02 832 0.889 —0.0005

8 11.03 907 0.712 0.001023
9 9.71 1030 1.265 —0.00181
10 7.43 1345 0.942 0.000452
11 7.02 1425 1.039 —0.00186
12 6.51 1532 1.396 —0.00205
13 4.57 2188 0.781 0.000418
14 4.52 2213 0.739 0.000316
15 4.45 2247 0.479 —3.62E-06

RMS error (K)
P88 g3

5

14

— —l —t —r — —de —
1'32?)% 3000 4000 5000 6000 T000 8000 9000 10000
Number of training profiles

Figure 11. Variation of RMS error (K) with increase in the
number of training profiles.

To validate the accuracy of the EOF in generat-
ing synthetic profiles, a sample of 100 profiles were
generated using the method of EOF. kCARTA was
then used to simulate the radiances for these 100
profiles. These radiances simulated were then com-
pared with the radiances generated for the same
profiles using the proposed fast forward model. It
was found that the two quantities matched very
well with a correlation coefficient of over 0.999,
thus confirming the accuracy of the method.

Figure 11 shows the variation of the RMSE
with the expansion of the training set. Although
there was negligible difference in the maximum
RMSE with the addition of profiles to the train-
ing set, the RMSE reduces marginally, thereby
confirming the robustness of the proposed model.
More importantly, it confirms that the original
database employed itself contains enough diversity
to capture all of the physics and injection of addi-
tional data improves the already good results only
marginally.

Furthermore, the execution of the forward model
on an Intel Xeon 3.0 GHz processor based, 16 GB
DDR2 RAM server for 3876 test profiles took
59 h using kCARTA, while the fast forward model
delivers the same results in just 3 s. Hence, the
fast forward model can be successfully employed
for developing quicker and accurate retrieval
algorithms.

7. Conclusions

A neural network based fast forward radiative
transfer model for the 19 channel infrared sounder
of the proposed Indian satellite INSAT 3D has
been developed in the present work. The fast
model is proposed as a replacement for the ‘full’
radiative transfer (RT) simulations after elaborate
testing and benchmarking. The wavenumbers con-
sidered for the channels in this study correspond
to those of the GOES sounder, which are identical
to that of INSAT 3D. A large database of atmo-
spheric temperature and humidity profiles against
the multispectral radiances is first generated using
the kCARTA to simulate the radiances for the
given atmospheric temperature and humidity pro-
files. This database powers the training of the neu-
ral network. Additional profiles not used in the
training were used for testing. The maximum value
of the RMSE on the brightness temperature was
1.39 K which confirms the adequacy of the neural
network to capture the physics associated with the
radiative transfer in the clear sky atmosphere accu-
rately with a correlation coefficient of over 99%.
Finally, in order to establish the robustness of the
model, 10,000 synthetic profiles are generated using
the method of empirical orthogonal functions.
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Keeping the testing set the same, the training set
was then systematically expanded in steps of 4000
profiles by adding these synthetic profiles gener-
ated. The results obtained are very encouraging
and show that the fast forward model using the
neural network is very robust and is capable of
predicting the brightness temperatures accurately
with a correlation coefficient of over 99% in just a
fraction of the time required by the detailed numer-
ical simulations. The proposed fast forward model
can be suitably fine tuned when the satellite is
operational and can be used by the community to
develop online retrieval algorithms.
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