

 4 Int. J. Information and Communication Technology, Vol. 1, No. 1, 2007

 Copyright © 2007 Inderscience Enterprises Ltd.

An algorithm for computing theory prime implicates
in first order logic

Arindama Singh*
Department of Mathematics,
Indian Institute of Technology Madras,
Chennai-600036, India
E-mail: asingh@iitm.ac.in
*Corresponding author

Manoj K. Raut
School of Computing Sciences,
Vellore Institute of Technology,
Vellore-632014, India
E-mail: mkr@vit.ac.in

Abstract: An algorithm based on consensus method to compute the set of
prime implicates of a quantifier free first order formula X was presented in an
earlier work. In this paper the notion of prime implicates is extended to theory
prime implicates in the first order case. We provide an algorithm to compute
the theory prime implicates of a Knowledge base X with respect to another
knowledge base Y where both X and Y are assumed to be unquantified first
order formulas. The partial correctness of the algorithm is proved.

Keywords: first order logic; resolution; knowledge compilation; theory
prime implicates.

Reference to this paper should be made as follows: Singh, A. and Raut, M.K.
(2007) ‘An algorithm for computing theory prime implicates in first order
logic’, Int. J. Information and Communication Technology, Vol. 1, No. 1,
pp.4–13.

Biographical notes: Arindama Singh is Professor of mathematics at the Indian
Institute of Technology Madras. He had his PhD from IIT Kanpur in 1990.
Prior to his service at IIT Madras, he served JNTU, Hyderabad and University
of Hyderabad for around six years. His research interests include Logic and
Numerical Solution of Differential Equations. His work in logic focuses on
knowledge compilation. He has authored two books on Logic, one for use of
mathematics and philosophy students and the other for computer science
students.

Manoj K. Raut is Assistant Professor of Computer Science in the Vellore
Institute of Technology. He got his PhD from IIT Madras in 2004. His work
focussed on knowledge compilation in first order logic. Prior to his current
position, he worked as a post doctoral fellow in TIFR, Mumbai for one and
half a year.

 An algorithm for computing theory prime implicates in first order logic 5

1 Introduction

Propositional reasoning is a fundamental issue in artificial intelligence due to its high
complexity. Checking whether a query is logically entailed by the knowledge base is
intractable (Cook, 1971) since every known algorithm takes exponential time in the
worst case in the size of the knowledge base. To overcome such computational
intractability, the propositional entailment problem is split into two phases such as
off-line and online. In the off-line phase, the original knowledge base X is compiled into
another knowledge base X′ and in the online phase the query is actually answered from
the new knowledge base in polynomial time in the size of X′. In such type of compilation
most of the computational overhead is shifted into the off-line phase which is
amortised over online query answering. The off-line computation is known as
knowledge compilation.

Several approaches for knowledge compilation have been suggested so far. The first
kind of approach consists of an equivalence preserving compilation. In one such
approach, the propositional knowledge base X is compiled into a logically equivalent
knowledge base Π(X), the set of prime implicates of X (Coudert and Madre, 1992;
de Kleer, 1986, 1992; del Val, 1994; Jackson and Pais, 1990; Kean and Tsiknis,
1990; Ngair, 1993; Reiter and de Kleer, 1987; Shiny and Pujari, 1998; Strzemecki, 1992;
Slagle et al., 1970; Tison, 1967) with respect to which queries are answered in
polynomial time in the size Π(X) by a subsumption test. In another approach to
equivalence preserving compilation, Marquis suggested the computation of theory prime
implicates (Marquis, 1995) from a knowledge base X with respect to another knowledge
base Y, so that queries can be answered from the set of theory prime implicates in
polynomial time. Another kind of knowledge compilation in first order case is given
by del Val (1996).

Most of the research work in knowledge compilation have been restricted to
propositional knowledge bases. Due to lack of expressive power in propositional logic,
first order logic is required to represent knowledge in many problems. We exploit
the quantifier free theory of first order logic to store knowledge in a knowledge base. The
formulas are assumed to be in Conjunctive Normal Form (CNF). Taking clue from Raut
and Singh (2004) we compute the theory prime implicates (Marquis, 1995) of a first
order theory X with respect to another theory Y.

This paper is organised as follows. In Section 2, we introduce the definitions and
notions for establishing the required results. In Section 3, we review briefly the
consensus method in first order logic as presented by Raut and Singh (2004). Section 4
describes the properties of theory prime implicates and presents an algorithm to compute
them. Section 5 concludes this paper.

2 Preliminary concepts

The alphabet of first order language contains the symbols x, y, z,… as variables,
f, g, h, … as function symbols, P, Q, R,… as predicates, ¬, ∧, ∨ as connectives, (,)
and ‘,’ as punctuation marks and ∀ as universal quantifier. Let FM contain the set of
formulas built upon this alphabet. We assume the syntax and semantics of first order
logic. Formulas are denoted by upper case letters. For an interpretation or a first
order structure i and a formula X, we write i ≤ X if i is a model of X. For a set of

 6 A. Singh and M.K. Raut

formulas Σ (or a formula) and any formula X we write Σ ≤ X to denote that for every
interpretation i if i is a model of every formula in Σ then i is a model of X. In such a case,
we call X. a logical consequence of Σ. If X ≤ Y and Y ≤ X then X ≡ Y. The quotient set of
FM induced by the equivalence relation ‘≡’ is represented as [FM]≡.

A literal is an atomic formula or negation of an atomic formula. A disjunctive
clause is a finite disjunction of literals which is also represented as a set of literals.
A quantifier-free formula is in CNF if it is a finite conjunction of disjunctive clauses. For
convenience, a formula is also represented as a set of clauses. In this paper, we consider
formulas only in clausal form.

Two literals r and s are said to be complementary to each other if the set {r, ¬s} is
unifiable with respect to a most general unifier ξ. We call ξ a complementary substitution
of the set {r, ¬s}. For example, Pxf(a) and ¬Pby are complementary to each other with
respect to the complementary substitution (most general unifier or mgu, for short)
[x/b, y/f(a)]. So the most general unifier bundles upon infinite number of substitutions to
a finite number.

A clause which does not contain a literal and its negation is said to be fundamental.
Thus a non-fundamental clause is valid. We avoid taking non-fundamental clauses in
clausal form because the universal quantifiers appearing in the beginning of the formula
can appear before each conjunct of the CNF since ∀ distributes over ∧. So each clause in
a formula of the knowledge base is assumed to be non-fundamental. Let C1 and C2 be
two disjunctive clauses. Then C1 subsumes C2 if there is a substitution σ such that
C1σ ⊆ C2, that is, C1σ ≤ C2. For example, {¬Rxf (a), ¬Py} subsumes the clause
{¬Rg(a)f(a), ¬Py, Qz} with respect to the substitution σ = [x/g(a)]. A disjunctive clause
C is an implicate of a finite set of formulas X (assumed to be in CNF) if Xσ ≤ C for a
substitution σ. We write I(X) as the set of all implicates of X. A clause C is a prime
implicate of X if C is an implicate of X and there is no other implicate C′ of X such that
C′τ ≤ C for a substitution τ (i.e. if no other implicate C′ subsumes C). Π(X) denotes the
set of prime implicates of X. It may be observed that if an implicate C is not prime then
there exists a prime implicate D of X that subsumes C, that is, along with D, we have a
substitution τ such that Dτ ≤ C.

Note that the notion of prime implicate is well defined as the knowledge base
contains clauses unique up to subsumption. Let Y be a set of fundamental clauses.
The residue of subsumption of Y, denoted Res(Y) is a subset of Y such that for every
clause C ∈ Y, there is a clause D ∈ Res(Y) such that D subsumes C. Moreover, no clause
in Res(Y) subsumes any other clause in Res(Y).

A clause C ∈ Π(X) is a minimal element of Π(X) if for all C ∈ Π(X) and for
all substitution σ, Cσ ≤ C′ implies Cσ ≡ C′. Equivalently, a clause C′ ∈ Π(X) is a
minimal element of Π(X) if there is no C ∈ Π(X) and there is no substitution σ such that
Cσ ≢ C′ and Cσ ≤ C′. Clearly, the prime implicates of a finite set of formulas X are the
minimal elements of I(X) with respect to ≤. So Π(X) = min (I(X), ≤).

Let C1, C2 be two clauses in X and r ∈ C1,s ∈ C2 be a pair of complementary literals
with respect to a most general unifier σ. The resolution of C1 and C2 is
C = [(C1 − {r}) ∪ (C2 − {s})]σ. If C is fundamental, it is called a consensus of C1 and C2.
The set of all consensus of C1 and C2 is denoted by CON (C1, C2). C can also be written
as [(C1σ − {t}) ∪ (C2σ − {¬t})] for a literal t, provided rσ = t and sσ = ¬t. In this case,
we also say that C is the propositional consensus of C1σ and C2σ. For example,
if C1 = {Rbx, ¬Qg(a)} and C2 = {Rab, Qz} then CON(C1, C2) = {Rbx, Rab} which equals
the propositional consensus of C1[z/g(a)] and C2[z/g(a)]. If C is the consensus of C1 and

 An algorithm for computing theory prime implicates in first order logic 7

C2 with respect to a most general unifier σ then C is said to be associated with the
substitution σ. By default, each clause C of a set of formulas X is associated with
the empty substitution ε. Let C1 and C2 be two resolvent clauses associated
with substitutions σ1 and σ2, respectively. Then their consensus with respect to σ is
defined provided σ1σ = σ2σ. The consensus is then the propositional consensus of C1σ
and C2σ and the consensus is associated with the substitution σ3 = σ1σ = σ2σ.

Let Y be a finite set of formulas. We define ≤Y over FM × FM (as the extension of ≤)
by X1 ≤Y X2 iff {X1} ∪ Y ≤ X2 where X1 and X2 are two formulas in FM. Similarly for a
substitution σ we define X1σ ≤Y X2 if {X1σ} ∪ Yσ ≤ X2, (i.e. (X1 ∪ Y)σ ≤ X2 if X1 is a set of
formulas) where both X1 and Y are associated with the same substitution σ.
If X1σ ≤Y X2 holds then we say that X2 is a Y-logical consequence of X1. We define the
equivalence relation ≡Y over FM by X1 ≡Y X2 if X1σ1 ≤Y X2 for all σ1 and X2σ2 ≤Y X1 for all
σ2. In this case, we say that X1 and X2 are Y-equivalent. [FM]≡Y is the quotient set of FM
induced by the equivalence relation ≡Y.

We now extend the definition of prime implicate to theory prime implicate with
respect to ≤Y as follows. Let X and Y be finite sets of formulas. A clause C is a theory
implicate of X with respect to Y if Xσ ≤Y C. A clause C is called a theory prime implicate
of X with respect to Y if C is a theory implicate of X with respect to Y and there is no
other theory implicate C′ such that C′τ ≡Y C for some substitution τ. We denote
by Θ(X, Y) the set of theory prime implicates of X with respect to Y. Thus, Θ(X, Y)
contains the minimal elements of the set of theory implicates of X with respect to Y.
The minimal clauses are considered up to Y-logical equivalence, that is, Θ(X, Y) contains
a clause from each ≡Y -equivalence class.

3 Computation of prime implicates

We briefly present the main results for computation of prime implicates (Raut and Singh,
2004) of first order predicate formulas in clausal form. Let X = {C1,…,Cn} be a formula
where each clause Ci is fundamental. Then each Ci is an implicate of X with respect to the
empty substitution, but each one of them may not be a prime implicate. The key is the
subsumption of implicates of X. Since clauses here are disjunctive, we observe that if
C1 subsumes C2 then there is a substitution σ such that C1σ ≤ C2. Our aim is to see how
deletion of subsumed clauses leads to the computation of prime implicates. It leads us to
explore the relation between consensus closure and the prime implicates.

Lemma 3.1: A clause C is an implicate of X if and only if there is a prime implicate C′ of
X such that C′ subsumes C.
Lemma 3.2: X = Π(X).

Theorem 3.3: Consensus of two implicates of a formula is an implicate of the formula.

The computational aspects of prime implicates is described below. For a set of clauses X,
let L(X) be the set of all consensus among clauses in X along with the clauses of X, that
is, L(X) = X ∪ {S: S is a consensus of each possible pair of clauses in X}. We construct
the sequence X, L(X), L(L(X)),…, that is, Ln+1(X) = L(Ln(X)) for n ≥ 0 and L0(X) = X.
We put together all the clauses in the sequence of sets and form the consensus closure.

 8 A. Singh and M.K. Raut

The consensus closure of X is written as *()L X = ∪{Li(X): i ≥ 0}. From Theorem 3.3, it

follows that *()L X ⊆ I(X).

Theorem 3.4: The set of all prime implicates is a subset of the consensus closure of X,
that is, Π(X) ⊆ *()L X . Moreover, Π(X) = Res (*())L X .

Using the above results on the extended notions of consensus and subsumption, we have
suggested (Raut and Singh, 2004) an algorithm to compute prime implicates of first order
formulas in clausal form. Correctness of the algorithm has also been proved there.
We intend to employ a similar algorithm for computing theory prime implicates.

4 Computation of theory prime implicates

We describe some of the properties of and an algorithm to compute theory prime
implicates Θ(X, Y) of a first order theory X with respect to another theory Y based on the
results in Raut and Singh (2004) as described in the last section.

Lemma 4.1: Let X and Y be finite sets of formulas. Then Θ(X, Y) ⊆ Π (X ∪ Y).

Proof: Let C ∈ Θ(X, Y). So Xσ ≤Y C holds and there is no theory implicate C′ of X with
respect to Y such that C′τ ≤Y C holds for some τ. This implies Xσ ∪ Yσ ≤ C. That is,
(X ∪ Y) σ ≤ C. C is an implicate of X ∪ Y. If C is not a prime implicate of X ∪ Y then
there exists a prime implicate C′ of X ∪ Y such that C′τ ≤ C, that is, C′τ ≤Y C. As C′ is a
prime implicate of X ∪ Y, (X ∪ Y)τ ≤ C′, that is, Xτ ≤Y C′. This implies C′ is a theory
implicate of X with respect to Y. So we get a theory implicate C′ such that C′τ ≤Y C, that
is, C is not a theory prime implicate of X with respect to Y, which is a contradiction.

Lemma 4.2: If C, C′ ∈ Π(X ∪ Y) and Cτ ≤ C′ but Cτ ≢Y C′ for some τ then
C′ ∉ Θ (X, Y).

Proof: Let C′ ∈ Θ(X, Y). Xσ ≤Y C′ and there is no theory implicate D such that Dτ ≤Y C′
for some τ. In other words, (X ∪ Y) σ ≤ C′ and there is no theory implicate D (i.e.
(X ∪ Y) σ ≤ D) such that Dτ ≤Y C′. Thus, (X ∪ Y) σ ≤ C′ and for every D if (X ∪ Y)τ ≤ D
then Dτ does not entail C′ with respect to Y. As C is a prime implicate of X ∪ Y, C is also
an implicate of X ∪ Y. With D = C, (X ∪ Y) σ ≤ C′ and if (X ∪ Y)τ ≤ C then Cτ does not
entail C′ with respect to Y, which contradicts the hypothesis of the lemma. This implies
that C′ ∉ Θ(X, Y) completing the proof.

Lemma 4.3: If C, C′ ∈ Θ(X, Y) and C ≠ C′, then either (i) Cσ1 ≤Y C for all σ1 and it is not
that C′σ2 ≤Y C for some σ2 or (ii) C′σ2 ≤Y C for all σ2 and it is not that Cσ1 ≤Y C′ for
some σ1.

Proof: If Cσ1 ≤Y C′ for all σ1, C′ is a Y-logical consequence of C. If C′σ2 ≤Y C for all
σ2 then C is a Y-logical consequence of C′. So C ≡Y C′. Thus either C or C′ belongs to
Θ(X, Y) but not both which is a contradiction to the hypothesis. Similarly the other part
is proved. This completes the proof.

The following result is obtained by using the above Lemmas.

Theorem 4.4: Θ(X, Y) = min (Π(X ∪ Y), ≤Y).

 An algorithm for computing theory prime implicates in first order logic 9

Theorem 4.5: Let X and Y be finite sets of formulas and C be any clause. Xσ ≤Y C holds if
there exists a theory prime implicate C′ of X with respect to Y such that C′ τ ≤Y C holds.

Proof: Suppose Xσ ≤Y C holds. C is an implicate of X ∪ Y. If C is not prime then there is
an implicate C × (≠ C) of X ∪ Y and a substitution τ such that C × τ ≤ C. Let
A∗ = {C∗: C∗ is an implicate of X ∪ Y and C∗τ ≤Y C for some τ}. We can obtain a finite
subset A = {C1,…, Cn } of A∗ such that for each C∗ in A∗ there is a Ci in A and a
substitution η such that C∗ = Ciη, since there are only a finite number of variables in C∗
and C is finite. Now A, being a finite set, has a strict partial order as logical consequence
with respect to Y. Each element of A is an implicate of X ∪ Y. Any minimal element
C′ of A is a prime implicate of X ∪ Y, that is, a theory prime implicate of X with
respect to Y.

Conversely, there exists a prime implicate C′ of X ∪ Y such that C′τ ≤Y C, that is,
C′τ ∪ Yτ ≤ C holds. As (X ∪ Y) σ ≤ C′, C′ ≤ C′τ and C′τ and Yτ are disjunctive,
(X ∪ Y) σ ≤ C′τ ∪ Yτ. Thus (X ∪ Y) σ ≤ C, showing that Xσ ≤Y C. This completes
the proof.

Lemma 4.6: If X ≡ X′, then Π(X) ≡ Π(X′).

Proof: Let C ∈ Π(X); that is, Xσ ≤ C and there exists no implicate C′ of X such that
C′σ ≤ C. Since X ≡ X′, we have X′σ ≤ C. Also, there exists no implicate C′ with C′σ ≤ C.
This implies C ∈ Π(X′). Thus, Π(X) ⊆ Π(X′). Similarly, Π(X′) ⊆ Π(X).

Theorem 4.7: If X ≡ X′ and Y ≡ Y′, then Θ(X, Y) ≡ Θ(X′, Y′), upto Y-equivalence.

Proof: Let C ∈ Θ(X′, Y′), that is, for all C′ ∈ Π(X′ ∪ Y′), if C′σ ≤Y′ C then C′σ ≤Y C.
By hypothesis, X′ ∪ Y′ ≡ X ∪ Y and by Lemma 4.6, Π(X′ ∪ Y′) = Π(X ∪ Y). So, for all
C′ in Π(X ∪ Y) if C′σ ≤Y′ C then C′σ ≤Y C. As C′ ∈ Θ(X, Y), we see that Θ(X′, Y′)
⊆ Θ(X, Y). Similarly, the other inclusion Θ(X, Y) ⊆ Θ(X′, Y′) follows.

To see the computational aspects of prime implicates, let X and Y be finite sets of
formulas and Z1 = X ∪ Y. Define L1(Z1) = Z1 ∪ {C1: C1 is the consensus of a pair of
clauses from Z1}. Construct Z2 by deleting those clauses from L1(Z1) which are Y-logical
consequences of C1. Let L2(Z1) = Z2 ∪ {C2: C2 is the consensus of a pair of clauses
from Z2}. Construct Z3 like Z2, but from L2(Z1). In general, write Ln(Z1) = Zn ∪ {Cn: Cn is
the consensus of two clauses from Zn}. At one stage for some m > n, Lm(Z1) = Ln(Z1) = Zn+1
happens, in the propositional case. Unfortunately this need not be so in a first order
knowledge base as explained by an example in Raut and Singh (2004). However, each
clause in each set Ln(X ∪ Y) is a Y-logical consequence of X, as the following
result shows.

Lemma 4.8: X ≤Y Ln(X ∪ Y).

Proof: First, we show that X ∪ Y ≤ L1(X ∪ Y). Let i be a model of X ∪ Y; that is, i ≤ C
for all C in X ∪ Y. If X ∪ Y = L1(X ∪ Y), then X ∪ Y ≤ L1(X ∪ Y). If not, there exists
a clause D in L1(X ∪ Y) such that D is the consensus of two clauses, say, of Cj and Ck
from X ∪ Y. As i ≤ Cj ∧ Ck, it follows that i ≤ D and i ≤ L1(X ∪ Y). This implies that
X ∪ Y ≤ L1 (X ∪ Y), that is, X ≤Y L1(X ∪ Y). Similarly we can show that
L1(X ∪ Y) ≤Y L2(X ∪ Y) ≤Y L2(X ∪ Y)…≤Y Ln(X ∪ Y). By induction, it follows
that X ≤Y Ln(X ∪ Y).

 10 A. Singh and M.K. Raut

This implication can be strengthened to an equivalence as in the following.

Theorem 4.9: X ≡Y Ln(X ∪ Y).

Proof: Due to Lemma 4.8, it is enough to show that Ln(X ∪ Y) ≤Y X. For this, let i be a
model of L1(X ∪ Y), that is, i ≤ C for all C in L1(X ∪ Y) ∪ Y. If L1(X ∪ Y) ∪ Y = X then it
is clear that L1(X ∪ Y) ≤Y X. If not, then there exists a clause C∗ in X such that C∗ ∉
L1(X ∪ Y) ∪ Y. This implies that there exists a clause D∗ ∈ L1(X ∪ Y) ∪ Y such that C∗ is
a Y-logical consequence of D∗, that is, D∗σσ ≤Y C

∗. As i ≤ C for all C ∈ L1(X ∪ Y) ∪ Y,
i ≤ D∗. Thus, i ≤ D∗σ. As i ≤ Y, i ≤ C∗, we have i ≤ X. Hence, L1(X ∪ Y) ∪ Y ≤ X that is,
L1(X ∪ Y) ≤Y X. It follows by induction that Ln(X ∪ Y) ≤Y X.

Theorem 4.10: I(X ∪ Y) ≡ Ln(X ∪ Y).

Proof: From Lemma 4.8, we see that all the clauses of Ln(X ∪ Y) are implicates of X ∪ Y.
That is, Ln(X ∪ Y) ⊆ I(X ∪ Y). Therefore, I(X ∪ Y) ≤ Ln(X ∪ Y) as the sets of clauses are
interpreted as CNF.

Conversely, let i be a model of Ln(X ∪ Y). If all the clauses of I(X ∪ Y) are in Ln(X ∪ Y),
then the result is obvious; otherwise, there exists a clause C in I(X ∪ Y) such that
C ∉ Ln(X ∪ Y). Then there exists a clause D ∈ Ln(X ∪ Y) such that C is a Y-logical
consequence of D, that is, Dσ ≤Y C. Since i ≤ Ln(X ∪ Y), i ≤ D for all D in Ln(X ∪ Y).
Thus, i ≤ Dσ. As i ≤ Y, we have i ≤ C and i ≤ I(X ∪ Y). Hence, Ln(X ∪ Y) ≤ I(X ∪ Y).

It may be noted that Ln(X ∪ Y) contains implicates up to the relation of
Y-equivalence, that is, it contains one representative per equivalence class.

Theorem 4.11: Ln(X ∪ Y) ⊆ Θ(X, Y) for every n. Moreover, if Lm+1(X ∪ Y) = Lm(X ∪ Y)
holds for some m, then Lm(X ∪ Y) = Θ (X, Y).

Proof: Let C ∈ Ln(X ∪ Y). Then, C is an implicate of X ∪Y. Since there does not exist
any clause C′ in Ln(X ∪ Y) with C′σ ≤Y C (otherwise C would not have been in
Ln(X ∪ Y)), C ∈ Π(X ∪ Y), by Theorem 4.10. Moreover, C is a minimal element of Π
(X ∪ Y) with respect to ≤Y. By Theorem 4.4, C ∈ Θ(X, Y). So, Ln(X ∪ Y) ⊆ Θ(X, Y)
for every n.

Now, suppose Lm+1(X ∪ Y) = Lm(X ∪ Y) holds for some m. Let C ∈ Θ(X, Y). Since C ∈
Π(X ∪ Y), we have C ∈ I(X ∪ Y). If C ∉ Lm(X ∪ Y), then there exists a clause C′ ∈ Lm

(X ∪ Y) such that C is a Y-logical consequence of C′. Thus C is not prime, that is,
C ∉ Θ(X, Y). This shows that C ∈ Lm(X ∪ Y). Consequently, Θ(X, Y) ⊆ Lm(X ∪ Y).
Equality follows from the previous paragraph.

It may be observed that in case L m+1(X ∪ Y) = Lm(X ∪ Y) holds for some m, then Θ
(X, Y) is finite as Ln(X ∪ Y) is finite, for each n.

Definition 4.1: Let X and Y be finite sets of formulas such that X ≤ Y. The theory prime
implicate compilation of X with respect to Y is defined by ΩY(X) = Θ(X, Y) ∪ Y.
Theorem 4.12: ΩY (X) ≡ X provided that Θ(X, Y) is finite.

Proof: By Theorems 4.9 and 4.11, Θ(X, Y) ∪ Y ≤ X. Conversely, let i be a model of X.
Since X ≤ Y (as implicitly assumed in Definition 4.1), X entails each clause obtained by
taking consensus of any pair of clauses from X ∪ Y, that is, X ≤ Ln(X ∪ Y). Thus,
X ≤ Θ(X, Y), again by Theorem 4.11, this shows that i is a model of Θ(X, Y) ∪ Y.
Hence X ≤ Θ(X, Y) ∪ Y.

 An algorithm for computing theory prime implicates in first order logic 11

We compute the theory prime implicates Θ of a set of formulas X with respect to Y by
computing the implicates of X ∪ Y. The latter computation uses a consensus based prime
implicate algorithm (de Kleer, 1992; Kean and Tsiknis, 1990; Raut and Singh, 2004) and
only the representatives of Y-logical equivalent clauses are kept in the set Θ.
The algorithm is described as follows:

Algorithm TPI

Input: The set of clauses X and Y

Output: (X, Y), the set of theory prime implicates of X with respect to the theory Y

begin

 := X ∪Y

If X ∪Y = ∅

 := ∅;

else

 Z0 = ∅ ;

 Z1 := ;

 i := 1;

 while Zi ≠ Zi-1

 do

 compute L1(Zi);

 compute Zi+1;

 i := i+1;

 od

 := Zi+1;

endif
return (X, Y);

end

In the above algorithm we compute the set of theory prime implicates of X with respect
to Y by computing the prime implicates of X ∪ Y and keeping only the Y-logical
equivalent clauses in the set. We know, apart from the set of clauses Z1, that Li(Z1)
contains the consensus CON of a pair of clauses from Zi. The set Zi+1 contains the clauses

 12 A. Singh and M.K. Raut

that remain after discarding the Y-logical consequence of CON. The process is repeated
till Zn = Ln(Z1) = Zn+1 = Ln+1 (Z1) holds. After the termination of the algorithm, the set Ln(Z1)
contains the set of theory prime implicates.

Theorem 4.13: The algorithm TPI correctly computes the set of theory prime implicates
of a clausal formula provided it terminates.

Proof: Let X ∪ Y be the given set of clauses. If the set X ∪ Y is empty, obviously there
are no theory prime implicates. If X ∪ Y is non-empty, assign X ∪ Y to Z1. Then, L1(Z1) is
computed. Those clauses D of L1(Z1) will be discarded from the set which are
Y-logical consequences of the newly added clauses in CON to get Z2 because anything
derivable from D can be derived from CON. By Theorems 4.4 and 4.11, L1(Z1) ⊆ Π
(X ∪ Y). Similarly, Ln(Z1) is computed repeating the steps. Due to the assumption that
TPI terminates, we see that for some n and for all m > n, Ln(Z1) = Lm(Z1). Hence
all the minimal elements of Π(X ∪ Y) has been computed in Ln(Z1). Hence, by
Theorem 4.4, Θ(X, Y) has been computed.

We remark that partial correctness of TPI is the best possible. In fact such algorithms
cannot be totally correct due to the undecidability of first order logic.

5 Conclusions

In this paper, the notion of prime implicates is generalised to the theory prime implicates
and an algorithm for computing the theory prime implicates has been established. The
algorithm computes the set of theory prime implicates Θ(X, Y) of a first order knowledge
base X with respect to another knowledge base Y. The correctness of the algorithm has
been proved.

The size of the compilation is exponential in the size of the original knowledge base.
If we take Y = ∅, then the theory prime implicate compilation coincides with the prime
implicates compilation. Since the compilation takes a long time to obtain Θ, it is
desirable to ask queries at any time while the compilation is in progress. Though all the
queries cannot be answered before the off-line computation is completed, the possibility
of answering the number of queries increases. The off-line computation could be avoided
partially but how it can be done efficiently is not yet known.

References
Cook, S.A. (1971) ‘The complexity of theorem proving procedures’, Proceedings of the Third

Annual ACM Symposium on the Theory of Computing, pp.151–158.

Coudert, O. and Madre, J. (1992) ‘Implicit and incremental computation of primes and essential
primes of Boolean functions’, Proceedings of 29th ACM/IEEE Design Automation
Conference, pp.36–39.

de Kleer, J. (1986) ‘An assumption based TMS’, Artificial Intelligence, Vol. 28, pp.127–162.

de Kleer, J. (1992) ‘An improved incremental algorithm for computing prime implicates’,
Proceedings of AAAI-92, San Jose, CA, pp.780–785.

del Val, A. (1994) ‘Tractable data bases: how to make propositional unit resolution complete
through compilation’, Proceedings of the Fourth International Conference on Principles
of Knowledge Representation and Reasoning, pp.551–561.

 An algorithm for computing theory prime implicates in first order logic 13

del Val, A. (1996) ‘Approximate knowledge compilation: the first order case’, Proceedings of
AAAI-96, pp.498–503.

Jackson, P. and Pais, J. (1990) ‘Computing prime implicants’, Lecture Notes in Artificial
Intelligence, Vol. 449, Springer-Verlag, pp.543–557.

Kean, A. and Tsiknis, G. (1990) ‘An incremental method for generating prime
implicants/implicates’, Journal of Symbolic Computation, Vol. 9, pp.185–206.

Marquis, P. (1995) ‘Knowledge compilation using theory prime implicates’, Proceedings of
IJCAI, pp.837–843.

Ngair, T. (1993) ‘A new algorithm for incremental prime implicate generation’, Proceedings
of IJCAI, pp.46–51.

Raut, M.K. and Singh, A. (2004) ‘Prime implicates of first order formulas’, International Journal
of Computer Science and Applications, Vol. 1, No. 1, pp.1–11.

Reiter, R. and de Kleer, J. (1987) ‘Foundations of assumption-based truth maintenance system
(ATMS): preliminary report’, Proceedings of AAAI, pp.183–188.

Shiny, K. and Pujari, A.K. (1998) ‘Computations of prime implicants using matrix and paths’,
Journal of Logic and Computation, Vol. 8, pp.35–145.

Slagle, J.R., Chang, C.L. and Lee, R.C.T. (1970) ‘A new algorithm for generating prime
implicants’, IEEE Transactions on Computers, Vol. C-19, No. 4, pp.304–310.

Strzemecki, T. (1992) ‘Polynomial-time algorithm for generation of prime implicants’, Journal of
Complexity, Vol. 8, pp.37–63.

Tison, P. (1967) ‘Generalized consensus theory and application to the minimisation of Boolean
functions’, IEEE Transactions on Electronics and Computers, Vol. EC-16, No. 4,
pp.446–456.

