
travel times. Therefore, there is growing interest in modeling and

optimizing travel time reliability in such networks.

In this paper a new algorithm is proposed to compute the path of

maximum travel time reliability between a given origin and destina-

tion on a network with stochastic and correlated link travel times

specified by a multivariate normal distribution. In that context, path

travel time reliability is defined as the probability that path travel

time is within a suitably defined threshold value T0.

The motivation for this study is twofold: First, greater levels of

unreliability in travel times are observed under congested conditions,

which can affect travelers’ scheduling and route choices. Empiri-

cal studies suggest that commuters attach a high value to the reliabil-

ity in journey times (1). The second motivating factor is the sparsity

of literature on the optimal reliability path problem, due partly to its

complexity. The path reliability objective is a nonlinear function of

means and variances. So, the optimality conditions for shortest path

problems based on link separability and linear objective are not

applicable. Unfortunately, solution approaches that make restrictive

assumptions of link independence for tractability can yield unreliable

paths when correlations are significant [e.g., (2, 3)].

The interest in this problem of maximizing path reliability is also

motivated by the following applications: (a) better trip planning and

scheduling for commuters, (b) improved urban commuting deci-

sions through route guidance and information (advanced traveler

information system), and (c) development of decision-support tools

to evaluate and improve the reliability of travel. These applications

can lead to reduced commuter delays, increased travel time savings,

and so on.

As a result of these motivating considerations, three objectives

are pursued in this study: (a) formulate the optimal reliability path

(ORP) problem on a network with stochastic, normal, and correlated

link travel times and identify an optimality criterion for this problem;

(b) propose and implement an efficient algorithm to find the ORP for

a given origin–destination (O-D) pair; and (c) empirically investigate

the computational performance of the proposed algorithm on test

networks.

This work contributes to the literature in the following ways.

First, it is shown that the subpath optimality condition from conven-

tional shortest path problems does not hold for the ORP problem. A

new optimality criterion based on reliability bounds is proposed for

the ORP problem. An algorithm based on the proposed optimality

criterion and an efficient path generation procedure is developed to

solve the ORP problem. Through computational experiments on var-

ious test networks, the proposed algorithm is found to be practically
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Transportation networks are subject to significant travel time uncer-

tainty as a result of traveler behavior, recurring congestion, capacity

variability (construction zones, traffic incidents), variation in demand,

and so on. Therefore, interest is growing in modeling and optimizing

travel time reliability in such networks. This paper proposes an efficient

algorithm to compute the path of maximum travel time reliability on a

network with normally distributed and correlated link travel times. For

this optimal reliability path (ORP) problem, it is shown that the subpath

optimality condition for the deterministic shortest path problem does

not hold, and consequently, a new bounds-based optimality criterion is

proposed using the K shortest expected time paths and the minimum path

variance on the network. An algorithm is developed to solve the ORP

problem on the basis of the proposed optimality criterion and an efficient

path generation procedure. Computational experiments on various test

networks show the proposed algorithm to be efficient, requiring limited

path enumeration. With as few as five shortest paths and 50 Monte Carlo

draws, the proposed algorithm is able to find the most reliable path for

realistic network sizes. Empirical investigations highlight the unrelia-

bility of the least expected time path and suboptimality of the indepen-

dence assumption. The study also underscores the role of risk attitudes

(reflected by reliability threshold) on the benefits of the ORP. The algo-

rithm and empirical results have important applications for developing

reliability-based routing applications for congestion mitigation and

intelligent transportation systems.

The selection of optimal routes on congested transportation net-

works has vital applications in advanced traveler information sys-

tems, routing and scheduling of freight, and dispatch of emergency

services. Transportation networks are subject to significant travel

time uncertainty as a result of traveler behavior, recurring conges-

tion, capacity variability (construction zones, traffic incidents), vari-

ation in demands, and so forth. Consequently, computing optimal

paths on the basis of deterministic criteria such as cost or time is

inadequate for real-world networks under stochastic and correlated
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efficient because it does not involve extensive path enumeration. With

as few as five shortest paths and 50 Monte Carlo draws, the proposed

algorithm is able to find the most reliable path for realistic network

sizes. Empirical investigations highlight the unreliability of the least

expected time path and suboptimality of the independence assump-

tion. The study also underscores the role of risk attitudes (reflected by

reliability threshold) on the benefits of the ORP.

A brief review of existing approaches is presented next, after which

the problem is formally defined and formulated. The following sec-

tion describes the proposed algorithm to compute the path of maxi-

mum travel time reliability for the general case with correlations and

unequal variances. The proposed approach is illustrated on a simple

network, and its computational complexity is analyzed. A discus-

sion of results from a set of computational experiments follow, and

the main findings from the study, conclusions, and scope for further

research are outlined to conclude the paper.

REVIEW OF LITERATURE

The classical shortest path problem involves computing the path of

minimum cost–time on a network with deterministic arc costs. The

need to capture inherent network uncertainty led to the study of the

stochastic shortest path problem (SSPP) within the context of decision

making under uncertainty. Stochastic routing models are intended

to provide commuters with either a priori path guidance or adaptive

en route guidance. Both versions of the problem have been extensively

studied, and existing approaches are reviewed in two parts, the first

dealing with the objective of least expected travel time (LET) and the

second dealing with reliability-based formulations.

One class of adaptive LET path problems assumes that the traver-

sal time on a link will become known (deterministic) on arrival at its

tail (starting) node. Polychronopoulos and Tsitsiklis (4) proposed a

dynamic programming (DP) approach (exponential) to compute the

adaptive LET path, and Cheung proposed a label correcting algorithm

for the same problem (3).

The second class of LET problems assumes that the link travel time

distribution is conditional on arrival time at the link entrance [stochas-

tic time varying (STV) networks]. Miller-Hooks and Mahmassani

proposed a nondeterministic polynomial label correcting algorithm

(discrete travel time distribution) for the a priori path problem (5).

The adaptive path variant for a continuous link travel time distribution

was examined by Hall, who proposed a non-polynomial DP-based

algorithm (6). In addition, Miller-Hooks proposed a label setting

algorithm for the discrete version of the problem (7 ). As a result of

the absence of the Markovian property, finding LET paths on STV

networks is computationally difficult even with the assumption of

independence (7 ).

Reliability-based stochastic routing has been studied primarily in

the context of finding a priori optimal paths. Frank in his seminal

paper, proposed an algorithm to compute the continuous probability

distribution of the minimum travel time (8). However, shortest paths

are identified through paired comparisons within an already enumer-

ated path set. Nie and Wu introduced a concept of “locally reliable”

paths and proposed a label correcting algorithm to compute the set of

locally reliable paths (nondominated with respect to reliability at vary-

ing thresholds) for static independent link travel time distributions (9).

In contrast, the problem of computing an optimal reliability strategy

(policy) has received scant attention. A notable exception is Fan and

Nie, who proposed a DP-based algorithm (10).

Another widely used approach (incorporating reliability) uses the

maximum expected utility (MEU) criterion of Von Neumann and
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Morgenstern (11). Here, a random utility that is a function of link

costs is assigned to each path, with the optimal path being one that

maximizes expected path utility. Computing the MEU path for non-

linear utility functions is nontrivial, and existing pruning-based

approaches assume independence of links (11). The mean variance

trade-off was more explicitly addressed in the mean variance routing

model proposed by Sen et. al. (12). Their model is noteworthy for its

consideration of correlations between link travel times although this

advancement comes at the expense of computational efficiency,

making the proposed integer programming based solution algorithm

ill suited to large networks.

The SSPP has also been studied in the context of robust optimiza-

tion (13). The robust path is one that minimizes path robust deviation

(maximum difference between path cost and the corresponding

shortest path cost, over all scenarios) or worst-case performance.

Pseudopolynomial algorithms are proposed by Yu and Yang (13).

However, such robust routing problems are NP-hard even under

restrictive assumptions (5). Other definitions of optimality based on

first-order stochastic dominance and definite stochastic dominance

are investigated by Miller-Hooks and Mahmassani (5). They pro-

pose label correcting algorithms and heuristics to find nondominated

paths under the stochastic dominance rules.

In summary, only a few studies consider the objectives of opti-

mizing reliability explicitly or implicitly. Further, most existing

approaches make a restrictive assumption of independent link travel

times [e.g., (2), (4), (8)]. Many investigations on the optimal reliabil-

ity problem use a pure Monte Carlo–based approach along with opti-

mization heuristics. There seems to be insufficient understanding of

and evidence on the computational performance and accuracy of these

heuristics for networks with general correlation patterns. In addition,

several empirical issues concerning the ORP problem remain to be

addressed systematically. For instance, how many paths and draws

are needed to obtain optimal or near-optimal solutions? How well does

the least expected time path perform in relation to the reliability

objective? What is the consequence of neglecting correlations while

determining the ORP? How does the nature and magnitude of ben-

efits of the ORP depend on the threshold for computing reliabil-

ity? This work seeks to address the limitations and issues above by

proposing a new algorithm to determine the ORP and conducting

computational experiments on various networks.

PROBLEM DEFINITION AND FORMULATION

The ORP problem considered in this study is concerned with comput-

ing the path that maximizes the probability of arrival within a thresh-

old T0. This formulation allows one to capture features of decision

making under uncertainty, particularly the aversion to late arrival and

the use of a buffer time to maximize probability of on-time arrival. This

problem is defined and formulated as a nonlinear integer programming

problem in this section.

Problem Context and Scope

The transportation network of interest is represented as a directed graph

or network (cyclic) denoted by G (N, A), where N = {1, 2,. . . . , n} 

represents the set of nodes and A represents the set of m directed arcs.

The network is general in the sense that it may include cycles. It is

assumed that the link travel times are random and multivariate nor-

mally distributed with a general correlation pattern [t ∼ MVN(�, �)

with mean vector � and covariance matrix �]. This assumption is



empirically supported by travel time studies on freeways and urban

arterials (14). In addition, this study addresses a static travel time

context, and consequently, the most reliable path is considered to be an

a priori path without recourse. The a priori path formulation is moti-

vated by the absence of in-vehicle guidance systems–traveler informa-

tion services to support en route choices in developing countries (study

context).

Path with Optimal Travel Time Reliability

Between a Given Origin and Destination

The travel time along link (i, j) is represented by a random variable tij

characterized by a mean μij and a standard deviation σij. Consequently,

path travel time is also a random variable, normally distributed with

a mean and variance given by

where (i, j) and (k, l ) represent links on path P. The travel time

reliability (referred to as reliability hereafter for ease of exposition)

of path P is defined as the probability of path travel time (tP) being

within a prespecified threshold T0:

The objective of the problem is to find the most reliable path between

a given origin and destination for the network as defined above. In

other words, the aim is to determine a path P* such that its reliability

R(P*) is greater than or equal to the reliability on any other path R(P)

connecting origin s to destination t. Thus, the optimal reliability path

problem (ORP problem) for a given O-D pair is a nonlinear integer

programming problem. Because the normal cumulative distribution

function Φ(.) is monotonic, the objective function may be rewritten as

Failure of Subpath Optimality Property

The objective function R ′(x) above is nonlinear in the integer-valued

decision variable link flows (xij = 0 or 1). Consequently, the property
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of subpath optimality (i.e., every subpath of the optimal path is opti-

mal to the respective intermediate node) does not hold. That is illus-

trated on the network in Figure 1a (with given means and unit variance;

independent travel times; T0 = 4). Here, path S-A-B-T is the most reli-

able between S and T, whereas subpath S-A-B of this path is not opti-

mal to node B (Figure 1b). The failure of subpath optimality can also

be shown for the case with correlations and unequal variances.

PROPOSED ALGORITHM FOR COMPUTING ORP

In view of the failure of the subpath optimality property, an algorithm

to compute the ORP is proposed that draws on principles of bound-

ing, simulation, and network optimization. A brief overview of the

proposed approach is first outlined followed by a detailed algorithm

description, illustration on an example network, and analysis of

computational complexity.

Rationale and Overview

For the general case of correlations and unequal variances, an algo-

rithm is proposed for the ORP problem based on convergence of lower

and upper bounds on reliability. The proposed approach involves com-

puting the K shortest expected time paths, on the basis of which are

estimated a lower bound on optimal path reliability and a series of

progressively decreasing upper bounds on path reliability (of the

K paths). Subsequently it is shown that when the lower bound (LB)

on optimal path reliability exceeds the smallest of the upper bounds

[minimum UB (min UB)], then the most reliable path is contained

in the K-path set. If the sufficient condition does not hold, then an

efficient path generation procedure is proposed to identify paths of

maximum conditional reliability given a set of random draws on the

correlated component of the link travel time vector. These paths are

augmented to the K set, and the path generation procedure is itera-

tively repeated until either the bounds converge or a prespecified num-

ber of Monte Carlo draws have been completed. The draws can be

chosen to limit the probability of the optimal solution falling outside

the K set.

Algorithm Description

The key steps of the proposed algorithm include

1. Determine K shortest expected time paths, and evaluate path

reliability. Hence, compute LB (see section on computation of

shortest expected time paths).

Path/ Sub

Path
Mean Variance Reliability Expression

Reliability

Value

S-B-T 3.5 2 0.64

S-A-B-T 3 3 0.72

S-B 2.5 1 0.93

S-A-B 2 2

4 – 3     3 = Φ 0.58Φ

4 – 3.5      2 0.35Φ = Φ

4 – 2.5  1 1.50Φ = Φ

Φ = Φ4 – 2      2 1.41 0.92

(b)

(a)

T
2.5

S

1

1

1

A

B

FIGURE 1 Illustration of failure of subpath optimality: (a) example network and (b) failure of subpath
optimality.



2. Determine lower bound on minimum path variance (see sec-

tion on computation of a lower bound on minimum path variance),

and compute path reliability upper bounds. Hence, compute min

UB (see section on computation of minimum path reliability UB

for K-path set).

3. Perform optimality–termination check (see section on sufficient

condition for optimality of ORP).

If LB ≥ min UB or number of iterations l > L, then optimal reliability

estimate = LB; terminate.

Else (path generation—see section of Monte Carlo–based path

generation procedure).

– Perform a random draw of the multivariate normal component

of the link travel time vector.

– Compute path of maximum conditional reliability Popt (relia-

bility Ropt) by using the proposed algorithm for the independent

and identically distributed (i.i.d.) problem.

– Update lower bound: if Ropt > LB, set LB = Ropt.

– Set l = l + 1, and repeat Step 3.

Computation of Shortest Expected Time Paths

Because the mean path travel time is one determinant of reliability,

paths with small expected travel times are potential candidates for

the ORP. However, because the shortest expected time paths may

not be reliable, a set of K shortest expected time paths is considered

that must contain the optimal path for some K, although in the worst

case this requires enumerating all paths. The K shortest expected

time paths problem is solved by using the standard label correcting

algorithm (15). A lower bound on optimal reliability is the largest

path reliability from the K-path set.

Computation of a Lower Bound 

on the Minimum Path Variance

An upper bound on the actual reliability R′P of any path P can be

obtained by substituting path variance with the minimum path variance

on the network σ2
min (for the given O-D pair). The main idea here

involves decomposition of the variance objective into an equivalent

sum-of-squares problem (i.e., a minimum cost norm problem) involv-

ing a multiobjective cost vector. For this, the Cholesky decomposition

of the variance–covariance matrix is performed yielding Cholesky

matrix A = [aij] for i = 1, . . . , m and j = 1, . . . , m. Path variance can

be expressed as a sum of link separable components based on the

Cholesky coefficients (Equation 3) and consequently can be restated

as the norm or sum of squares of m cost elements (Equation 4). Thus,

the problem of computing the minimum variance path is equivalent to

finding the minimum cost norm path on a network with multiple (m)

objectives.

Unfortunately, the minimum cost norm problem is difficult to solve

exactly because it is a multiobjective problem. Therefore, a lower

bound on σ2
min that can be easily computed is used instead. For that
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purpose, consider the problem of minimizing Z = (Σm
k=1 qpk)

2 (the

square of the sum of Cholesky coefficients), which is referred to as

the minimum sum objective problem. This problem can be solved

by using shortest path algorithms because it involves a single objec-

tive (link cost equals sum of Cholesky coefficients for that link,

Σjaij). Although optimizing the minimum sum objective (optimal

path denoted Psum) does not minimize variance per se, studies show

that it gives a fairly tight upper bound (typically within 0.5%) on

minimum variance (16).

If λ represents the maximum value of (σPsum/σmin) across various

instances, then σmin ≥ (1/λ) σPsum. Thus, σ* = cσPsum is a lower bound

on σmin whenever the constant c < (1/λ). Empirical evidence that is con-

sistent with the authors’ own observations, indicates that a value

of c = 0.75 provides a valid lower bound for most real networks (16).

To summarize, the proposed procedure to estimate a lower bound

on minimum path variance σ2
min involves (a) Cholesky decomposition

of the travel time covariance matrix, (b) formulation and solution of

the min sum path problem, and (c) computation of a lower bound

σ* = cσPsum by applying a suitable scaling factor c to standard

deviation of the optimal min sum path.

Computation of a Minimum Path Reliability UB 

for the K-Path Set

By using this lower bound on σmin, an upper bound for path reliabil-

ity is computed for each path in the K-path set, and the smallest of

these path bounds is taken as minimum UB (min UB). Because the

mean travel times in the K-path set progressively increase, the cor-

responding upper bounds on path reliability progressively decrease.

Consequently, the smallest upper bound on path reliability in this set

corresponds to the Kth path.

Sufficient Condition for Optimality of ORP

When the lower bound on optimal path reliability exceeds the small-

est of the upper bounds (min UB), then the most reliable path is con-

tained in the K-path set. This follows because the path upper bounds

progressively decrease. Therefore, min UB must be larger than all

upper bounds of paths outside the set, which in turn are larger than the

corresponding actual path reliabilities outside the set. Thus, a sufficient

condition for finding the ORP is, if LB ≥ min UB in the set above, then

the most reliable path is contained in the set. If this condition is sat-

isfied, optimality is guaranteed and the algorithm terminates. How-

ever, the optimality condition above is sufficient, but not necessary.

In other words, if LB < min UB, then either optimality is achieved

but is not verifiable because of loose upper bound, or optimality is

not achieved in the given K set.

Monte Carlo–Based Path Generation Procedure

If the optimality criterion above is not met, a Monte Carlo–based

path generation procedure is proposed to generate new candidate

paths that may be more reliable than the K-path set. The proposed path

generation procedure involves (a) decomposing the travel time

variance–covariance matrix into a correlated component and an

independent component and generating several Monte Carlo draws

(vectors) of the correlated component to produce conditionally inde-

pendent instances of link travel time distributions and (b) for each

of the conditionally independent instances, determining the condi-



tionally most reliable path by using a network optimization proce-

dure. The conditionally most reliable paths constitute the additional

potentially reliable candidate paths and are likely to be generated

frequently with increasing draws.

Error Components Scheme for Decomposing 

the Travel Time Distribution

The link travel time vector (t) is decomposed into two components:

a correlated component across links (z) and an i.i.d. component (�)

across links.

where

t ∼ MVN(�, �T),

z ∼ MVN(0, �Z), and

�i ∼ N(0, σ2).

The major advantage of this decomposition is that given a draw

of the correlated component vector z, the resulting conditional link

travel times (t⎟ z) are i.i.d. across links with variance σ2.

Label Correcting Algorithm to Compute the

Conditionally Most Reliable Path for the i.i.d. Case

On the basis of the error components scheme, several instances

(L) of the multivariate correlated component z are randomly

drawn from its distribution (Equation 5). Next, the path of maxi-

mum conditional reliability is computed for each instance (draw)

of the conditional link travel time vector t⎟ z. The i.i.d. nature of

the conditional travel time vector makes it easier to solve the ORP

problem for this case. The following modified label correcting

algorithm is proposed.

The path variance in the i.i.d. case (with link variance σ2) is sim-

ply σ2 times path length (number of arcs). Consequently, the ORP

problem objective (Equation 2) reduces to

Paths with equal length have equal variance. Hence, among paths of

equal length (number of arcs), the path with maximum reliability is

the one with the least expected time.

With this principle, the conditionally most reliable path is solved

in two stages for each draw: first, the most reliable path and corre-

sponding reliability values Ra* are determined for every feasible path

length a (number of arcs = 1, 2, . . . , up to a maximum of n − 1). This

is done by using a modified label correcting procedure in which a set

of up to n − 1 labels are maintained at each node i. The kth label (k =
1, 2, . . . , n − 1) of node i, dk(i) represents the current estimate of min-

imum mean travel time (and hence maximum reliability) to node i

among subpaths with exactly k arcs. The optimality condition can be

stated as
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Ties between multiple subpaths of equal length may be broken

arbitrarily. At optimality, the maximum reliability for a given path

length a, Ra* is computed from the label of destination node t as

where σ2 is the variance of the i.i.d. components (ηi in Equation 5).

Next, the optimal path across all path lengths is found as the path

with the largest reliability from the first stage across varying num-

ber of arcs a, and thus optimal path reliability R* = maxaRa*. Thus, the

path of maximum conditional reliability is computed for each draw.

With probability theory, it can be shown that the probability of

not encountering the true optima in L random draws (δ) decreases

as per the following equation:

where p is an estimate (obtained from R draws) of the probability that

the path of maximum conditional reliability coincides with the true

optimum on a single draw, and the confidence level is 100(1 − α).

Illustrative Example

The proposed algorithm is illustrated on the simple example network

shown (mean, variance in Figure 2a) for origin node 1 and destination

node 5. The O-D threshold is assumed to be 12, and for simplicity,

links are assumed to be equi-correlated with correlation coefficient

ρ = 0.25. The results of each step are summarized in Figure 2c.

Computational Complexity

The proposed ORP algorithm involves (a) identification of K short-

est expected time paths requiring O[Kn(m + nlogn)] computations

(O = order of) (14); (b) computation of lower bound on variance

requiring O[m3] + O[m] + O[n2] computations for the Cholesky

decomposition and computation of arc level min sum costs and

the corresponding shortest path; and (c) path generation procedure

requiring O[mn(n − 1)] computations per iteration. Thus, the over-

all computational complexity of the proposed algorithm is given by

O[Kn(m + nlogn)] + O[m3 + n2 + m] + O[Lmn(n − 1)]. The algorithm

is polynomial in m and n, but may increase significantly depending

on K and L (pseudopolynomial).

COMPUTATIONAL EXPERIENCE

This section reports the results from a set of computational experi-

ments on different synthetic and real networks. The computational

experiments are intended to

1. Study the effect of choice of parameters L and K on algorithm

performance,

2. Investigate algorithm performance with increasing network

sizes and densities, and

3. Analyze the performance of the ORP in relation to other

benchmarks for a real-world network with empirical travel time

data.
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The experimental factors for the first two experiments are 

summarized below:

• Five randomly generated synthetic networks: size (500 or

1,000 nodes); density (1, 3, 5 links per node)

• Parameter levels: K paths (0/5/10/15); L draws (25/50/100)

• Network link attributes: mean travel times (random 5–15 units),

variance (random 0–100 units2), and correlations (random 0–1)

• Performance measures: average values of (a) computational

time(s) and (b) accuracy (percent deviation from true optimum) from

a series of 10 runs for each configuration

• Benchmark models

– Bounding heuristic: computation of K shortest expected time

paths where K is iteratively doubled until convergence of bounds

– Conditional reliability optimization heuristic: algorithm with

K = 0 (purely draw-based simulation procedure—see section on

Monte Carlo–based path generation procedure)

• Benchmark solutions

– True optimum (computed by using bounding heuristic)

– Optimal reliability path assuming independence (ORP-I)

Effect of Algorithm Parameters K and L

Results indicate that the proposed algorithm is accurate even for very

small values of K and L (see Tables 1 and 2). With as few as five K-

shortest paths and 25 draws, the optimal path is found in four of the
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five networks, whereas, with five paths and 50 draws the optimal path

is found in the remaining network (Network 4). The computational

time is quite acceptable (59 s) for realistic networks (1,000 nodes,

3,000 links) and a general correlation pattern. Further, the computa-

tional time increases as K and L increase, with a larger increase noted

for L for a given network size. Across network sizes for a given num-

ber of draws, the effect of K becomes more significant, particularly as

the number of links increases (Networks 3 and 5). Thus, K-shortest

path computations tend to be more expensive for larger networks.

Results support the conjecture that the K-best expected time paths

serve as a good initial candidate set, but are not necessarily optimal.

(For example, in Network 4, the optimal path is outside the K = 15

least-expected time paths.) Furthermore, the effectiveness of augment-

ing the K-path set with conditionally reliable paths is also observed. In

Networks 3 and 5, with K = 5 and 25 augmented draws, the optimal

path is identified in each of 10 sets of replications. Also, in Network 4,

increasing K from 5 to 15 does not find the optimal solution, while even

with K = 5, increasing L from 25 to 50 draws ensures optimality. In

this network, the optimal path lies outside K = 15 and yet is consis-

tently identified as the conditionally most reliable path within a set

of 50 draws.

Effect of Network Size and Density

The examination of algorithm performance for varying network

sizes (nodes) and densities (links) and comparisons with the bound-

Algorithm Step Result 

1. Lower bound computation (K = 1) K = {1-3-5};  L.B = R1-3-5 = 0.80

2. Computation of lower bound on σmin

a. Cholesky decomposition 

b. Compute Psum , σPsum

c. Compute σ* = cσPsum

a. min sum objective costs 

b. Psum: path 1-2-4-5, σ2
Psum

 = 16.46

c. 16.46 = 3.043σ
* = 0.75 ×

3. Computation of min UB (c = 0.75) min UB = 0.905

4. Path generation (L = 5)

Paths of maximum conditional reliability

1. 1-3-5 4.   1-2-4-5 

2. 1-3-5 5.   1-3-5 

3. 1-2-4-5 

5. Termination 
Max reliability = 0.80 = LB 

Optimal path 1-3-5; reliability = 0.80 

(c)

DrawArc

1 2 3 4 5 

1-2 2.78 3.79 2.24 5.54 1.85 

1-3 4.03 1.02 9.56 16.04 3.81 

2-4 3.91 6.10 0.31 2.57 5.35 

3-2 7.93 4.58 4.93 5.13 2.68 

3-5 0.10 8.42 4.02 11.04 2.66 

4-5 4.45 6.33 3.70 1.53 4.59 

4-3 1.61 4.44 6.02 3.82 4.64 

(b)(a)

Link 4
(6,4)

(4,3)

(4,4)

Link 7 
Link 2 

(5,9)

1

Link 5 

Link 3 

(3,9)

(4,4)

(4,4)

Link 1 
2

3

4

5

Link 6 

FIGURE 2 Illustrative example: (a) example network, (b) mean conditional link travel times for 
L � 5 draws, and (c) stepwise results for illustrative example.



ing heuristic and conditional reliability optimization heuristic

indicated the following:

• The number of network links has a more significant effect

than the number of network nodes. Computational time increases

13-fold (as links increase from 625 to 2,510–Networks 1 and 3),

whereas as nodes increase from 500 to 1,000, the increase is 4.6 times

(Networks 2 versus 5).

• Compared with the bounding heuristic, the proposed algorithm

(parameters chosen to ensure 100% accuracy) is computationally

more efficient (34% to 142% faster). This illustrates the efficiency

of the conditional path reliability optimization scheme, which leads

to the enumeration of fewer paths.

• The performance of the ORP algorithm (bounds + path gen-

eration) is compared against the pure path generation procedure.

The proposed algorithm is computationally more efficient (20%

to 75%) in four of the five networks, suggesting the need to com-

bine bounds and path generation procedures in many networks. In

contrast, in Network 4, the algorithm is marginally slower (by

0.19%) than the Monte Carlo–based conditional reliability-based

optimization algorithm.

Empirical Application

In this section the proposed algorithm is applied to a network 

(33 nodes, 98 links) of major roads in Chennai, India (Figure 3). The

coefficients of variation of link travel time (based on empirical data)

are consistent with those (0–0.7) observed in other urban transporta-
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tion networks (13). The correlation coefficient between adjacent

links is taken as 0.75, and correlation between nonadjacent links is

taken as zero. The travel time threshold is chosen to be 1.5 times the

shortest expected time for the corresponding O-D pair (allowing for

50% buffer over the least expected time due to various sources of

uncertainty). The optimal travel time reliability measure is com-

pared with the least expected time path for five randomly selected

O-D pairs on the basis of mean, variance, and reliability of path

travel times.

The results illustrate that minimizing expected travel time (LET

path) alone may result in choice of unreliable paths (three out of five

O-D pairs). In contrast, maximizing reliability results in a modest

increase in mean travel time (between 0.91% and 9.29% compared

with LET path). However, the decrease in standard deviation is quite

substantial (17.5% to 75%) resulting in a reliability improvement of

5% to 35%.

The effect of assuming independence was investigated by com-

paring actual path characteristics of the ORP-I against the true

optimum. The optimal path ORP-I was found to be different from

the true optima (ORP) in three of the five O-D pairs, all of which

result in choice of suboptimal or unreliable paths. The difference

in reliability of ORP-I from true ORP ranges between 11% and

17%, and the mean travel times were suboptimal by between 3%

and 4.5%. The standard deviations in the independent case were

higher by 15% to 25% than the optimal reliability solutions. Thus,

the assumption of independence may lead to suboptimal results in

some cases.

The comparison was also performed by systematically vary-

ing the range of threshold values T0 (1.1, 1.25, 1.5, 1.75, and 

TABLE 1 Effect of Parameters K and L on Algorithm Performance

Network 1 (500 nodes, Network 2 (500 nodes, Network 3 (500 nodes, Network 4 (1,000 nodes, Network 5 (1,000 nodes,
625 links) 1,530 links) 2,515 links) 1,250 links) 3,055 links)

Time Time Time Time Time
K L (s) % Deviation (s) % Deviation (s) % Deviation (s) % Deviation (s) % Deviation

0 25 2.34 1.73 12.08 3.23 28.12 9.39 8.92 4.50 55.56 4.08

0 50 2.81a 0.00a 15.17 1.38 34.24 7.91 9.532a 0.00a 58.27 4.08

0 100 3.75 0.00 21.37a 0.92a 46.17a 0.00a 10.79 0.00 70.99a 0.00a

5 25 2.35b 0.00b 12.10b 0.00b 29.32b 0.00b 8.94 4.50 58.83b 0.00b

5 50 2.81 0.00 15.22 0.00 35.44 0.00 9.55b 0.00b 61.94 0.00

5 100 3.75 0.00 21.49 0.00 46.77 0.00 10.80 0.00 72.81 0.00

10 25 2.35 0.00 12.13 0.00 30.88 0.00 8.97 4.50 62.33 0.00

10 50 2.82 0.00 15.52 0.00 36.43 0.00 9.58 0.00 65.97 0.00

10 100 3.76 0.00 21.95 0.00 47.11 0.00 10.66 0.00 75.38 0.00

15 25 2.35 0.00 12.20 0.00 31.75 0.00 8.98 4.50 66.19 0.00

15 50 2.81 0.00 15.89 0.00 36.41 0.00 9.60 0.00 69.14 0.00

15 100 3.76 0.00 22.79 0.00 47.29 0.00 10.66 0.00 79.89 0.00

aValue for conditional reliability optimization heuristic used in comparison.
bAlgorithm value used for comparison with bounding heuristic and conditional reliability optimization heuristic.

TABLE 2 Comparison of Bounding Heuristic with Proposed Algorithm

Performance Measure Network 1 Network 2 Network 3 Network 4 Network 5

K for convergence 10 20 40 40 40

% diff. in time 34.5 45 66.3 38.4 142.2

% diff. in accuracy 0 0 0 0 0



2.0 times the least expected time Tmin). The threshold T0 repre-

sents the total time budgeted by a commuter to arrive before a 

preferred arrival time. This includes the expected travel time for

the journey plus an extra buffer to account for unexpected delays

and congestion. The threshold is a measure of commuters’ risk-

taking propensity with low thresholds representing risk-seeking

(or risk-prone) commuters and high thresholds representing risk-averse

commuters.

In general as the threshold value increases (quantified by ratio of

T0 to Tmin), the improvement in reliability initially increases and then

decreases (Figure 4). The point of maximum improvement varies
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between 1.25 and 1.5 times Tmin for different O-D pairs. Significant

variation is seen in the extent of reliability improvement (relative to

the least expected time path) for different O-D pairs. The improve-

ment is quite significant (20% to 40%) for most O-D pairs, with the

exception of O-D Pair 2 (in which maximum improvement is below

5%). That is attributable to the differences in the coefficient of vari-

ation and expected travel times between the ORP and least expected

time path for these O-D pairs.

In contrast to the general trend of small reliability improvement

at low and high thresholds, significant improvement is possible in

some cases. Notable exceptions include O-D Pairs 1 and 4, which
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FIGURE 3 Chennai road network topology.



show improvement of 16% and 10% at T0 = 1.1Tmin. This is possi-

ble when the shortest expected time path has a moderate coeffi-

cient of variation (0.48 and 0.51 for O-D Pairs 1 and 4) that is

significantly higher than that of the ORP (60% and 45% higher

for O-D Pairs 1 and 4). However, O-D Pairs 3 and 5 show improve-

ment of 13.5% and 10.2% at T0 = 2Tmin, illustrating that a large

improvement in reliability is possible even at high thresholds.

This occurs when the shortest expected time path has a high coef-

ficient of variation (0.66 and 0.63 for O-D Pairs 3 and 5) that is

again, significantly higher than the ORP (77% and 56% higher for

O-D Pairs 3 and 5).

These findings have the following implications: the largest

improvements in reliability are attained at moderate thresholds

(1.25–1.5Tmin), which correspond to uncertain system performance

and moderately risk-averse travelers. To the extent that the thresh-

old is a measure of risk aversion, benefits of the ORP tend to be

lower for both risk-seeking and extremely risk-averse travelers. For

some O-D pairs, and threshold values, the least expected time path may

serve as a good proxy for reliability, whereas for many others the ORP

may provide significant reduction in variability and improvement in

reliability. The magnitude of reliability improvement depends on

the differences in coefficient of variation and mean travel time

between the shortest expected time path and ORP, as well as the

threshold for reliability.

CONCLUSIONS

This paper proposes a new bounds-based optimality criterion for the

ORP problem. On the basis of the bounds, an algorithm is proposed

to find the path with maximum travel time reliability on a network

with stochastic, normal, and correlated link travel times. Computa-

tional experiments demonstrate the accuracy and efficiency of the

proposed approach and its applicability to realistic network sizes.

The computational time is affected by the number of K shortest

paths, number of draws, and network size. For realistic network

sizes, it is found that as few as five paths and 50 draws are suffi-

cient to find the ORP. Further, the proposed algorithm is computa-

tionally faster than both a bounding heuristic (involving doubling
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K-shortest expected time paths until the bounds converge) and a

pure Monte Carlo draw based simulation procedure (conditional

reliability optimization heuristic).

In addition, experiments on a real-world network (Chennai) using

empirical travel time data yielded the following insights:

• Existing practice of using shortest expected time paths can lead

to the choice of highly unreliable paths, whereas using travel time

reliability can yield significant improvements in reliability (more

than 35%) without excessively compromising on mean travel time

(less than 10%).

• Assuming independence of link travel times can result in the

choice of suboptimal paths with a significant compromise on path

reliability (between 11% and 17% from the ORP).

• Results also underscore the role of risk attitudes on benefits due

to reliability-based optimization. The maximum benefits in regard to

an improvement in reliability are obtained by moderately risk-averse

travelers.

• The magnitude of maximum reliability improvement depends

on the threshold value and differences in coefficient of variation

and mean travel time between the ORP and the shortest expected

time path.

The proposed algorithm will have important applications in the

context of congestion mitigation and ITS applications related to

route guidance on networks with significant travel time uncertainty.

Potential directions for future research include extending the pro-

posed algorithm to incorporate nonnormal distributions and routing

in stochastic and dynamic networks. Another interesting line for

further work is the development of reliability-based algorithms for

the context of routing with recourse under stochastic travel times.
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