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a b s t r a c t

In this work, we extend the recently proposed adaptive phase field method to model fracture in

orthotropic functionally graded materials (FGMs). A recovery type error indicator combined with

quadtree decomposition is employed for adaptive mesh refinement. The proposed approach is capable of

capturing the fracture process with a localized mesh refinement that provides notable gains in

computational efficiency. The implementation is validated against experimental data and other nu-

merical experiments on orthotropic materials with different material orientations. The results reveal an

increase in the stiffness and the maximum force with increasing material orientation angle. The study is

then extended to the analysis of orthotropic FGMs. It is observed that, if the gradation in fracture

properties is neglected, the material gradient plays a secondary role, with the fracture behaviour being

dominated by the orthotropy of the material. However, when the toughness increases along the crack

propagation path, a substantial gain in fracture resistance is observed.

© 2020 China Ordnance Society. Production and hosting by Elsevier B.V. on behalf of KeAi

Communications Co. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Functionally graded materials (FGMs) are a special class of

composites with spatially varying microstructure - volume frac-

tions of the constituent elements. These characteristics of FGMs

allow the designer to develop ad hoc microstructures for specific,

non-uniform service conditions. In addition, the continuous vari-

ation of material properties alleviates weak junctions within the

system (for example in layered materials), i.e., avoiding the bi-

material interface, which could be a potential site for crack nucle-

ation. The potential advantages in using the FGMs include: (a)

enhanced thermal and fracture resistance [1,2], (b) reduced resid-

ual stresses [3], and (c) the smoothening of interfaces [4,5].

Ceramic-based FGMs enjoy great popularity [6]. However, these

materials exhibit brittle fracture and complex fracture behaviour

[7], particularly when a preferential direction of orthotropy de-

velops. The preferential direction of orthotropy can arise due to the

manufacturing process utilized for the synthesis. This is, for

example, the case in FGMs manufactured with plasma spray tech-

niques or electron beam physical vapor deposition. In the former,

the outcome is a material with a lamellar structure with higher

stiffness and weak cleavage planes parallel to the boundary. In

FGMs manufactured via electron beam physical vapor deposition

one observes a columnar structure, a higher stiffness in the thick-

ness direction and weak fracture planes perpendicular to the

boundary [8,9].

Several numerical techniques have been proposed in the liter-

ature to analyse the fracture processes in orthotropic FGMs

[8,10e14]. The vast majority of the works are based on discrete

approaches; for example, the conventional finite element with

displacement correlation technique (DCT) [15], the extended finite

element method (XFEM) [8,10,11,14], and the scaled boundary finite

element method (SBFEM) [12,13]. However, predicting crack initi-

ation and subsequent crack growth requires an ad hoc criterion,

with crack trajectories being sensitive to this choice [16]. Varia-

tional approaches based on energy minimization constitute a

promising tool to overcome this limitation [17,18]. Specifically, the

phase field method (PFM) has proven to be efficient technique in

modelling brittle fracture [19e21], ductile damage [22,23], dy-

namic fracture [24], fracture properties prediction of
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nanocomposites [25], fiber cracking and composites delamination

[26e28], plates and shells [29,30] and hydrogen embrittlement

[31,32], among other phenomena. Recently, the success of phase

field fracture methods has been extended to modelling cracking in

isotropic FGMs by Hirshikesh et al. [33]. Here, we extend the

framework to deal with orthotropic FGMs and include an adaptive

mesh refinement strategy to boost computational efficiency.

Although, the PFM has shown advantages over discrete ap-

proaches, the finite element discretization requires resolving the

length scale parameter as [o. In brittle materials, [o can be very

small and the discrete crack in linear elastic fracture mechanics is

recovered for the limiting case of [o/0. The need to resolve this

region of high gradients creates a computational burden. Local

refinement techniques can reduce the computational cost; how-

ever, this requires the crack path to be known a priori, which is

often not the case. An alternative is to use adaptive refinement

algorithms based on error indicators. Several strategies have been

proposed [34e39], being most of them based on post-error esti-

mation such as goal-oriented, recovery, and residual. For example,

Areias et al. [40,41] presented an adaptive mesh refinement strat-

egy that combines the staggered algorithm with the screened

Poisson equation. Goswami et al. [42] proposed an adaptive fourth-

order phase field model based isogeometric analysis (IGA).

Recently, Samaniego et al. [43] solved the phase-field equations via

machine learning approach. In this paper, we aim to extend the

recently developed adaptive PFM by Hirshikesh et al. [37] to model

fracture in orthotropic FGMs. The adaptive PFM is based on the

combination of quadtree decomposition and recovery based error

indicators, allowing for an automatic tracking of the crack trajec-

tory and local domain discretization. The hanging nodes that arise

due to the quadtree decomposition are treated within the frame-

work of the polygonal finite element method (PFEM) with mean -

value coordinate basis function.

The rest of the paper is organized as follows. Section 2 presents

the governing equations for the PFM and the corresponding weak

form. The adaptive refinement strategy based on the quadtree

decomposition and recovery based error indicator is presented in

Section 3. The applicability of the adaptive refinement strategy for

the fracture in orthotropic FGM is shown in Section 4. Concluding

remarks end the manuscript.

2. A phase field fracture formulation for orthotropic FGMs

Consider an orthotropic functionally graded solid with primary

orientation directed along the axis e1, making an angle q with

respect to the global frame ex, and secondary orientation e2, which

is orthogonal to e1 as shown in Fig. 1. The boundary (G) is consid-

ered to admit the decomposition with the outward normal n into

three disjoint sets, i.e., G ¼ GD∪GN∪Gc and GD∩GN∩Gc ¼ ∅, where

Gc is the crack surface, Dirichlet boundary and Neumann boundary

conditions are specified on GD and GN respectively. The closure of

the domain is U≡U∪G.

2.1. Governing equations

The spatial variation of the elastic and fracture properties

inherent to functionally graded materials (FGMs) can be incorpo-

rated following the pioneering work by Hirshikesh et al. [33].

Variational phase field fracture methods are particularly suited to

capture the complex crack trajectories that are observed in FGMs

due to the inherent crack tip mode mixity [33,44,45]. As described

below, we introduce a history field H to prevent damage irrevers-

ibility and we adopt the so-called hybrid model [46] to reduce the

computational cost by keeping the linear form of the elasticity

equation. In addition, we decompose the strain energy density into

tensile and compressive parts j ¼ jþ þ j�, so as to prevent

damage under compressive stresses. Consider a linear elastic solid

with spatially varying toughness G cðxÞ undergoing small strains.

For the displacement u and phase field f, the strong form of the

governing equations in the absence of inertia and body forces is

given by Ref. [46,47]:

Ve
,s ¼ 0 in U (1a)

�G cðxÞ[oV
pfAVpfþ

�

G cðxÞ

[o
þ 2Hþ

�

f ¼ 2Hþ in U (1b)

These balance equations are supplemented with the following

boundary conditions:

s,n ¼ t on GN

u ¼ u on GD

Vf,n ¼ 0 on G\Gc

(2)

where Vp and Ve are the scalar and the vector differential operators,

given by,
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Here A ¼ Iþ b½I � n5n�, with n ¼ fcosq; sinqgT introduced to

account for the crack path based on the material orientation. In this

work, the penalty parameter, b ¼ 20 is considered which constraint

the propagation of crack in the direction perpendicular to the

cleavage plane. The Cauchy stress tensor, s for the functionally

graded orthotropic material is defined as:

s¼
h

ð1� fÞ2 þ kp

i

DðxÞε (4)

where kp is a small positive number introduced for numerical

Fig. 1. Schematic representation of a orthotropic FGM domain with a geometric

discontinuity in PFM framework, [o is the characteristic length scale.
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stability and

DðxÞ¼T
TQ ðxÞT (5)

with

T ¼

2

4

cosq sinq 0
�sinq cosq 0

0 0 1

3

5 (6)

and

Q ðxÞ ¼

2

4

Q11 Q12 0
Q21 Q22 0
0 0 Q66

3

5 (7)

The components of the tensor Q ðxÞ are calculated as:

Q11 ¼
E1ðxÞ

1� n12n21

Q22 ¼
E2ðxÞ

1� n12n21

Q12 ¼
n12E2ðxÞ

1� n12n21
¼

n21E1ðxÞ

1� n12n21

Q66 ¼ G12ðxÞ

n21 ¼
E2ðxÞ

E1ðxÞ
n12

(8)

Here, E1ðxÞ and E2ðxÞ are the longitudinal and the transverse

Young’s modulus respectively, G12ðxÞ is the shear modulus, n12 is

the major Poisson’s ratio, and n21 is the minor Poisson’s ratio. Thus,

material properties vary at the element level, in what is usually

referred to as a graded finite element approach [48]. The small

strain tensor (ε) is computed from the displacement field (u) as,

ε ¼
1

2

�

VeuT þ Veu
�

(9)

The history variable, Hþ is defined as,

Hþ
:¼ max

t2½0;t�
jþðεðx; tÞ Þ (10)

The introduction of Hþ in Eqn. (1b) helps to decouple Equations

(1a-1b) and a robust staggered scheme can be used for computing

(u, f) [46,49]. However, one should note that monolithic quasi-

Newton methods have recently shown great promise for phase

field fracture problems [50,51]. Further, to prevent the crack faces

from inter-penetration, Eqn. (1b) is supplemented with the

following constraint:

cx : jþ
<j�

0f :¼ 0 (11)

where,

j±ðεÞ ¼
1

2
lCtrðεÞD

2
± þ mtr

�

ε
2
±

�

with C ,D± : ¼ 1
2 ð ,±j ,jÞ, ε± :¼

P

3

I¼1

CεID±nI5nI and ε ¼
P

3

I¼1

CεIDnI5nI ;

where fεIg
3
I¼1 and fnIg

3
I¼1 are the principal strains and the principal

strain directions, respectively.

2.2. Weak form

Let W ðUÞ include the linear displacement field and the phase

field variable, and let (U ;P Þ and (V ;Q ) be the trial and the test

function spaces:

�

U ;V 0
�

¼

�

�

uh; v
�

2

h

C0ðUÞ
id

: ðu; vÞ2½W ðUÞ �d4
h

H1ðUÞ
id

�

(12a)

�

P ;Q 0
�

¼

�

�

fh; q
�

2

h

C0ðUÞ
id

: ðf; qÞ2½W ðUÞ �d4
h

H1ðUÞ
id

�

(12b)

Let the domain be partitioned into elements Uh and on using

shape functions N that span at least the linear space, we substitute

the trial and the test functions:
n

uh;fh
o

¼
P

I

NIfuI ;fIg and fv; qg ¼

P

I

NIfvI ; qIg into Eqn. (13). The system of equations can be readily

obtained upon applying the standard Bubnov-Galerkin procedure.

Find uh
2U and fh

2P such that; for all v2V
0 and q2Q

0,

ð

U

nh

ð1� fÞ2 þ kp

i

sðuÞ : εðvÞ
o

dU ¼

ð

Gt

t,v dG (13a)

ð

U

�

Vq G cðxÞ[o AVfþ q

�

G cðxÞ

[o
þ 2Hþ

	

f

�

dU

¼

ð

U

2Hþq dUþ

ð

G

Vf,n q dG (13b)

which leads to the following system of linear equations:

Kuuuh ¼ f uu (14a)

Kffh ¼ f f (14b)

where

Kuu ¼
X

h

ð

U
h

h

ð1� fÞ2 þ kp

i

BT
DðxÞ B dU; (15a)

Kf¼
X

h

ð

U
h

�

BT
f G cðxÞ[oA Bf þNT

�

G cðxÞ

[o
þ2Hþ

	

N

�

dU (15b)

fuu ¼
X

h

ð

U
h

NTt dU; (15c)

ff ¼
X

h

ð

U
h

NT 2Hþ dU; (15d)

Here, B ¼ VeN is the strain-displacement matrix and Bf ¼ VpN is

the scalar gradient of the shape function matrix N . The above

system of equations are solved by the staggered approach [46,49].

The present framework is implemented in Matlab. The reader is

referred to Ref. [52] for a FEniCS-based implementation, Ref. [53]
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for a COMSOL-based implementation, Ref. [54] for an Abaqus-based

implementation, and to Ref. [43] for machine learning solution

scheme.

3. Recovery based error indicator and quadtree

decomposition

In this section, we present a brief overview of the recovery based

error indicator proposed by Bordas and Duflot [55,56] for the XFEM.

This is done to assess the error and identify the elements/regions

which have to be refined. Later, the process of quadtree decom-

position is discussed.

3.1. Recovery based error indicator

In this method, the enhanced strain field is computed using the

standard nodal solution through the eXtendedMoving Least Square

(XMLS) derivative recovery process. This is then further used as

error indicator. Let x be a point in the domain, and nx XMLS points

contain x in their domain of influence. Then, using the displace-

ment values at these nx points, the enhanced displacement field

and the strain field at x can be written as,

usðxÞ ¼
X

nx

I¼1

jkðxÞu
h
k ¼ J

TðxÞuh (16)

ε
sðxÞ ¼

X

nx

I¼1

D ðjkÞðxÞu
h
k ¼ DðxÞuh (17)

where JkðxÞ is the MLS shape function value associated with node

k at x ,D is the derivative operator and D is theMLS shape function

derivative matrix. The matrix form of the MLS shape function is

given by:

J
TðxÞ ¼ ½j1ðxÞj2ðxÞ…jnx

ðxÞ � ¼ pTðxÞA�1ðxÞBðxÞ (18)

where pðxÞ denotes the m reproducing polynomial used for the

MLS shape function. For two dimensions, pðxÞ ¼ ½1 x y� , and,

w1ðxÞpðx1Þw2ðxÞpðx2Þ…wnx
ðxÞpðxnx

Þ

Here, A is a m�m matrix and B is a m� nx matrix. For the

matrix A to be invertible, we need nx >m, i.e., we need more

number of points whose domains of influence contains x that the

basis functions in p . However, note that this is not a sufficient

condition. The weight function wI associated with a node xI is

calculated by the diffraction method with a circular domain of in-

fluence. The domain of influence also changes if it intersects with

the discontinuity. In this work, a fourth order spline is taken as the

weighting function [56]:

wkðxÞ ¼

�

1� 6s2 þ 8s3 � 3s4 if jsj � 1
0 if jsj>1

(19)

where s ¼ jjx�xkjj
dk

and dk denotes the support domain of node xk. s is

calculated differently than above to account for a discontinuity in

the approximation. When describing a discontinuity, if it covers a

point, a node’s weight at this point will decrease. When the line

section CiX of Fig. 2 is bisected by a crack, s of Eq. (19) is substituted

by the normalized length of the shortest path from K to X that

passes through a front point (route KCX in Fig. 2).

s ¼
jjx� xcjj þ xc � xk

dk
(20)

The enhanced derivatives of the shape functions are computed

by finding the derivatives of the MLS shape functions, see Eqn. (18).

The enhanced derivatives of the displacements and the enhanced

small strain εs can then be found. The error is computed by

comparing the enhanced strain field to the standard compatible

Fig. 2. Diffraction method for calculating weight function considering discontinuities

in moving least-squares approximations (red line shows the discontinuity).

Fig. 3. Quadtree decomposition: (a) representative quadtree mesh and (b) tree structure employed to store the mesh details.
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strain field. Thus, the total error of domain U is,

jjejjU ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð

U

jjεðxÞ � εsðxÞjj
2 dx

v

u

u

t
(21)

while the error within the element i with area Ui is,

jjejjUi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð

Ui

εðxÞ � εsðxÞ
2 dx

v

u

u

t
(22)

The tolerance is chosen based on the maximum error criteria.

Thus, the elements with high individual error are discretized in the

next level; all elements whose individual error is higher than given

tolerance value will be sent for discretization in the next level.

3.2. Quadtree decomposition

The quadtree decomposition is used for local refinement once

the error is quantified. The quadtree decomposition entails several

features; namely, (a) is easy to implement (b) it requires less de-

grees of freedom (Dofs) and (c) retains hierarchical mesh

Fig. 4. Schematic representation of an element with hanging node and the construction of mean value shape function.

Fig. 5. Edge crack orthotropic specimen: (a) geometry, material properties and boundary conditions (b) crack propagation direction for different material orientation. [where L ¼

1 mm and a ¼ 0.5 mm].
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structures. The hierarchical mesh structure facilitates efficient

computations, particularly efficient storage and data retrieval. In

this decomposition, the so-called stopping criterion is used to

decide which element requires to be further refined. This criterion

can be a geometry based factor or any error indicator. The criteria

for an element to be refined based on the error indicator could be

based on either equal distribution criterion or Min-number criteria

[57]. In this work, equal distribution criterion is used to minimize

Fig. 6. Domain discretization of edge crack specimen with q ¼ 30+ at (a) 0.035 (b) 0.038 and (c) 0.039 mm.

Table 1

Computational time (in seconds) comparison for adaptive PFM and PFM with uniform refinement.

PFM strategy DOFs computation times (sec)

Error indicator remeshing assemble (f) soln (f) assembly (u) soln (u)

Adaptive refinement 2772 4.2 0.74 0.48 0.004 0.62 0.012

Uniform refinement 108,336 e e 11.3 0.30 17.04 1.48
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the global error and balance the local error throughout the domain.

If the given element does not satisfy the stopping criterion within

the user specified tolerance limit, it will be divided into four child

elements as shown in Fig. 3. This process can be repeated several

times until the criteria is met. The tolerance in all the examples is

chosen to be 1� 10�5.

The aforementioned decomposition leads to elements with

hanging nodes; see, Fig. 3. The conventional finite element

approach cannot handle such elements without additional work.

This is because of lack of compatibility between the elements. To

Fig. 7. Final domain discretization for (a) q ¼ 0+ (b) q ¼ 30+ (c) q ¼ 45+ and (d) q ¼ 60+ and the corresponding crack trajectory in (e,f,g,h), respectively.

Fig. 8. Quadtree evolution as a function of load step.

Table 2

Crack propagation angle compared with the experiments and the XFEM.

Fiber Orientation (degree) 0� 30� 45� 60�

qinc Experimental [64] 0 30 45 60

qinc XFEM [64] 0 29 43 57

qinc present PFM 0 29.1 43 55
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restrict the number of hanging nodes per edge, a general practice

2:1 rule is applied, in which the mesh is constructed in such a way

that two neighboring elements do not differ bymore than one level.

A number of techniques to handle these hanging nodes have been

proposed, such as triangulation [58], transformation of the hanging

degrees of freedom to corner degrees of freedom using constraint

equations [59], use of special conforming shape functions [60],

considering the element with hanging nodes as a polygon [61], or

the use of other advanced methods like Scaled Boundary Finite

Element Method (SBFEM) or Smoothed Finite Element Method

(SFEM) [62].

In this work, the elements with hanging nodes are considered as

n-sided polygons (see Fig. 4a). The mean - value shape functions

proposed by Floater [63] are used to approximate the unknown

fields. The reasons behind this choice are the facts that some angles

of elements with hanging nodes are 180+ and the mean value

shape-functions work efficiently for non-convex polygons.

The mean - value coordinates for a point PðxÞ in an arbitrary

polygon are given by:

NiðxÞ ¼
uiðxÞ

Xn

j¼1
uiðxÞ

; i ¼ 1;/;n

uiðxÞ ¼
tanðai�1=2Þ þ tanðai=2Þ

x� xi

(23)

where n is the number of nodes in an element, xi are the co-

ordinates of point Pi and ai’s are the internal angles. Fig. 4b shows

the mean value shape function for the polygon with hanging node.

The numerical integration for the polygonal elements is performed

by subdividing the polygon into triangles and employing standard

quadrature rule.

4. Results

In this section, the performance and the robustness of the

adaptive PFM for fracture of orthotropic FGMs is investigated. We

first validate the adaptive PFM results against experimental and

numerical results for failure of orthotropicmaterials. Then, cracking

of orthotropic FGMs is investigated for different material grading

possibilities. The numerical stability parameter kp is assumed to be

1 �10�6 in all the numerical examples, unless specified otherwise.

The proposed adaptive PFM is implemented inMATLAB R2014b and

the simulations were performed on Intel quad Core i5-4590CPU@3.

30 GHz with 8 GiB RAM.

4.1. Validation: fracture of orthotropic materials

The framework developed is validated first with the experi-

mental and numerical work (XFEM) of Cahill et al., [64]. In order to

study the fracture processes in an orthotropic material, an edge

crack specimen subjected to tensile loading is considered, see

Fig. 5a. The material properties are chosen as: E1 ¼ 114:8 GPa, E2 ¼

11:7 GPa, G12 ¼ 9:66 GPa, n12 ¼ 0:21 and the critical toughness

G c ¼ 2:7 MPa mm.

The simulation starts with a coarse mesh and an assumed

characteristic length scale, [o. For each load step, the domain is

discretized as explained in Section 3, which allows to track the

crack trajectory continuously. Fig. 6 shows the domain discretiza-

tion for the evolving crack trajectory; the combination of quadtree

decomposition and post-errori error estimator strategies leads to a

fine discretization in the vicinity of the propagating crack tip. This

feature substantially reduces the size of the global stiffness matrix,

resulting in reduced CPU memory requirement and efficient

computations.

We proceed to quantify the computational gains by comparing

to the case of uniform refinement. Computation times are

compared to those obtained from a solution with uniform mesh,

where the characteristic element size equals the element size in the

crack region in the adaptive re-meshing case. Results are shown in

Table 1 for the initial load step Du, after convergence has been

achieved. The number of degrees of freedom (DOFs) is also shown.

Fig. 9. Load displacement response for the orthotropic material with different material

orientation, q.

Fig. 10. Orthotropic FGM specimen: domain and boundary conditions, ða; b;gÞ are

indices that control the material variation.
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Very substantial computationally gains are reported relative to the

uniform mesh scenario, due to the significantly smaller number of

DOFs required when using an adaptive mesh refinement strategy.

The error indicator is the most time consuming operation in the

adaptive PFM.

Fig. 5b shows the crack propagation trajectory for four selected

values of material orientation i.e., q ¼ 0+;30+;45+;60+. The corre-

sponding domain discretization is shown in Fig. 7. In agreement

with expectations, the crack propagation path strictly follows the

material orientations, see Fig. 5b.

Fig. 8 shows how the number of quadtree elements increases as

the crack propagates. It is shown that the material orientation an-

gles that translate into a larger crack deflection require a larger

number of quadtree elements. The comparison with the results

obtained in experiments and XFEM-based calculations [64] are

shown in Table 2. A very good agreement is attained for all values of

material orientation.

Finally, Fig. 9 shows the load-displacement response of the

orthotropic specimen with different material orientations. The

stiffness of the response increases with the material orientation

angle q.

4.2. Fracture of orthotropic functionally graded materials

Next, we examine the fracture processes in an orthotropic FGM

specimen as shown in Fig. 10. In terms of material gradation, we

consider the following representative case studies:

� plate with a crack parallel to the material gradation i.e., x�

direction grading,

� plate with a crack perpendicular to the material gradation i.e.,

y� direction grading.

For simplicity, we assume that the material property variation

follows an exponential gradation, as characterized by the indices a;

b;g - see Fig. 10. As shown in Fig. 11, two different scenarios have

been considered: (i) proportional and (ii) non-proportional grada-

tion strategies, in terms of the material indices. In the former, the

indices, a; b;g are set to 0.2, whilst for non-proportional variation,

we choose, ða; b; gÞ ¼ ð0:5; 0:4; 0:3Þ. The material constants are

Fig. 11. FGM orthotropic material gradation in (a) x� direction with proportional material gradation (b) x� direction with non-proportional material gradation (c) x� direction

with proportional material gradation, and (d) y� direction with non-proportional material gradation.
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chosen as: E01 ¼ 114.8 GPa, E02 ¼ 11.7 GPa, G0
12 ¼ 9.66 GPa, and the

critical toughness G c ¼ 2.7 MPa mm. With respect to the critical

energy release rate G c, two cases are considered; one, where no

material gradation is assumed and a graded one that follows the

material gradation depicted in Fig.10. For all results, the orthotropic

material orientation is take to be q ¼ 0+.

In all cases, given that the same value of q is considered, the

predicted crack trajectories follow an almost identical path. How-

ever, differences can be seen in the load-displacement curves, as

shown in Fig. 12. Consider first the effect of a proportional or non-

proportional material gradation, the same qualitative trends are

seen in both Fig. 12a and b. For the case of material gradation in x�

direction, the non-proportional material gradation shows stiffer

response than the proportional material gradation. This trend is

reversed for the case of material gradation in y� direction, where

differences are minimal. Differences are due to the crack tip non-

homogeneity, which affects the mode mixity. Consider now the

influence of spatially varying the material critical energy release

rate G c toughness, i.e. Fig. 12a versus Fig. 12b. It can be seen that

differences are substantial in the case of material grading along the

x-direction. In agreement with expectations, the propagating crack

encounters an increasing resistance to fracture as the magnitude of

G c at the crack tip raises with crack advance.

5. Conclusions

We have presented a novel framework for modelling fracture

problems in orthotropic functionally graded materials (FGMs). The

framework builds upon the phase field fracture method for FGMs

and an adaptive mesh technique based on a recovery based error

indicator and quadtree decomposition. Results show the capability

of the model in capturing complex crack trajectories, not known a

priori, while minimising the computational cost. The numerical

framework is validated by comparing to experimental and nu-

merical results on non-graded orthotropic materials. A good

agreement is observed. Then, calculations are shown for ortho-

tropic FGMs and the role of the material gradation indeces

explored. Topics of interest for future work involve extending the

present framework to dynamic crack growth, three dimensions

problems and enabling mesh coarsening behind the crack.

Declaration of competing interest

The authors declare that they have no known competing

financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

Acknowledgments

E. Martínez-Pa~neda acknowledges financial support from the

Royal Commission for the 1851 Exhibition through their Research

Fellowship programme (RF496/2018).

References

[1] Aboudi J, Arnold SM, Pindera MJ. Response of functionally graded composites
to thermal gradients. Compos Eng 1994;4(1):1e18.

[2] Pindera M-J, Aboudi J, Arnold SM. Thermomechanical analysis of functionally
graded thermal barrier coatings with different microstructural scales. J Am
Ceram Soc 1998;36(6):1525e36.

[3] Lee YD, Erdogan F. Residual/thermal stresses in FGM and laminated thermal
barrier coatings. Int J Fract 1994;69(2):145e65.

[4] Ramaswamy P, Seetharamu S, Varma K, Rao K. Al2O3-ZrO2 Composite coat-
ings for thermal-barrier applications. Compos Sci Technol 1997;57:81e9.

[5] Tilbrook MT, Rozenburg K, Steffler ED, Rutgers L, Hoffman M. Crack propa-
gation paths in layered, graded composites. Compos B Eng 2006;37(6):490e8.

[6] Uemura S. The activities of FGM on new application. Mater Sci Forum
2003;423e425:1e10.

[7] Martínez-Pa~neda E, Gallego R. Numerical analysis of quasi-static fracture in
functionally graded materials. Int J Mech Mater Des 2015;11(4):405e24.

[8] Kim J-H, Paulino GH. Mixed-mode fracture of orthotropic functionally graded
materials using finite elements and the modified crack closure method. Eng
Fract Mech 2002;69(14):1557e86.

[9] Kim J-H, Paulino GH. T-stress in orthotropic functionally graded materials:
Lekhnitskii and stroh formalisms. Int J Fract 2004;126(4):345e84.

[10] Hosseini S, Bayesteh H, Mohammadi S. Thermo-mechanical XFEM crack
propagation analysis of functionally graded materials. Mater Sci Eng, A
2013;561:285e302.

[11] Bayesteh H, Mohammadi S. XFEM fracture analysis of orthotropic functionally
graded materials. Compos B Eng 2013;44(1):8e25.

[12] Chen X, Luo T, Ooi E, Ooi E, Song C. A quadtree-polygon-based scaled
boundary finite element method for crack propagation modeling in func-
tionally graded materials. Theor Appl Fract Mech 2018;94:120e33.

[13] Ooi ET, Song C, Natarajan S. A scaled boundary finite element formulation
with bubble functions for elasto-static analyses of functionally graded mate-
rials. Comput Mech 2017;60:943e67.

[14] Goli E, Bayesteh H, Mohammadi S. Mixed mode fracture analysis of adiabatic
cracks in homogeneous and non-homogeneous materials in the framework of
partition of unity and the path-independent interaction integral. Eng Fract

Fig. 12. Load-displacement response for FGM orthotropic specimen with (a) with constant toughness G c , and (b) with varying toughness G cðxÞ.

Hirshikesh et al. / Defence Technology 17 (2021) 185e195194



Mech 2014;131:100e27.
[15] Yildirim B, Yilmaz S, Kadioglu S. Delamination of compressively stressed

orthotropic functionally graded material coatings under thermal loading.
J Appl Mech 2008;75(5):51106e16.

[16] Bouchard P, Bay F, Chastel Y. Numerical modelling of crack propagation:
automatic remeshing and comparison of different criteria. Comput Methods
Appl Mech Eng 2003;192(35):3887e908.

[17] Francfort G, Marigo J-J. Revisiting brittle fracture as an energy minimization
problem. J Mech Phys Solid 1998;46(8):1319e42.

[18] Bourdin B, Francfort GA, Marigo JJ. The variational approach to fracture.
Springer Netherlands; 2008.

[19] McAuliffe C, Waisman H. A coupled phase field shear band model for ductile-
brittle transition in notched plate impacts. Comput Methods Appl Mech Eng
2016;305:173e95.

[20] Bleyer J, Alessi R. Phase-field modeling of anisotropic brittle fracture including
several damage mechanisms. Comput Methods Appl Mech Eng 2018;336:
213e36.

[21] Zhou S, Zhuang X, Rabczuk T. Phase field modeling of brittle compressive-
shear fractures in rock-like materials: a new driving force and a hybrid
formulation. Comput Methods Appl Mech Eng 2019;355:729e52.

[22] Borden MJ, Hughes TJR, Landis CM, Anvari A, Lee IJ. A phase-field formulation
for fracture in ductile materials: finite deformation balance law derivation,
plastic degradation, and stress triaxiality effects. Comput Methods Appl Mech
Eng 2016;312:130e66.

[23] Miehe C, Aldakheel F, Raina A. Phase field modeling of ductile fracture at finite
strains: a variational gradient-extended plasticity-damage theory. Int J Plast
2016;84:1e32.

[24] Ren H, Zhuang X, Anitescu C, Rabczuk T. An explicit phase field method for
brittle dynamic fracture. Comput Struct 2019;217:45e56.

[25] Msekh MA, Cuong N, Zi G, Areias P, Zhuang X, Rabczuk T. Fracture properties
prediction of clay/epoxy nanocomposites with interphase zones using a phase
field model. Eng Fract Mech 2018;188:287e99.

[26] Reinoso J, Paggi M, Linder C. Phase field modeling of brittle fracture for
enhanced assumed strain shells at large deformations: formulation and finite
element implementation. Comput Mech 2017;59(6):981e1001.

[27] Carollo V, Reinoso J, Paggi M. A 3D finite strain model for intralayer and
interlayer crack simulation coupling the phase field approach and cohesive
zone model. Compos Struct 2017;182:636e51.

[28] Hirshikesh, Natarajan S, Annabattula RK. Modeling crack propagation in
variable stiffness composite laminates using the phase field method. Compos
Struct 2019;209:424e33.

[29] Amiri F, Mill�an D, Shen Y, Rabczuk T, Arroyo M. Phase-field modeling of
fracture in linear thin shells. Theor Appl Fract Mech 2014;69:102e9.

[30] Areias P, Rabczuk T, Msekh M. Phase-field analysis of finite-strain plates and
shells including element subdivision. Comput Methods Appl Mech Eng
2016;312:322e50.

[31] Martínez-Pa~neda E, Golahmar A, Niordson CF. A phase field formulation for
hydrogen assisted cracking. Comput Methods Appl Mech Eng 2018;342:
742e61.

[32] Martinez-Pa~neda E, Harris ZD, Fuentes-Alonso S, Scully JR, Burns JT. On the
suitability of slow strain rate tensile testing for assessing hydrogen embrit-
tlement susceptibility. Corrosion Sci 2020;163:108291.

[33] Hirshikesh, Natarajan S, Annabattula RK, Martínez-Pa~neda E. Phase field
modelling of crack propagation in functionally graded materials. Compos B
Eng 2019;169:239e48.

[34] Patil R, Mishra B, Singh I. An adaptive multiscale phase field method for brittle
fracture. Comput Methods Appl Mech Eng 2018;329:254e88.

[35] Tian F, Tang X, Xu T, Yang J, Li L. A hybrid adaptive finite element phase-field
method for quasi-static and dynamic brittle fracture. Int J Numer Methods Eng
2019;120(9):1108e25.

[36] Mang K, Walloth M, Wick T, Wollner W. Mesh adaptivity for quasi-static
phase-field fractures based on a residual-type a posteriori error estimator.
GAMM-Mitteilungen; 2019, e202000003.

[37] Hirshikesh, Jansari C, Kannan K, Annabattula R, Natarajan S. Adaptive phase
field method for quasi-static brittle fracture using a recovery based error in-
dicator and quadtree decomposition. Eng Fract Mech 2019;220:106599.

[38] Mahnken R. Goal-oriented adaptive refinement for phase field modeling with
finite elements. Int J Numer Methods Eng 2013;94(4):418e40.

[39] Hirshikesh, Pramod A, Annabattula R, Ooi E, Song C, Natarajan S. Adaptive
phase-field modeling of brittle fracture using the scaled boundary finite

element method. Comput Methods Appl Mech Eng 2019;355:284e307.
[40] Areias P, Reinoso J, Camanho P, de S�a JC, Rabczuk T. Effective 2D and 3D crack

propagation with local mesh refinement and the screened Poisson equation.
Eng Fract Mech 2018;189:339e60.

[41] Areias P, Msekh M, Rabczuk T. Damage and fracture algorithm using the
screened Poisson equation and local remeshing. Eng Fract Mech
2016;158(Supplement C):116e43.

[42] Goswami S, Anitescu C, Rabczuk T. Adaptive fourth-order phase field analysis
for brittle fracture. Comput Methods Appl Mech Eng 2020;361:112808.

[43] Samaniego E, Anitescu C, Goswami S, Nguyen-Thanh VM, Guo H, Hamdia K,
Zhuand X, Rabczuk T. An energy approach to the solution of partial differential
equations in computational mechanics via machine learning: con-
cepts,implementation and applications. Comput Methods Appl Mech Eng
2020;362:112790.

[44] Doan DH, Bui TQ, Duc ND, Fushinobu K. Hybrid phase field simulation of
dynamic crack propagation in functionally graded glass-filled epoxy. Compos
B Eng 2016;99:266e76.

[45] Van Do T, Doan DH, Duc ND, Bui TQ. Phase-field thermal buckling analysis for
cracked functionally graded composite plates considering neutral surface.
Compos Struct 2017;182:542e8.

[46] Ambati M, Gerasimov T, De Lorenzis L. A review on phase-field models of
brittle fracture and a new fast hybrid formulation. Comput Mech 2015;55:
383e405.

[47] Nguyen TT, R�ethor�e J, Baietto M-C. Phase field modelling of anisotropic crack
propagation. Eur J Mech Solid 2017;65:279e88.

[48] Martínez-Pa~neda E. On the finite element implementation of functionally
graded materials. Materials 2019;12:287.

[49] Miehe C, Hofacker M, Welschinger F. A phase field model for rate-
independent crack propagation: robust algorithmic implementation based
on operator splits. Comput Methods Appl Mech Eng 2010;199(45):2765e78.

[50] Wu J-Y, Huang Y, Nguyen VP. On the BFGS monolithic algorithm for the
unified phase field damage theory. Comput Methods Appl Mech Eng
2020;360.

[51] Kristensen PK, Martínez-Pa~neda E. Phase field fracture modelling using quasi-
Newton methods and a new adaptive step scheme. In: Theoretical and
Applied Fracture Mechanics, 107; 2020. p. 102446.

[52] Hirshikesh, Natarajan S, Annabattula RK. A FEniCS implementation of the
phase field method for quasi-static brittle fracture. Front Struct Civ Eng
2019;13(2):380e96.

[53] Zhou S, Rabczuk T, Zhuang X. Phase field modeling of quasi-static and dy-
namic crack propagation: comsol implementation and case studies. Adv Eng
Software 2018;122:31e49.

[54] Msekh MA, Sargado JM, Jamshidian M, Areias PM, Rabczuk T. Abaqus imple-
mentation of phase-field model for brittle fracture. Comput Mater Sci
2015;96(PB):472e84.

[55] Bordas S, Nguyen PV, Dunant C, Guidoum A, Nguyen-Dang H. An extended
finite element library. Int J Numer Methods Eng 2007;71(6):703e32.

[56] Bordas SPA, Duflot M, Le P. A simple error estimator for extended finite ele-
ments. Commun Numer Methods Eng 2008;24(11):961e71.

[57] Jin Y, Gonz�alez-Estrada O, Pierard O, Bordas S. Error-controlled adaptive
extended finite element method for 3D linear elastic crack propagation.
Comput Methods Appl Mech Eng 2017;318:319e48.

[58] Greaves DM, Borthwick AGL. Hierarchical tree-based finite element mesh
generation. Int J Numer Methods Eng 1999;45(4):447e71.

[59] Fries TP, Byfut A, Alizada A, Cheng KW, Schr€oder A. Hanging nodes and XFEM.
Int J Numer Methods Eng 2011;86(4e5):404e30.

[60] Gupta AK. A finite element for transition from a fine to a coarse grid. Int J
Numer Methods Eng 1978;12(1):35e45.

[61] Tabarraei A, Sukumar N. Adaptive computations on conforming quadtree
meshes. Finite Elem Anal Des 2005;41(7):686e702.

[62] Natarajan S, Ooi ET, Song C. Finite element computations over quadtree
meshes: strain smoothing and semi-analytical formulation. Int. J. Adv. Eng.
Sci. Appl. Math. 2015;7(3):124e33.

[63] Floater MS. Mean value coordinates. Comput Aided Geomet Des 2003;20(1):
19e27.

[64] Cahill L, Natarajan S, Bordas S, O’Higgins R, McCarthy C. An Experimental/
Numerical investigation in to the main driving force for crack propagation in
uni-directional fibre-reinforced composite laminae. Compos Struct 2013;107:
119e30.

Hirshikesh et al. / Defence Technology 17 (2021) 185e195 195


	Adaptive phase field modelling of crack propagation in orthotropic functionally graded materials
	1. Introduction
	2. A phase field fracture formulation for orthotropic FGMs
	2.1. Governing equations
	2.2. Weak form

	3. Recovery based error indicator and quadtree decomposition
	3.1. Recovery based error indicator
	3.2. Quadtree decomposition

	4. Results
	4.1. Validation: fracture of orthotropic materials
	4.2. Fracture of orthotropic functionally graded materials

	5. Conclusions
	Declaration of competing interest
	Acknowledgments
	References


