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1 Introduction 

Propositional reasoning is a fundamental issue in artificial intelligence due to its high 
complexity. Checking whether a query is logically entailed by the knowledge base is 
intractable (Cook, 1971) since every known algorithm takes exponential time in the 
worst case in the size of the knowledge base. To overcome such computational 
intractability, the propositional entailment problem is split into two phases such as  
off-line and online. In the off-line phase, the original knowledge base X is compiled into 
another knowledge base X′ and in the online phase the query is actually answered from 
the new knowledge base in polynomial time in the size of X′. In such type of compilation 
most of the computational overhead is shifted into the off-line phase which is  
amortised over online query answering. The off-line computation is known as  
knowledge compilation. 

Several approaches for knowledge compilation have been suggested so far. The first 
kind of approach consists of an equivalence preserving compilation. In one such 
approach, the propositional knowledge base X is compiled into a logically equivalent 
knowledge base Π(X), the set of prime implicates of X (Coudert and Madre, 1992;  
de Kleer, 1986, 1992; del Val, 1994; Jackson and Pais, 1990; Kean and Tsiknis,  
1990; Ngair, 1993; Reiter and de Kleer, 1987; Shiny and Pujari, 1998; Strzemecki, 1992; 
Slagle et al., 1970; Tison, 1967) with respect to which queries are answered in 
polynomial time in the size Π(X) by a subsumption test. In another approach to 
equivalence preserving compilation, Marquis suggested the computation of theory prime 
implicates (Marquis, 1995) from a knowledge base X with respect to another knowledge 
base Y, so that queries can be answered from the set of theory prime implicates in 
polynomial time. Another kind of knowledge compilation in first order case is given  
by del Val (1996). 

Most of the research work in knowledge compilation have been restricted to 
propositional knowledge bases. Due to lack of expressive power in propositional logic, 
first order logic is required to represent knowledge in many problems. We exploit  
the quantifier free theory of first order logic to store knowledge in a knowledge base. The 
formulas are assumed to be in Conjunctive Normal Form (CNF). Taking clue from Raut 
and Singh (2004) we compute the theory prime implicates (Marquis, 1995) of a first 
order theory X with respect to another theory Y. 

This paper is organised as follows. In Section 2, we introduce the definitions and 
notions for establishing the required results. In Section 3, we review briefly the 
consensus method in first order logic as presented by Raut and Singh (2004). Section 4 
describes the properties of theory prime implicates and presents an algorithm to compute 
them. Section 5 concludes this paper. 

2 Preliminary concepts 

The alphabet of first order language contains the symbols x, y, z,… as variables,  
f, g, h, … as function symbols, P, Q, R,… as predicates, ¬, ∧, ∨ as connectives, (,)  
and ‘,’ as punctuation marks and ∀ as universal quantifier. Let FM contain the set of 
formulas built upon this alphabet. We assume the syntax and semantics of first order  
logic. Formulas are denoted by upper case letters. For an interpretation or a first  
order structure i and a formula X, we write i ≤ X if i is a model of X. For a set of  
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formulas Σ (or a formula) and any formula X we write Σ ≤ X to denote that for every 
interpretation i if i is a model of every formula in Σ then i is a model of X. In such a case, 
we call X. a logical consequence of Σ. If X ≤ Y and Y ≤ X then X ≡ Y. The quotient set of 
FM induced by the equivalence relation ‘≡’ is represented as [FM]≡. 

A literal is an atomic formula or negation of an atomic formula. A disjunctive  
clause is a finite disjunction of literals which is also represented as a set of literals.  
A quantifier-free formula is in CNF if it is a finite conjunction of disjunctive clauses. For 
convenience, a formula is also represented as a set of clauses. In this paper, we consider 
formulas only in clausal form. 

Two literals r and s are said to be complementary to each other if the set {r, ¬s} is 
unifiable with respect to a most general unifier ξ. We call ξ a complementary substitution 
of the set {r, ¬s}. For example, Pxf(a) and ¬Pby are complementary to each other with 
respect to the complementary substitution (most general unifier or mgu, for short)  
[x/b, y/f(a)]. So the most general unifier bundles upon infinite number of substitutions to 
a finite number. 

A clause which does not contain a literal and its negation is said to be fundamental. 
Thus a non-fundamental clause is valid. We avoid taking non-fundamental clauses in 
clausal form because the universal quantifiers appearing in the beginning of the formula 
can appear before each conjunct of the CNF since ∀ distributes over ∧. So each clause in 
a formula of the knowledge base is assumed to be non-fundamental. Let C1 and C2 be  
two disjunctive clauses. Then C1 subsumes C2 if there is a substitution σ such that  
C1σ ⊆ C2, that is, C1σ ≤ C2. For example, {¬Rxf (a), ¬Py} subsumes the clause 
{¬Rg(a)f(a), ¬Py, Qz} with respect to the substitution σ = [x/g(a)]. A disjunctive clause 
C is an implicate of a finite set of formulas X (assumed to be in CNF) if Xσ ≤ C for a 
substitution σ. We write I(X) as the set of all implicates of X. A clause C is a prime 
implicate of X if C is an implicate of X and there is no other implicate C′ of X such that 
C′τ ≤ C for a substitution τ (i.e. if no other implicate C′ subsumes C). Π(X) denotes the 
set of prime implicates of X. It may be observed that if an implicate C is not prime then 
there exists a prime implicate D of X that subsumes C, that is, along with D, we have a 
substitution τ such that Dτ ≤ C. 

Note that the notion of prime implicate is well defined as the knowledge base 
contains clauses unique up to subsumption. Let Y be a set of fundamental clauses.  
The residue of subsumption of Y, denoted Res(Y) is a subset of Y such that for every 
clause C ∈ Y, there is a clause D ∈ Res(Y) such that D subsumes C. Moreover, no clause 
in Res(Y) subsumes any other clause in Res(Y). 

A clause C ∈ Π(X) is a minimal element of Π(X) if for all C ∈ Π(X) and for  
all substitution σ, Cσ ≤ C′ implies Cσ ≡ C′. Equivalently, a clause C′ ∈ Π(X) is a 
minimal element of Π(X) if there is no C ∈ Π(X) and there is no substitution σ such that 
Cσ ≢ C′ and Cσ ≤ C′. Clearly, the prime implicates of a finite set of formulas X are the 
minimal elements of I(X) with respect to ≤. So Π(X) = min (I(X), ≤). 

Let C1, C2 be two clauses in X and r ∈ C1,s ∈ C2 be a pair of complementary literals 
with respect to a most general unifier σ. The resolution of C1 and C2 is  
C = [(C1 − {r}) ∪ (C2 − {s})]σ. If C is fundamental, it is called a consensus of C1 and C2. 
The set of all consensus of C1 and C2 is denoted by CON (C1, C2). C can also be written 
as [(C1σ − {t}) ∪ (C2σ − {¬t})] for a literal t, provided rσ = t and sσ = ¬t. In this case, 
we also say that C is the propositional consensus of C1σ and C2σ. For example,  
if C1 = {Rbx, ¬Qg(a)} and C2 = {Rab, Qz} then CON(C1, C2) = {Rbx, Rab} which equals 
the propositional consensus of C1[z/g(a)] and C2[z/g(a)]. If C is the consensus of C1 and 
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C2 with respect to a most general unifier σ then C is said to be associated with the 
substitution σ. By default, each clause C of a set of formulas X is associated with  
the empty substitution ε. Let C1 and C2 be two resolvent clauses associated  
with substitutions σ1 and σ2, respectively. Then their consensus with respect to σ is 
defined provided σ1σ = σ2σ. The consensus is then the propositional consensus of C1σ 
and C2σ and the consensus is associated with the substitution σ3 = σ1σ = σ2σ. 

Let Y be a finite set of formulas. We define ≤Y over FM × FM (as the extension of ≤) 
by X1 ≤Y X2 iff {X1} ∪ Y ≤ X2 where X1 and X2 are two formulas in FM. Similarly for a 
substitution σ we define X1σ ≤Y X2 if {X1σ} ∪ Yσ ≤ X2, (i.e. (X1 ∪ Y)σ ≤ X2 if X1 is a set of 
formulas) where both X1 and Y are associated with the same substitution σ.  
If X1σ ≤Y X2 holds then we say that X2 is a Y-logical consequence of X1. We define the 
equivalence relation ≡Y over FM by X1 ≡Y X2 if X1σ1 ≤Y X2 for all σ1 and X2σ2 ≤Y X1 for all 
σ2. In this case, we say that X1 and X2 are Y-equivalent. [FM]≡Y is the quotient set of FM 
induced by the equivalence relation ≡Y. 

We now extend the definition of prime implicate to theory prime implicate with 
respect to ≤Y as follows. Let X and Y be finite sets of formulas. A clause C is a theory 
implicate of X with respect to Y if Xσ ≤Y C. A clause C is called a theory prime implicate 
of X with respect to Y if C is a theory implicate of X with respect to Y and there is no 
other theory implicate C′ such that C′τ ≡Y C for some substitution τ. We denote  
by Θ(X, Y) the set of theory prime implicates of X with respect to Y. Thus, Θ(X, Y) 
contains the minimal elements of the set of theory implicates of X with respect to Y.  
The minimal clauses are considered up to Y-logical equivalence, that is, Θ(X, Y) contains 
a clause from each ≡Y -equivalence class. 

3 Computation of prime implicates 

We briefly present the main results for computation of prime implicates (Raut and Singh, 
2004) of first order predicate formulas in clausal form. Let X = {C1,…,Cn} be a formula 
where each clause Ci is fundamental. Then each Ci is an implicate of X with respect to the 
empty substitution, but each one of them may not be a prime implicate. The key is the 
subsumption of implicates of X. Since clauses here are disjunctive, we observe that if  
C1 subsumes C2 then there is a substitution σ such that C1σ ≤ C2. Our aim is to see how 
deletion of subsumed clauses leads to the computation of prime implicates. It leads us to 
explore the relation between consensus closure and the prime implicates. 

Lemma 3.1: A clause C is an implicate of X if and only if there is a prime implicate C′ of 
X such that C′ subsumes C. 
Lemma 3.2: X = Π(X). 

Theorem 3.3: Consensus of two implicates of a formula is an implicate of the formula. 

The computational aspects of prime implicates is described below. For a set of clauses X, 
let L(X) be the set of all consensus among clauses in X along with the clauses of X, that 
is, L(X) = X ∪ {S: S is a consensus of each possible pair of clauses in X}. We construct 
the sequence X, L(X), L(L(X)),…, that is, Ln+1(X) = L(Ln(X)) for n ≥ 0 and L0(X) = X.  
We put together all the clauses in the sequence of sets and form the consensus closure.  



   

 

   

   
 

   

   

 

   

   8 A. Singh and M.K. Raut    
 

    
 
 

   

   
 

   

   

 

   

       
 

The consensus closure of X is written as *( )L X  = ∪{Li(X): i ≥ 0}. From Theorem 3.3, it 

follows that *( )L X  ⊆ I(X). 

Theorem 3.4: The set of all prime implicates is a subset of the consensus closure of X, 
that is, Π(X) ⊆ *( )L X . Moreover, Π(X) = Res ( *( ))L X . 

Using the above results on the extended notions of consensus and subsumption, we have 
suggested (Raut and Singh, 2004) an algorithm to compute prime implicates of first order 
formulas in clausal form. Correctness of the algorithm has also been proved there.  
We intend to employ a similar algorithm for computing theory prime implicates. 

4 Computation of theory prime implicates 

We describe some of the properties of and an algorithm to compute theory prime 
implicates Θ(X, Y) of a first order theory X with respect to another theory Y based on the 
results in Raut and Singh (2004) as described in the last section. 

Lemma 4.1: Let X and Y be finite sets of formulas. Then Θ(X, Y) ⊆ Π (X ∪ Y). 

Proof: Let C ∈ Θ(X, Y). So Xσ ≤Y C holds and there is no theory implicate C′ of X with 
respect to Y such that C′τ ≤Y C holds for some τ. This implies Xσ ∪ Yσ ≤ C. That is,  
(X ∪ Y) σ ≤ C. C is an implicate of X ∪ Y. If C is not a prime implicate of X ∪ Y then 
there exists a prime implicate C′ of X ∪ Y such that C′τ ≤ C, that is, C′τ ≤Y C. As C′ is a 
prime implicate of X ∪ Y, (X ∪ Y)τ ≤ C′, that is, Xτ ≤Y C′. This implies C′ is a theory 
implicate of X with respect to Y. So we get a theory implicate C′ such that C′τ ≤Y C, that 
is, C is not a theory prime implicate of X with respect to Y, which is a contradiction. 

Lemma 4.2: If C, C′ ∈ Π(X ∪ Y) and Cτ ≤ C′ but Cτ  ≢Y C′ for some τ then  
C′ ∉ Θ (X, Y). 

Proof: Let C′ ∈ Θ(X, Y). Xσ ≤Y C′ and there is no theory implicate D such that Dτ ≤Y C′ 
for some τ. In other words, (X ∪ Y) σ ≤ C′ and there is no theory implicate D (i.e.  
(X ∪ Y) σ ≤ D) such that Dτ ≤Y C′. Thus, (X ∪ Y) σ ≤ C′ and for every D if (X ∪ Y)τ ≤ D  
then Dτ does not entail C′ with respect to Y. As C is a prime implicate of X ∪ Y, C is also 
an implicate of X ∪ Y. With D = C, (X ∪ Y) σ ≤ C′ and if (X ∪ Y)τ ≤ C then Cτ does not 
entail C′ with respect to Y, which contradicts the hypothesis of the lemma. This implies 
that C′ ∉ Θ(X, Y) completing the proof. 

Lemma 4.3: If C, C′ ∈ Θ(X, Y) and C ≠ C′, then either (i) Cσ1 ≤Y C for all σ1 and it is not 
that C′σ2 ≤Y C for some σ2 or (ii) C′σ2 ≤Y C for all σ2 and it is not that Cσ1 ≤Y C′ for 
some σ1. 

Proof: If Cσ1 ≤Y C′ for all σ1, C′ is a Y-logical consequence of C. If C′σ2 ≤Y C for all  
σ2 then C is a Y-logical consequence of C′. So C ≡Y C′. Thus either C or C′ belongs to  
Θ(X, Y) but not both which is a contradiction to the hypothesis. Similarly the other part  
is proved. This completes the proof. 

The following result is obtained by using the above Lemmas. 

Theorem 4.4: Θ(X, Y) = min (Π(X ∪ Y), ≤Y). 
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Theorem 4.5: Let X and Y be finite sets of formulas and C be any clause. Xσ ≤Y C holds if 
there exists a theory prime implicate C′ of X with respect to Y such that C′ τ ≤Y C holds. 

Proof: Suppose Xσ ≤Y C holds. C is an implicate of X ∪ Y. If C is not prime then there is 
an implicate C × (≠ C) of X ∪ Y and a substitution τ such that C × τ ≤ C. Let  
A∗ = {C∗: C∗ is an implicate of X ∪ Y and C∗τ ≤Y C for some τ}. We can obtain a finite 
subset A = {C1,…, Cn } of A∗ such that for each C∗ in A∗ there is a Ci in A and a 
substitution η such that C∗ = Ciη, since there are only a finite number of variables in C∗ 
and C is finite. Now A, being a finite set, has a strict partial order as logical consequence 
with respect to Y. Each element of A is an implicate of X ∪ Y. Any minimal element  
C′ of A is a prime implicate of X ∪ Y, that is, a theory prime implicate of X with  
respect to Y. 

Conversely, there exists a prime implicate C′ of X ∪ Y such that C′τ ≤Y C, that is,  
C′τ ∪ Yτ ≤ C holds. As (X ∪ Y) σ ≤ C′, C′ ≤ C′τ and C′τ and Yτ are disjunctive,  
(X ∪ Y) σ ≤ C′τ ∪ Yτ. Thus (X ∪ Y) σ ≤ C, showing that Xσ ≤Y C. This completes  
the proof. 

Lemma 4.6: If X ≡ X′, then Π(X) ≡ Π(X′). 

Proof: Let C ∈ Π(X); that is, Xσ ≤ C and there exists no implicate C′ of X such that  
C′σ ≤ C. Since X ≡ X′, we have X′σ ≤ C. Also, there exists no implicate C′ with C′σ ≤ C. 
This implies C ∈ Π(X′). Thus, Π(X) ⊆ Π(X′). Similarly, Π( X′) ⊆ Π(X). 

Theorem 4.7: If X ≡ X′ and Y ≡ Y′, then Θ(X, Y) ≡ Θ( X′, Y′), upto Y-equivalence. 

Proof: Let C ∈ Θ(X′, Y′), that is, for all C′ ∈ Π(X′ ∪ Y′), if C′σ ≤Y′ C then C′σ ≤Y C.  
By hypothesis, X′ ∪ Y′ ≡ X ∪ Y and by Lemma 4.6, Π(X′ ∪ Y′) = Π(X ∪ Y). So, for all  
C′ in Π(X ∪ Y) if C′σ ≤Y′ C then C′σ ≤Y C. As C′ ∈ Θ(X, Y), we see that Θ(X′, Y′)  
⊆ Θ(X, Y). Similarly, the other inclusion Θ(X, Y) ⊆ Θ(X′, Y′) follows. 

To see the computational aspects of prime implicates, let X and Y be finite sets of 
formulas and Z1 = X ∪ Y. Define L1(Z1) = Z1 ∪ {C1: C1 is the consensus of a pair of 
clauses from Z1}. Construct Z2 by deleting those clauses from L1(Z1) which are Y-logical 
consequences of C1. Let L2(Z1) = Z2 ∪ {C2: C2 is the consensus of a pair of clauses  
from Z2}. Construct Z3 like Z2, but from L2(Z1). In general, write Ln(Z1) = Zn ∪ {Cn: Cn is 
the consensus of two clauses from Zn}. At one stage for some m > n, Lm(Z1) = Ln(Z1) = Zn+1 
happens, in the propositional case. Unfortunately this need not be so in a first order 
knowledge base as explained by an example in Raut and Singh (2004). However, each 
clause in each set Ln(X ∪ Y) is a Y-logical consequence of X, as the following  
result shows. 

Lemma 4.8: X ≤Y Ln(X ∪ Y). 

Proof: First, we show that X ∪ Y ≤ L1(X ∪ Y). Let i be a model of X ∪ Y; that is, i ≤ C  
for all C in X ∪ Y. If X ∪ Y = L1(X ∪ Y), then X ∪ Y ≤ L1(X ∪ Y). If not, there exists  
a clause D in L1(X ∪ Y) such that D is the consensus of two clauses, say, of Cj and Ck  
from X ∪ Y. As i ≤ Cj ∧ Ck, it follows that i ≤ D and i ≤ L1(X ∪ Y). This implies that  
X ∪ Y ≤ L1 (X ∪ Y), that is, X ≤Y L1(X ∪ Y). Similarly we can show that  
L1(X ∪ Y) ≤Y L2(X ∪ Y) ≤Y L2(X ∪ Y)…≤Y Ln(X ∪ Y). By induction, it follows  
that X ≤Y Ln(X ∪ Y). 
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This implication can be strengthened to an equivalence as in the following. 

Theorem 4.9: X ≡Y Ln(X ∪ Y). 

Proof: Due to Lemma 4.8, it is enough to show that Ln(X ∪ Y) ≤Y X. For this, let i be a 
model of L1(X ∪ Y), that is, i ≤ C for all C in L1(X ∪ Y) ∪ Y. If L1(X ∪ Y) ∪ Y = X then it 
is clear that L1(X ∪ Y) ≤Y X. If not, then there exists a clause C∗ in X such that C∗ ∉  
L1(X ∪ Y) ∪ Y. This implies that there exists a clause D∗ ∈ L1(X ∪ Y) ∪ Y such that C∗ is 
a Y-logical consequence of D∗, that is, D∗σσ ≤Y C

∗. As i ≤ C for all C ∈ L1(X ∪ Y) ∪ Y,  
i ≤ D∗. Thus, i ≤ D∗σ. As i ≤ Y, i ≤ C∗, we have i ≤ X. Hence, L1(X ∪ Y) ∪ Y ≤ X that is, 
L1(X ∪ Y) ≤Y X. It follows by induction that Ln(X ∪ Y) ≤Y X. 

Theorem 4.10: I(X ∪ Y) ≡ Ln(X ∪ Y). 

Proof: From Lemma 4.8, we see that all the clauses of Ln(X ∪ Y) are implicates of X ∪ Y. 
That is, Ln(X ∪ Y) ⊆ I(X ∪ Y). Therefore, I(X ∪ Y) ≤ Ln(X ∪ Y) as the sets of clauses are 
interpreted as CNF. 

Conversely, let i be a model of Ln(X ∪ Y). If all the clauses of I(X ∪ Y) are in Ln(X ∪ Y), 
then the result is obvious; otherwise, there exists a clause C in I(X ∪ Y) such that  
C ∉ Ln(X ∪ Y). Then there exists a clause D ∈ Ln(X ∪ Y) such that C is a Y-logical 
consequence of D, that is, Dσ ≤Y C. Since i ≤ Ln(X ∪ Y), i ≤ D for all D in Ln(X ∪ Y). 
Thus, i ≤ Dσ. As i ≤ Y, we have i ≤ C and i ≤ I(X ∪ Y). Hence, Ln(X ∪ Y) ≤ I(X ∪ Y). 

It may be noted that Ln(X ∪ Y) contains implicates up to the relation of  
Y-equivalence, that is, it contains one representative per equivalence class. 

Theorem 4.11: Ln(X ∪ Y) ⊆ Θ(X, Y) for every n. Moreover, if Lm+1(X ∪ Y) = Lm(X ∪ Y) 
holds for some m, then Lm(X ∪ Y) = Θ (X, Y). 

Proof: Let C ∈ Ln(X ∪ Y). Then, C is an implicate of X ∪Y. Since there does not exist 
any clause C′ in Ln(X ∪ Y) with C′σ ≤Y C (otherwise C would not have been in  
Ln(X ∪ Y)), C ∈ Π(X ∪ Y), by Theorem 4.10. Moreover, C is a minimal element of Π 
(X ∪ Y) with respect to ≤Y. By Theorem 4.4, C ∈ Θ(X, Y). So, Ln(X ∪ Y) ⊆ Θ(X, Y)  
for every n. 

Now, suppose Lm+1(X ∪ Y) = Lm(X ∪ Y) holds for some m. Let C ∈ Θ(X, Y). Since C ∈ 
Π(X ∪ Y), we have C ∈ I(X ∪ Y). If C ∉ Lm(X ∪ Y), then there exists a clause C′ ∈ Lm 

(X ∪ Y) such that C is a Y-logical consequence of C′. Thus C is not prime, that is,  
C ∉ Θ(X, Y). This shows that C ∈ Lm(X ∪ Y). Consequently, Θ(X, Y) ⊆ Lm(X ∪ Y). 
Equality follows from the previous paragraph. 

It may be observed that in case L m+1(X ∪ Y) = Lm(X ∪ Y) holds for some m, then Θ 
(X, Y) is finite as Ln(X ∪ Y) is finite, for each n. 

Definition 4.1: Let X and Y be finite sets of formulas such that X ≤ Y. The theory prime 
implicate compilation of X with respect to Y is defined by ΩY(X) = Θ(X, Y) ∪ Y. 
Theorem 4.12: ΩY (X) ≡ X provided that Θ(X, Y) is finite. 

Proof: By Theorems 4.9 and 4.11, Θ(X, Y) ∪ Y ≤ X. Conversely, let i be a model of X. 
Since X ≤ Y (as implicitly assumed in Definition 4.1), X entails each clause obtained by 
taking consensus of any pair of clauses from X ∪ Y, that is, X ≤ Ln(X ∪ Y). Thus,  
X ≤ Θ(X, Y), again by Theorem 4.11, this shows that i is a model of Θ(X, Y) ∪ Y.  
Hence X ≤ Θ(X, Y) ∪ Y. 



   

 

   

   
 

   

   

 

   

    An algorithm for computing theory prime implicates in first order logic 11    
 

    
 
 

   

   
 

   

   

 

   

       
 

We compute the theory prime implicates Θ of a set of formulas X with respect to Y by 
computing the implicates of X ∪ Y. The latter computation uses a consensus based prime 
implicate algorithm (de Kleer, 1992; Kean and Tsiknis, 1990; Raut and Singh, 2004) and 
only the representatives of Y-logical equivalent clauses are kept in the set Θ.  
The algorithm is described as follows: 

Algorithm TPI 

Input: The set of clauses X and Y  

Output: (X, Y), the set of theory prime implicates of X with respect to the theory Y 
 

begin 

 := X ∪Y 

If X ∪Y = ∅ 

  := ∅; 

else  

 Z0 = ∅ ; 

 Z1 := ; 

 i := 1; 

 while Zi ≠ Zi-1 

 do 

  compute L1(Zi); 

  compute Zi+1; 

  i := i+1; 

 od 

  := Zi+1; 

endif 
return (X, Y); 

end  

In the above algorithm we compute the set of theory prime implicates of X with respect 
to Y by computing the prime implicates of X ∪ Y and keeping only the Y-logical 
equivalent clauses in the set. We know, apart from the set of clauses Z1, that Li(Z1) 
contains the consensus CON of a pair of clauses from Zi. The set Zi+1 contains the clauses 
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that remain after discarding the Y-logical consequence of CON. The process is repeated 
till Zn = Ln(Z1) = Zn+1 = Ln+1 (Z1) holds. After the termination of the algorithm, the set Ln(Z1) 
contains the set of theory prime implicates. 

Theorem 4.13: The algorithm TPI correctly computes the set of theory prime implicates 
of a clausal formula provided it terminates. 

Proof: Let X ∪ Y be the given set of clauses. If the set X ∪ Y is empty, obviously there 
are no theory prime implicates. If X ∪ Y is non-empty, assign X ∪ Y to Z1. Then, L1(Z1) is 
computed. Those clauses D of L1(Z1) will be discarded from the set which are  
Y-logical consequences of the newly added clauses in CON to get Z2 because anything 
derivable from D can be derived from CON. By Theorems 4.4 and 4.11, L1(Z1) ⊆ Π 
(X ∪ Y). Similarly, Ln(Z1) is computed repeating the steps. Due to the assumption that 
TPI terminates, we see that for some n and for all m > n, Ln(Z1) = Lm(Z1). Hence  
all the minimal elements of Π(X ∪ Y) has been computed in Ln(Z1). Hence, by  
Theorem 4.4, Θ(X, Y) has been computed. 

We remark that partial correctness of TPI is the best possible. In fact such algorithms 
cannot be totally correct due to the undecidability of first order logic. 

5 Conclusions 

In this paper, the notion of prime implicates is generalised to the theory prime implicates 
and an algorithm for computing the theory prime implicates has been established. The 
algorithm computes the set of theory prime implicates Θ(X, Y) of a first order knowledge 
base X with respect to another knowledge base Y. The correctness of the algorithm has 
been proved. 

The size of the compilation is exponential in the size of the original knowledge base. 
If we take Y = ∅, then the theory prime implicate compilation coincides with the prime 
implicates compilation. Since the compilation takes a long time to obtain Θ, it is 
desirable to ask queries at any time while the compilation is in progress. Though all the 
queries cannot be answered before the off-line computation is completed, the possibility 
of answering the number of queries increases. The off-line computation could be avoided 
partially but how it can be done efficiently is not yet known. 
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