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1. INTRODUCTION

Energy-based methods for modeling and control of com-
plex physical systems has been an active area of re-
search for the past two decades. In particular the port-
Hamiltonian-based formulation has proven to be effective
in modeling and control of complex physical systems from
several domains, both finite- and infinite-dimensional.
(Duindam et al. (2009)). Port-Hamiltonian systems are
inherently passive with the Hamiltonian, which is assumed
to be bounded from below, serving as the storage function
and the port variables are power-conjugate. This resulted
in the development of so-called “Energy Shaping” methods
for control of physical systems. In some cases the standard
power-conjugate port variables do not necessarily help in
achieving the control objectives due to the dissipation ob-
stacle, motivating the search for alternative passive maps.
One possible alternative that has been explored exten-
sively in the finite-dimensional case is the Brayton-Moser
(BM) framework for modeling electrical RLC networks
(Brayton and Moser. (1964a)) and Brayton and Moser.
(1964b)). The BM framework been successfully adapted
towards towards analysing passivity of RLC circuits (Jelt-
sema et al. (2003)) and for control of physical systems
via “Power Shaping” . For further details on the various
energy-based and power-based modeling techniques, the
reader is refered to (Jeltsema and Scherpen (2009)).

The majority of the literature on the BM framework re-
stricts to the finite-dimensional case only. One of the first
results in the context of infinite-dimensional systems was
presented by Brayton and Miranker. In (Brayton and Mi-
ranker. (1964)), a stability theory using the BM framework
is developed for a transmission line that is connected to
a nonlinear load. However the proposed Lyapunov func-

tional does not preserve the pseudo-gradient structure of
the system, which is essential for boundary control, and
the generation of alternative passive maps along the lines
of the finite-dimensional case is not straightforward. In
(Jeltsema and van der Schaft (2007)), the authors present
a BM formulation of the Maxwell equations. However,
only zero boundary conditions are considered. Recently,
in (Pasumarthy et al. (2014)), we have presented some
results on the control by interconnection of a transmission
line by “Power Shaping” in the BM framework.

In this paper, we present a BM analogue of an infinite-
dimensional port-Hamiltonian systems, defined with re-
spect to a constant Stokes-Dirac structure (van der Schaft
and Maschke (2002)). The main results include the deriva-
tion of a new passivity property for infinite-dimensional
systems by “differentiating” one of the port variables
(possibly the boundary port) and using a storage function
that is directly related to the power of the system, while
preserving the BM structure. This new storage function is
also instrumental in analysing the stability of the system.
The results are presented for a general port-Hamiltonian
system, with Maxwell’s equations, under zero boundary
conditions and for transmission line, with non zero bound-
ary conditions, as examples.

The remainder of the paper is organized as follows. In
Section 2, we defined the Stokes-Dirac structure, and its
Brayton Moser formulation. In Sections 3 and 4, we use
the BM framework to model the Maxwell’s equations
and the telegrapher’s equations of a transmission line
respectively. In both cases, we derive admissible pairs
and analyze stability with zero boundary conditions. In
case of Transmission line we consider nonzero boundary
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conditions and present a family of “admissible pairs” and
derive new passivity properties.

Notations and Math Preliminaries

Let Z be an n dimensional Riemannian manifold with a
smooth (n − 1) dimensional boundary ∂Z. Ωk(Z), k =
0, 1, . . ., n denotes the space of all exterior k-forms on
Z. The dual space

(
Ωk(Z)

)∗
of Ωk(Z) can be identified

with Ωn−k(Z) with a pairing between α ∈ Ωk(Z) and

β ∈
(
Ωk(Z)

)∗
given by 〈β|α〉 =

∫
Z
β ∧ α. Here ∧ is the

usual wedge product of differential forms, resulting in the
n-form β ∧α. Similar pairings can be established between
the boundary variables.

The operator d denotes the exterior derivative and maps k
forms on Z to k + 1 forms on Z. The Hodge star operator
∗ (corresponding to Riemannian metric on Z) converts p
forms to (n−p) forms. Given α, β ∈ Ωk(Z) and γ ∈ Ωl(Z),
the wedge product α∧ γ ∈ Ωk+l(Z). We additionally have
the following properties: 1

α ∧ γ = (−1)klγ ∧ α , ∗ ∗α = (−1)k(n−k)α, (1)∫

z

α ∧ ∗β =

∫

z

β ∧ ∗α, (2)

d (α ∧ γ) = dα ∧ γ + (−1)kα ∧ dγ. (3)

Given a functional H(αp, αq), we compute its variation as

∂H =H(αp + ∂αp, αq + ∂αq)−H(αp, αq)

=

∫

z

[δpH ∧ ∂αp + δqH ∧ ∂αq] , (4)

where αp, ∂αp ∈ Ωp(Z) and αq, ∂αq ∈ Ωq(Z) and δpH ∈
Ωn−p(Z) and δpH ∈ Ωn−q(Z) are variational derivative of
H(αp, αq) with respective to αp and αq. Further, the time
derivative of H(αp, αq) is

dH

dt
=

∫

z

(
δpH ∧ ∂αp

∂t
+ δqH ∧ ∂αq

∂t

)
.

Let G : Ωn−p(Z) → Ωn−p(Z) and R : Ωn−q(Z) →
Ωn−q(Z), we call G ≥ 0, if and only if ∀αp ∈ Ωp(Z)

∫

Z

(αp ∧ ∗Gαp) ≥ 0

G is said to be symmetric if 〈αp|Gαp〉 = 〈Gαp|αp〉.

Lastly, given f(z, t) : Z×R → R, we denote ∂f
∂t (z, t) as ft,

similarly ∂f
∂z (z, t) as fz.

2. FROM INFINITE-DIMENSIONAL PORT
HAMILTONIAN SYSTEMS TO BRAYTON MOSER

EQUATIONS

2.1 Infinite-Dimensional Port-Hamiltonian Systems

Define the linear space Fp,q = Ωp(Z)×Ωq(Z)×Ωn−p(∂Z)
called the space of flows and Ep,q = Ωn−p(Z)×Ωn−q(Z)×
1 For details on the theory of differential forms we refer to (Abraham
et al. (1988)))

Ωn−q(∂Z), the space of efforts, with integers p, q satisfying
p+ q = n+ 1. Then, the linear subspace D ⊂ Fp,q × Ep,q

D =

{
(fp, fq, fb, ep, eq, eb) ∈ Fp,q × Ep,q

∣∣∣∣
[
fp
fq

]
=

[
∗G (−1)rd
d ∗R

] [
ep
eq

]
,

[
fb
eb

]
=

[
1 0
0 −(−1)n−q

] [
ep|∂Z
eq|∂Z

]}
,

with r = pq + 1, is a Stokes-Dirac structure with dissipa-
tion, (van der Schaft and Maschke (2002)) with respect to
the bilinear form

〈〈(
f1
p , f

1
q , f

1
b , e

1
p, e

1
q, e

1
b

)
,
(
f2
p , f

2
q , f

2
b , e

2
p, e

2
q, e

2
b

)〉〉
=〈

e2p|f1
p

〉
+
〈
e1p|f2

p

〉
+
〈
e2q|f1

q

〉
+
〈
e1q|f2

q

〉
+
〈
e2b |f1

b

〉
+
〈
e1b |f2

b

〉
.

Consider a distributed-parameter port-Hamiltonian sys-
tem on Ωp(Z)×Ωq(Z)×Ωn−p(∂Z), with energy variables
(αp, αq) ∈ Ωp(Z)×Ωq(Z) representing two different phys-
ical energy domains interacting with each other. The total
stored energy is defined as

H :=

∫

Z

H ∈ R,

where H is the Hamiltonian density (energy per volume
element). Let G ≥ 0 and R ≥ 0 represent the dissipative
terms in the system. Then, setting fp = −(αp)t and
fq = −(αq)t, and ep = δpH and eq = δqH, the system

− ∂

∂t

[
αp

αq

]
=

[
∗G (−1)rd
d ∗R

] [
δpH
δqH

]
, (5)

[
fb
eb

]
=

[
1 0
0 −(−1)n−q

] [
δpH|∂Z
δqH|∂Z

]
,

with r = pq + 1, represents an infinite-dimensional port-
Hamiltonian system.

The time-derivative of the Hamiltonian is computed as

dH

dt
≤

∫

∂Z

eb ∧ fb.

This means that the increase in energy in the spatial
domain is less than or equal to power supplied to the
system through its boundary. This implies that the system
is passive, with respect to the boundary variables, with
storage function H, which is assumed to be bounded from
below.

2.2 The Brayton-Moser Mixed-Potential

In the Brayton-Moser (BM) framework, the dynamics of
a (finite-dimensional) RLC network can be written as

A(u)u̇ = Pu(u) (6)

where u is the vector consisting of inductor currents
and capacitor voltages, Pu is the gradient of some scalar
function P called the mixed-potential function, and A(u)
is a non-singular matrix. See (Brayton and Moser. (1964a))
and Brayton and Moser. (1964b)) for more details.

We aim to write (5) in an equivalent BM form for infinite-
dimensional systems. Let us (for now) assume that the
relation between the energy and co-energy variables is
linear and given as

αp = ∗ε ep and αq = ∗µ eq. (7)
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conditions and present a family of “admissible pairs” and
derive new passivity properties.

Notations and Math Preliminaries

Let Z be an n dimensional Riemannian manifold with a
smooth (n − 1) dimensional boundary ∂Z. Ωk(Z), k =
0, 1, . . ., n denotes the space of all exterior k-forms on
Z. The dual space

(
Ωk(Z)

)∗
of Ωk(Z) can be identified

with Ωn−k(Z) with a pairing between α ∈ Ωk(Z) and

β ∈
(
Ωk(Z)

)∗
given by 〈β|α〉 =

∫
Z
β ∧ α. Here ∧ is the

usual wedge product of differential forms, resulting in the
n-form β ∧α. Similar pairings can be established between
the boundary variables.

The operator d denotes the exterior derivative and maps k
forms on Z to k + 1 forms on Z. The Hodge star operator
∗ (corresponding to Riemannian metric on Z) converts p
forms to (n−p) forms. Given α, β ∈ Ωk(Z) and γ ∈ Ωl(Z),
the wedge product α∧ γ ∈ Ωk+l(Z). We additionally have
the following properties: 1

α ∧ γ = (−1)klγ ∧ α , ∗ ∗α = (−1)k(n−k)α, (1)∫

z

α ∧ ∗β =

∫

z

β ∧ ∗α, (2)

d (α ∧ γ) = dα ∧ γ + (−1)kα ∧ dγ. (3)

Given a functional H(αp, αq), we compute its variation as

∂H =H(αp + ∂αp, αq + ∂αq)−H(αp, αq)

=

∫

z

[δpH ∧ ∂αp + δqH ∧ ∂αq] , (4)

where αp, ∂αp ∈ Ωp(Z) and αq, ∂αq ∈ Ωq(Z) and δpH ∈
Ωn−p(Z) and δpH ∈ Ωn−q(Z) are variational derivative of
H(αp, αq) with respective to αp and αq. Further, the time
derivative of H(αp, αq) is

dH

dt
=

∫

z

(
δpH ∧ ∂αp

∂t
+ δqH ∧ ∂αq

∂t

)
.

Let G : Ωn−p(Z) → Ωn−p(Z) and R : Ωn−q(Z) →
Ωn−q(Z), we call G ≥ 0, if and only if ∀αp ∈ Ωp(Z)

∫

Z

(αp ∧ ∗Gαp) ≥ 0

G is said to be symmetric if 〈αp|Gαp〉 = 〈Gαp|αp〉.

Lastly, given f(z, t) : Z×R → R, we denote ∂f
∂t (z, t) as ft,

similarly ∂f
∂z (z, t) as fz.

2. FROM INFINITE-DIMENSIONAL PORT
HAMILTONIAN SYSTEMS TO BRAYTON MOSER

EQUATIONS

2.1 Infinite-Dimensional Port-Hamiltonian Systems

Define the linear space Fp,q = Ωp(Z)×Ωq(Z)×Ωn−p(∂Z)
called the space of flows and Ep,q = Ωn−p(Z)×Ωn−q(Z)×
1 For details on the theory of differential forms we refer to (Abraham
et al. (1988)))

Ωn−q(∂Z), the space of efforts, with integers p, q satisfying
p+ q = n+ 1. Then, the linear subspace D ⊂ Fp,q × Ep,q

D =

{
(fp, fq, fb, ep, eq, eb) ∈ Fp,q × Ep,q

∣∣∣∣
[
fp
fq

]
=

[
∗G (−1)rd
d ∗R

] [
ep
eq

]
,

[
fb
eb

]
=

[
1 0
0 −(−1)n−q

] [
ep|∂Z
eq|∂Z

]}
,

with r = pq + 1, is a Stokes-Dirac structure with dissipa-
tion, (van der Schaft and Maschke (2002)) with respect to
the bilinear form

〈〈(
f1
p , f

1
q , f

1
b , e

1
p, e

1
q, e

1
b

)
,
(
f2
p , f

2
q , f

2
b , e

2
p, e

2
q, e

2
b

)〉〉
=〈

e2p|f1
p

〉
+
〈
e1p|f2

p

〉
+
〈
e2q|f1

q

〉
+
〈
e1q|f2

q

〉
+
〈
e2b |f1

b

〉
+
〈
e1b |f2

b

〉
.

Consider a distributed-parameter port-Hamiltonian sys-
tem on Ωp(Z)×Ωq(Z)×Ωn−p(∂Z), with energy variables
(αp, αq) ∈ Ωp(Z)×Ωq(Z) representing two different phys-
ical energy domains interacting with each other. The total
stored energy is defined as

H :=

∫

Z

H ∈ R,

where H is the Hamiltonian density (energy per volume
element). Let G ≥ 0 and R ≥ 0 represent the dissipative
terms in the system. Then, setting fp = −(αp)t and
fq = −(αq)t, and ep = δpH and eq = δqH, the system

− ∂

∂t

[
αp

αq

]
=

[
∗G (−1)rd
d ∗R

] [
δpH
δqH

]
, (5)

[
fb
eb

]
=

[
1 0
0 −(−1)n−q

] [
δpH|∂Z
δqH|∂Z

]
,

with r = pq + 1, represents an infinite-dimensional port-
Hamiltonian system.

The time-derivative of the Hamiltonian is computed as

dH

dt
≤

∫

∂Z

eb ∧ fb.

This means that the increase in energy in the spatial
domain is less than or equal to power supplied to the
system through its boundary. This implies that the system
is passive, with respect to the boundary variables, with
storage function H, which is assumed to be bounded from
below.

2.2 The Brayton-Moser Mixed-Potential

In the Brayton-Moser (BM) framework, the dynamics of
a (finite-dimensional) RLC network can be written as

A(u)u̇ = Pu(u) (6)

where u is the vector consisting of inductor currents
and capacitor voltages, Pu is the gradient of some scalar
function P called the mixed-potential function, and A(u)
is a non-singular matrix. See (Brayton and Moser. (1964a))
and Brayton and Moser. (1964b)) for more details.

We aim to write (5) in an equivalent BM form for infinite-
dimensional systems. Let us (for now) assume that the
relation between the energy and co-energy variables is
linear and given as

αp = ∗ε ep and αq = ∗µ eq. (7)
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where µ, ε ∈ R. Applying the Hodge star operator to both
sides of (5) and arranging terms using (7), we get

−εėp = ∗ ((−1)rdeq +G ∗ ep) (−1)(n−p)×p,

−µėq = ∗ (dep +R ∗ eq) (−1)(n−q)×q. (8)

Let us first consider the case of a system that is lossless,
i.e., when R and G are identically equal to zero in (5).

Define P to be a functional of the form

P :=

∫

Z

eq ∧ dep.

Its variation is given as

δP = P (ep + ∂ep, eq + ∂eq)− P

= eq ∧ d∂ep + ∂eq ∧ dep + · · ·
Using the relation eq ∧ d∂ep = (−1)pq∂ep ∧ deq +
(−1)n−qd (eq ∧ ∂ep), and the identity (4), we have

δeqP = deq(−1)(n−q)×q, δepP = (−1)pqdep(−1)(n−p)×p,

we can write (8) in the following BM-type of fashion:

[
−µ 0
0 ε

]
∂

∂t

[
eq
ep

]
=

[
∗δeqP
∗δepP

]
. (9)

To incorporate dissipation we proceed as follows. Consider
instead a functional P defined as

P (ep, eq) =

∫

Z

eq ∧ dep +
1

2
Req ∧ ∗eq −

1

2
Gep ∧ ∗ep(10)

The variation in P is computed as

P = eq ∧ d∂ep + ∂eq ∧ dep +
1

2
(eq ∧R ∗ ∂eq

+∂eq ∧ ∗eq)−
1

2
(ep ∧G ∗ ∂ep + ∂ep ∧ ∗ep))

=

∫

Z

∂eq ∧ dep + ∂ep ∧ (−1)pqdeq +
1

2
(eq ∧R ∗ ∂eq

+∂eq ∧ ∗eq)−
1

2
(ep ∧G ∗ ∂ep + ∂ep ∧ ∗ep))

=

∫

Z

∂eq ∧ (dep +R ∗ eq) + ∂ep ∧ ((−1)pqdeq −G ∗ ep)

where we have used the relation eq ∧ d∂ep = (−1)pq∂ep ∧
deq +(−1)n−qd (eq ∧ ∂ep), together with properties of the
wedge form and the Hodge star operator defined in (2) and
(3). Lastly, by making use of (4) we can write

[
δeqP
δepP

]
=

[
(dep +R ∗ eq)(−1)(n−q)×q

((−1)pqdeq −G ∗ ep) (−1)(n−p)×p

]
, (11)

whereas the form of the BM equations remain as in (9).

The system of equations (9) can be written in a concise
way, similar to (6) as

Aut = δuP. (12)

where u = [ep, eq]
� and A = diag(−µ, ε).

2.3 Boundary dynamics

The systems (12) can be interconnected to other systems
via the boundary of the infinite-dimensional system, which
can either be finite or infinite-dimensional in nature. To

include dynamics we need to append the dynamics (12) to
incorporate the boundary dynamics, i.e.,[

A 0
0 Ab

] [
ut

ub
t

]
=

[
δuPd

δubP b
d

]
, (13)

where ub represents the states of the systems that are
interconnected at the boundary and with a new mixed-
potential function

Pd(ep, eq) =

∫

Z

P (ep, eq) +

∫

∂Z

P b(ep, eq),

with P b representing the mixed-potential function associ-
ated with the boundary dynamics.

The variation in Pd is given by

δPd =

∫

Z

δeqP ∧ ∂eq + δepP ∧ ∂ep +

∫

∂Z

(
δeqP

b ∧ ∂ep

+
(
δepP

b + (−1)(n−p)×peq

)
∧ ∂ep

)

Now, with U = [u, ub]� and

δUPd =




δeqP
δepP

δeqP
b|∂Z(

δepP
b + (−1)(n−p)×peq

)
|∂Z


 , (14)

the BM equations incorporating boundary dynamics can
be written as

AUt = δUPd,

where A = diag(A,Ab).

Once we have written down the dynamics in the BM
framework, we can impose the question: does the mixed-
potential function serve as a storage function (or a
Lyaunov function) to infer (new) passivity (or equivalently,
stability) properties of the system? In the remainder of the
paper, we aim to answer this question with the aid of two
examples.

3. EXAMPLE: MAXWELL’S EQUATIONS

Consider an electromagnetic medium with spatial domain
Z ⊂ R3 with a smooth two-dimensional boundary ∂Z.
The energy variables are the electric field induction D =
1
2Dijzi∧zj and the magnetic field induction B = 1

2Bijzi∧zj
on Z. The associated co-energy variables are electric field
intensity E and magnetic field intensity H. These 1-forms
are related to the energy variables (2-forms) through the
constitutive relationships of the medium as

∗D = εE , ∗B = µH, (15)

where ε(z, t) and µ(z, t) denote the electric permittivity
and the magnetic permeability, respectively. The Hamilto-
nian H can be written as

H(D,B) =
∫

Z

1

2
(E ∧ D +H ∧ B) . (16)

Therefore, δDH = E and δBH = H. Taking into account
dissipation in the system, the dynamics can be written in
the port-Hamiltonian form as
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− ∂

∂t

[
D
B

]
=

[
0 −d
d 0

] [
δDH
δBH

]
+

[
Jd
0

]
=

[
∗σ −d
d 0

] [
δDH
δBH

]
(17)

where ∗Jd = σE , Jd denotes the current density and σ(z, t)
is the specific conductivity of the material. In addition,
we define the boundary variables as fb = δDH|∂Z and
eb = δBH|∂Z . Hence, we obtain

d

dt
H ≤

∫

∂Z

H ∧ E .

For n = 3, p = q = 2, and αp = D, αq = B with H
given in (16), Maxwell’s equations given in (17) forms a
Stokes-Dirac structure.

3.1 The Brayton-Moser form of Maxwell’s equations

In order to write the Maxwell’s equations in BM form, we
proceed in terms of the co-energy variables, i.e., H and E .
Define the corresponding mixed-potential functional as

P =

∫

Z

H ∧ dE − 1

2
σE ∧ ∗E , (18)

which yields the following form of Maxwell’s equations in
terms of the mixed potental[

−µI3 0
0 εI3

] [
Ht

Et

]
=

[
∗dE

−σE + ∗dH

]
=

[
∗δHP
∗δEP

]
. (19)

A simple boundary condition, (H+∗σdE)|∂Z = Js, can be
incorporated with a mixed-potential function

P b =
1

2

∫

∂Z

E ∧ σd ∗ E ,

where σd is specific conductance at boundary. The dy-
namics (19), together with the boundary condition can be
written as

AUt = δUPd +BJs,

with U =
[
u, ub

]�
, Pd = P + P b, A = diag(A,Ab),

A = diag(−µI3, εI3), A
b = 0, and B = [0, 0, 0,−Js]

�
.

3.2 Admissible pairs and stability

To infer stability properties of the system (19), let us begin
with the case of zero energy flow through the boundary of
the system. The mixed-potential function (18) obtained
using (10) is not positive definite. Hence, we cannot use it
as Lyapunov or storage functional. Moreover, the rate of
change of this function is computed as

Ṗ =

∫

Z

(
−µḢ ∧ ∗Ḣ+ εĖ ∧ ∗Ė

)
,

which clearly is not sign-definite. We thus need to look
for other admissible pairs (Ã, P̃ ) like in the case of finite-
dimensional systems (Jeltsema et al. (2003)) that can be
used prove stability of the system while preserving the
dynamics of (19), or Ãut = ∗δuP̃ for the more general
case, of course with zero boundary energy flow. Moreover,
the admissible pair should be such that the symmetric part
of Ã is negative semi-definite. This can be achieved in the
following way (Brayton and Miranker. (1964)), (Jeltsema
and van der Schaft (2007)). Let

P̃ = λP +
1

2

∫

Z

(δHP ∧M1 ∗ δHP + δEP ∧M2 ∗ δEP ) ,

with λ an arbitrary constant and symmetric mappings M1

and M2 from Ω2(R3) → Ω2(R3). Here the aim is to find λ,
M1 and M2 such that

˙̃P = u�
t Ãut ≤ −K||ut||2 ≤ 0, (20)

where K ≥ 0 is a constant determined by Ã. If we can
find such a pair (P̃, Ã), which satisfies the above condition,
then we can conclude stability of the system.

A constructive process to obtain such pairs is as follows.
The variation in P̃ is computed as[

δHP̃

δE P̃

]
=

[
λI M2d∗

M1d∗ (λI − σM2)

] [
δHP
δEP

]
.

Applying the Hodge star operator on both sides and using
(19), we get

∗
[
δHP̃

δE P̃

]
=

[
−µλI εM2 ∗ d

−µM1 ∗ d ε (λI − σM2)

] [
Ht

Et

]
.

Considering

Ã =

[
−µλI εM2 ∗ d

−µM1 ∗ d ε (λI − σM2)

]

we have the following alternative BM representation

Ãut = ∗δuP̃ . (21)

Furthermore, if λ, M1, and M2 are selected such that
εM2 = µM1 and 0 ≤ λ ≤ σ‖M2‖s, where ‖ · ‖s denotes

the spectral norm, then the symmetric part of Ã =
diag(−µλI,−ε (σM2 − λI)) is negative definite. Noting
that P can be simplified to

P =

∫

z

H ∧ dE − 1

2
σE ∧ ∗E

=

∫

z

− 1

2σ
[δEP ∧ ∗δEP ] +

1

2σ
dH ∧ ∗dH

this leads to

P̃ =

∫

z

δEP ∧ σM2 − λI

2σ
∗ δEP

+
1

2σ
dH ∧ ∗dH+

1

2
(δHP ∧M1 ∗ δHP ) ≥ 0.

The time-derivative of P̃ is

˙̃P = −
∫

Z

(µλHt ∧ ∗Ht + Et ∧ ∗(λI − σM2)Et) ≤ 0,

thus implying stability.

Remark 1. To eliminate inequalities like

σ−1
√
εµ−1‖ ∗ d‖ < 1

as given in (Jeltsema and van der Schaft (2007)), we choose
M1 > 0 and M2 > 0 such that εM2 = µM1.

4. BRAYTON-MOSER FORM AND ADMISSIBLE
PAIRS FOR THE TRANSMISSION LINE

In this Section, we first derive the BM equivalent of the dy-
namics of a transmission line modeled by the telegrapher’s
equations. Similar to the case of Maxwell’s equations we
find the admissible pairs under zero boundary energy flow
conditions and infer stability of the system.

The spatial domain of the transmission line is set to Z =
[0, 1] ⊂ R, with boundary ∂Z = {0, 1}. The charge density
q(z, t) ∈ Ω1(Z) and the flux density φ(z, t) ∈ Ω1(Z)
constitute the energy variables, whereas the associated
co-energy variables are the voltage v(z, t) ∈ Ω0(Z) and
the current i(z, t) ∈ Ω0(Z), respectively. For simplicity,
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− ∂

∂t

[
D
B

]
=

[
0 −d
d 0

] [
δDH
δBH

]
+

[
Jd
0

]
=

[
∗σ −d
d 0

] [
δDH
δBH

]
(17)

where ∗Jd = σE , Jd denotes the current density and σ(z, t)
is the specific conductivity of the material. In addition,
we define the boundary variables as fb = δDH|∂Z and
eb = δBH|∂Z . Hence, we obtain

d

dt
H ≤

∫

∂Z

H ∧ E .

For n = 3, p = q = 2, and αp = D, αq = B with H
given in (16), Maxwell’s equations given in (17) forms a
Stokes-Dirac structure.

3.1 The Brayton-Moser form of Maxwell’s equations

In order to write the Maxwell’s equations in BM form, we
proceed in terms of the co-energy variables, i.e., H and E .
Define the corresponding mixed-potential functional as

P =

∫

Z

H ∧ dE − 1

2
σE ∧ ∗E , (18)

which yields the following form of Maxwell’s equations in
terms of the mixed potental[

−µI3 0
0 εI3

] [
Ht

Et

]
=

[
∗dE

−σE + ∗dH

]
=

[
∗δHP
∗δEP

]
. (19)

A simple boundary condition, (H+∗σdE)|∂Z = Js, can be
incorporated with a mixed-potential function

P b =
1

2

∫

∂Z

E ∧ σd ∗ E ,

where σd is specific conductance at boundary. The dy-
namics (19), together with the boundary condition can be
written as

AUt = δUPd +BJs,

with U =
[
u, ub

]�
, Pd = P + P b, A = diag(A,Ab),

A = diag(−µI3, εI3), A
b = 0, and B = [0, 0, 0,−Js]

�
.

3.2 Admissible pairs and stability

To infer stability properties of the system (19), let us begin
with the case of zero energy flow through the boundary of
the system. The mixed-potential function (18) obtained
using (10) is not positive definite. Hence, we cannot use it
as Lyapunov or storage functional. Moreover, the rate of
change of this function is computed as

Ṗ =

∫

Z

(
−µḢ ∧ ∗Ḣ+ εĖ ∧ ∗Ė

)
,

which clearly is not sign-definite. We thus need to look
for other admissible pairs (Ã, P̃ ) like in the case of finite-
dimensional systems (Jeltsema et al. (2003)) that can be
used prove stability of the system while preserving the
dynamics of (19), or Ãut = ∗δuP̃ for the more general
case, of course with zero boundary energy flow. Moreover,
the admissible pair should be such that the symmetric part
of Ã is negative semi-definite. This can be achieved in the
following way (Brayton and Miranker. (1964)), (Jeltsema
and van der Schaft (2007)). Let

P̃ = λP +
1

2

∫

Z

(δHP ∧M1 ∗ δHP + δEP ∧M2 ∗ δEP ) ,

with λ an arbitrary constant and symmetric mappings M1

and M2 from Ω2(R3) → Ω2(R3). Here the aim is to find λ,
M1 and M2 such that

˙̃P = u�
t Ãut ≤ −K||ut||2 ≤ 0, (20)

where K ≥ 0 is a constant determined by Ã. If we can
find such a pair (P̃, Ã), which satisfies the above condition,
then we can conclude stability of the system.

A constructive process to obtain such pairs is as follows.
The variation in P̃ is computed as[

δHP̃

δE P̃

]
=

[
λI M2d∗

M1d∗ (λI − σM2)

] [
δHP
δEP

]
.

Applying the Hodge star operator on both sides and using
(19), we get

∗
[
δHP̃

δE P̃

]
=

[
−µλI εM2 ∗ d

−µM1 ∗ d ε (λI − σM2)

] [
Ht

Et

]
.

Considering

Ã =

[
−µλI εM2 ∗ d

−µM1 ∗ d ε (λI − σM2)

]

we have the following alternative BM representation

Ãut = ∗δuP̃ . (21)

Furthermore, if λ, M1, and M2 are selected such that
εM2 = µM1 and 0 ≤ λ ≤ σ‖M2‖s, where ‖ · ‖s denotes

the spectral norm, then the symmetric part of Ã =
diag(−µλI,−ε (σM2 − λI)) is negative definite. Noting
that P can be simplified to

P =

∫

z

H ∧ dE − 1

2
σE ∧ ∗E

=

∫

z

− 1

2σ
[δEP ∧ ∗δEP ] +

1

2σ
dH ∧ ∗dH

this leads to

P̃ =

∫

z

δEP ∧ σM2 − λI

2σ
∗ δEP

+
1

2σ
dH ∧ ∗dH+

1

2
(δHP ∧M1 ∗ δHP ) ≥ 0.

The time-derivative of P̃ is

˙̃P = −
∫

Z

(µλHt ∧ ∗Ht + Et ∧ ∗(λI − σM2)Et) ≤ 0,

thus implying stability.

Remark 1. To eliminate inequalities like

σ−1
√
εµ−1‖ ∗ d‖ < 1

as given in (Jeltsema and van der Schaft (2007)), we choose
M1 > 0 and M2 > 0 such that εM2 = µM1.

4. BRAYTON-MOSER FORM AND ADMISSIBLE
PAIRS FOR THE TRANSMISSION LINE

In this Section, we first derive the BM equivalent of the dy-
namics of a transmission line modeled by the telegrapher’s
equations. Similar to the case of Maxwell’s equations we
find the admissible pairs under zero boundary energy flow
conditions and infer stability of the system.

The spatial domain of the transmission line is set to Z =
[0, 1] ⊂ R, with boundary ∂Z = {0, 1}. The charge density
q(z, t) ∈ Ω1(Z) and the flux density φ(z, t) ∈ Ω1(Z)
constitute the energy variables, whereas the associated
co-energy variables are the voltage v(z, t) ∈ Ω0(Z) and
the current i(z, t) ∈ Ω0(Z), respectively. For simplicity,
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the relation between the energy and co-energy variables is
assumed to be linear, and is given by

∗q = Cv, ∗φ = Li, (22)

where C, and L are the spatial capacitance and inductance
per unit length, respectively, which are assumed to be
independent of z. The Hamiltonian H, which is the total
energy of the system, is given by

H =
1

2

∫

Z

(v ∧ q + i ∧ φ) . (23)

Taking the dissipation terms into account, the telegra-
pher’s equations written in port-Hamiltonian form as
van der Schaft and Maschke (2002)

− ∂

∂t

[
q
φ

]
=

[
∗G d
d ∗R

] [
δqH
δφH

]
, (24)

where δqH = v and δφH = i, and R and G denote the
distributed resistance and conductance per unit length, re-
spectively. Furthermore, we define the boundary variables
as fb = δqH|∂Z and eb = δφH|∂Z . The rate of change of
the Hamiltonian is given by

d

dt
H = i(0, t)v(0, t)− i(1, t)v(1, t).

4.1 The Brayton-Moser form

The dynamics of the transmission line (23) can be written
in an equivalent BM form as follows. Define the mixed-
potential functional as

P =

∫

Z

(
−v ∧ di+

1

2
Ri ∧ ∗i− 1

2
Gv ∧ ∗v

)
. (25)

Then, using the voltage and current as the state variables,
we can rewrite the dynamics as follows[

−L 0
0 C

] [
it
vt

]
=

[
∗δiP
∗δvP

]
=

[
Ri+ ∗dv
−Gv − ∗di

]
. (26)

4.2 Admissible pairs and stability

Similar to the case of the Maxwell’s equations, we cannot
use P and A directly to infer stability. We therefore we
need to generate new admissible pairs P̃ and Ã satisfying
(20) and (21) such that P̃ ≥ 0 and Ã+Ã� ≤ 0, resulting in
stability. As in the case of Maxwell’s equations, we propose
a P̃ of the form

P̃ = λP +
1

2

∫

Z

δuP ∧M ∗ δuP, (27)

where u = [i, v]�. Selecting

M =




α

R
m2

m2
β

G


 ,

where α, β,m2 are positive constants satisfying αL
R = β C

G
and λ is a unit-less constant. Such a choice will be clear in
the following discussions, which will eventually lead to a
stability criterion. Furthermore, it is easy to check that P̃
has units of power. To simplify the calculations, we define
new positive constants θ, γ, and ζ as follows:

θ := α
L

R
= β

C

G
, m2 :=

2γ

CR+ LG
,

ζ :=
2γ√

LC(α+ β)
=⇒ m2 =

ζθ√
LC

.
(28)

To show that P̃ ≥ 0 we start with simplifying the right
hand side of (27) in the following way. Define

∆1 :=

(
ζ

√
L

2
(Gv + iz)−

√
C

2
(Ri+ vz)

)
,

∆2 :=

(
ζ

√
C

2
(Ri+ vz)−

√
L

2
(Gv + iz)

)
.

(29)

Using (28)–(29), and after some calculations, we have that

P̃ as defined in (27) takes the form

P̃ =
α(1− ζ2) + λ

2R
(Ri+ vz)

2 +∆2
2 −

λ

2R
v2z −

λ

2
Gv2(30)

=
β(1− ζ2)− λ

2G
(Gv + iz)

2 +∆2
1 +

λ

2G
i2z +

λ

2
Ri2(31)

which implies that P̃ ≥ 0 as long as the following
conditions are satisfied

− α(1− ζ2) ≤ λ ≤ β(1− ζ2), 0 ≤ ζ ≤ 1 (32)

Further the variational derivative of P̃ with respective to
u is calculated as

δuP̃ =



−L(λ+ α−m2

∂

∂z
) −C(Rm2 +

β

G

∂

∂z
)

−L(Gm2 +
α

R

∂

∂z
) C(λ− β +m2

∂

∂z
)



[
it
vt

]
.

Therefore

Ã =



−L(λ+ α−m2

∂

∂z
) −C(Rm2 +

β

G

∂

∂z
)

−L(Gm2 +
α

R

∂

∂z
) C(λ− β +m2

∂

∂z
)


 (33)

satisfy the gradient form (21).

Noting that conjugate of
∂

∂z
is − ∂

∂z
and using α

L

R
= β

C

G
from (28), the symmetric part of Ã (33) is simplified to be

Ã+ Ã∗

2
=

[
−L(λ+ α) −γ

−γ C(λ− β)

]

The symmetric part of Ã is negative semi definite as long
as the following conditions are satisfied,

−α ≤ λ ≤ β, and (λ+ α)(λ− β) +
(α+ β)2

4
ζ2 ≤ 0.(34)

Hence, we have the following proposition (the proof can
be found in (Pasumarthy and Kosaraju (2015))).

Proposition 2. If there exist non zero α, β, λ and ζ sat-
isfying (28), (32), and (34) then P̃ defined in (27) and

Ã defined in (33) with M are admissible pairs for the
transmission line. Additionally if the symmetric part of
Ã is negative semi definite, i.e., if (34) holds true, then the
system of equations (26) is stable.

4.3 Transmission line with nonzero boundary conditions

Consider a transmission line whose boundary is intercon-
nected to certain circuit elements as shown in Figure (1).
At z = 0 is a resistor R0 in series with inductor L0 con-
nected to a voltage source E0. At z = 1 the transmission
line is terminated with a resistor R1 .
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Transmission line

L R
0

R
1

0

E
0

z=0 z=1

i
0 i1

+

_

v

+

_

v1
0

Fig. 1. Transmission line with nonzero boundary.

Hence, the boundary conditions are given by

v0 +R0i0 + L0
di0
dt

= E0,

v1 = R1i1,
(35)

where v0 = v(0, t), i0 = i(0, t), v1 = v(1, t), and i1 = i(1, t).
Furthermore, let u = [i, v]�, u0 = [i0, v0]

�, u1 = [i1, v1]
�,

and U = [u, u0, u1]
�. The total mixed-potential function

Pd = P + P 0 + P 1 and A are as follows

P =

∫ 1

0

(
1

2
Ri2 − 1

2
Gv2 − viz

)
dz,

P 0 =
1

2
R0i

2
0, P 1 =

1

2
R1i

2
1,

A = diag

{[
−L 0
0 C

]
,

[
−L0 0
0 0

]
,

[
0 0
0 0

]}
,

where P and A are defined in (25) and (26), respectively.

The input matrix B = [0 0 −1 0 0 0]
�
.

The transmission line dynamics governed by (24) together
with the boundary dynamics (35) can be written as

AUt = δUPd +BE0.

It can be easily checked that using P as a storage function
does not result in any kind of passivity properties of the
system. Therefore, we need to find new P̃d ≥ 0 and
Ã ≤ 0. To include the boundary conditions (35), we do the

following. Let P̃d = P̃ + P̃ 1 + P̃ 0 and Ã = diag(Ã, Ã0, Ã1)
such that

ÃUt = δU P̃d +BS, (36)

where P̃ and Ã are defined in (27) and (33) with λ = 1,

and P̃ 0 = 1
2R0i

2
0, P̃

1 = 1
2R1i

2
1,

Ã0 =


−

θ2

m2C
θ

θ −m2C


 , Ã1 =




θ2

m2C
−θ

−θ m2C


 ,

and S = E0. Under the assumption that ζ and θ are chosen
such that, L0 = 1

m2C
(1−ζ2)θ2 and θ

m2
= R1, we can show

that the time derivative P̃d = P̃ + P̃ 0+ P̃ 1 is computed as
d

dt
P̃d ≤ E0

di0
dt

,

which implies that the system is passive with respect to
input E0 and output di0

dt . Details of all computational steps
are worked out in (Pasumarthy and Kosaraju (2015)).

5. CONCLUSION

This paper provides some means to generate new passive
maps for infinite-dimensional systems, while preserving
the pseudo-gradient (Brayton-Moser) structure. Preserv-
ing the structure is the key for boundary control by inter-
connection of infinite-dimensional systems, which will be
considered in a future work.

REFERENCES

Abraham, R., Marsden, J., and Ratiu, T. (1988). Man-
ifolds, Tensor Analysis, and Applications, 2nd Ed.
Springer-Verlag, Berlin.

Brayton, R.K. and Miranker., W.L. (1964). A stability
theory for nonlinear mixed initial boundary value prob-
lems. Arch. Rat. Mech. Anal., 17(5).

Brayton, R.K. and Moser., J.K. (1964a). A theory of
nonlinear networks i. Q. Appl. Math., 22(1), 1–33.

Brayton, R.K. and Moser., J.K. (1964b). A theory of
nonlinear networks ii. Q. Appl. Math., 22(2), 81–104.

Duindam, V., Macchelli, A., Stramigioli, S., and H. Bryun-
inckx, E. (2009). Modeling and Control of Complex
Physical Systems: The port- Hamiltonian approach..
Springer, Berlin.

Jeltsema, D., Ortega, R., and Scherpen, J.M.A. (2003). On
passivity and power-balance inequalities of nonlinear rlc
circuits. IEEE Transactions on Circuits and Systems-I:
Fundamental Theory and Applications, 50, 1174–1179.

Jeltsema, D. and Scherpen, J.M.A. (2009). Multidomain
modeling of nonlinear networks and systems. IEEE
Control System Magazine.

Jeltsema, D. and van der Schaft, A. (2007). Pseudo-
gradient and lagrangian boundary control system for-
mulation of electromagnetic field. Journal of Physics A
: Mathematical and Theoretical, 40, 1–17.

Pasumarthy, R. and Kosaraju, K.C. (2015). Power based
methods for infinite-dimensional systems. In M.K. Cam-
libel, A.A. Julius, R. Pasumarthy, and J.M.A. Scherpen
(eds.), Mathematical Control theory I: Nonlinear and
Hybrid Control systems. Springer, In Press.

Pasumarthy, R., Kosaraju, K.C., and Chandrasekar, A.
(2014). On power balancing and stabilization for a class
of infinite-dimensional systems. Proc. Mathematical
Theory of Networks and Systems.

van der Schaft, A. and Maschke, B. (2002). Hamil-
tonian formulation of distributed-parameter systems
with boundary energy flow. Journal of Geometry and
Physics, 42, 166–194.

IFAC LHMNC 2015
July 4-7, 2015. Lyon, France

6


