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Abstract: Geometrically non-linear von Karman plate vibrations are suppressed using optimal
dynamic inversion technique. Two types of controller are considered, a continuous and finite
discrete controllers in spatial domain to control the vibrations of the plate. Non-linear Finite
Element (FE) method is used to transform the non-linear partial differential equations (PDE)
into a set of non-linear algebraic equations and are solved. The non-linear PDE is directly
used for controller design i.e. design-then-approximate (DTA) method is followed which ensures
the stability and controllability of the system. The simuation study shows the effectiveness of
controlling plate vibrations using continuous and discrete controllers.
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1. INTRODUCTION

The distributed parameter modelling is considered neces-
sary in a wider classes of problems in science and engi-
neering. One such problem is the vibration control of thin
plates which inturn is applicable for analysis of ship hulls,
airplane wings, etc. The bending of thin plates with large
displacements and small strains is governed by Foppl-von
Kdrmadn equations. Use of this plate theory is justified
by Ciarlet (1980) for such problems.

There are two types of approaches in determining the
control forces, approzimate-then-design (ATD), where a
system is discretized to approximate models and the con-
troller is designed for them, and design-then-approzimate
(DTA), where the controller is designed using the gov-
ernining differential equation and the system is solved
using approximate methods. The merits and demerits of
both the approaches are given by Burns et al. (1994). The
ATD method produce erroneous results due to the lumping
of the parameters which fail to capture the fundamental
properties of the system like stability, controllability and
observability whereas the DTA approach tends to become
computationally difficult but robust control laws can be
applied. In DTA approach, the fundamental properties are
ensured when deriving the control forces and numerical
techniques are applied to solve the system.

Control of slewing beam as a distributed parameter system
(DPS) with sensors and actuators using Linear Quadratic
Regulator (LQR) technique is studied by Yang and Jeng
(1998). To accommodate discrete sensors and actuators,
an output feedback algorithm is presented by them which
transforms functional Riccati equation into set of algebraic
equations. Lin and Huang (1999) investigated on vibration
control of beam-plates with bonded piezoelectric sensors

and actuators using LQR objective functional for Lya-
punov energy function to design the controller. Li et al.
(2003) designed p-synthesis controller, which quantifies
model uncertainties by uncertainty weights, for vibration
control of the plate coupled with piezoelectric patches. The
controller is designed in Laplacian domain including the
uncertainties to achieve robustness and stability. De Abreu
et al. (2004) presented static and dynamic behaviour of
numerical modelled composite plate structure using Kirch-
hoff’s plate theory and finite element method coupling
piezoelectric sensors and actuators. Hamiltonian principle
is applied to arrive at the governing equations for the
mechanical-electrical coupled system.

Optimal dynamic inversion control design for nonlinear
DPS with continuous and discrete actuators, using DTA
approach, is studied by Padhi and Balakrishnan (2007).
Dynamic inversion and variational optimization is com-
bined to design the feedback controller which is applied
to the continuous and discrete actuators in the spatial
domain. It is ensured that the formulation does not lead to
any singularity for continuous controller, but for discrete
controller, the problem of singularity arises which can be
overcome by using dynamic inversion. Using this approach,
Ali and Padhi (2009) examined the active vibration control
of non-linear Euler-Bernoulli beams as DPS. The gov-
erning non-linear PDE of motion is directly utilized for
design of controllers as in DTA approach which ensures
the system free from approximation errors and closed form
solutions. Vibration behaviour of beam with continuous
and finite discrete actuators is studied by simulating the
system with controller using an implicit finite difference
technique with unconditional stability.

Shirazi et al. (2011) investigated active vibration control
of simply supported rectangular plate made of functionally
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graded material (FGM) using fuzzy logic controllers and
compared the results with that of the system controlled by
proportional-integral-derivative (PID) controller. Patches
of piezoelectric sensors and actuators are modelled with
the plate which is derived from classical plate theory,
whose natural frequencies are derived from double Fourier
series. Bratland et al. (2014) expanded modal analysis of
active flexible multibody system with collocated sensors
and actuators in FE environment, developed by Bratland
et al. (2011) , for non-collocated sensors and actuators,
damping and steady-state error elimination. They solved
the multiple degrees of freedom (DOF) FE model us-
ing multiple-input multiple-output (MIMO) PID feedback
controllers. Active vibration control of clamped circular
plates, developed from classical plate theory, equipped
with piezoelectric patches excited by plane sound wave
is presented by Khorshidi et al. (2015). The transverse
displacement of the circular plate is controlled using LQR
and fuzzy logic controller (FLC) feedback control design
techniques. Here also closed form solution is obtained
for the controller which reduces approximation error and
provides more stability.

2. NON-LINEAR PLATE MODEL

The geometric non-linearity of the thin plates under large
deformations are described as in Park et al. (2009) by
a set of non-linear partial differential equations named
Foppl-von Kdrmdn equations. The equations are of
the following form:

DA?*w — hlw, F(w)] = P (1)
A’F(w) = fg[w,w]

where w denotes the transverse displacement of the plate,
A is the Laplace operator, the flexural rigidity D =

%7 h is depth, F is modulus of elasticity, v represents
Poisson’s ratio.

The von Kdrmén bracket [w, @] is given by

(W, @] = Wazdyy + WyyPaz — 2WayPay (2)
The essential boundary conditions for simply supported
plate vibration are given in the equation 3
w(0,y,t) = 0;w(z,0,t) = 0; (3)
w(a,y,t) = 0;w(zx,b,t) = 0;
where a and b are the size of plate in  and y directions.

3. SYSTEM DYNAMICS

The system dynamics of the geometrically non-linear thin
plate can be represented by

. c. D, 4 h B
w+aw+aAw—E[w,F(w)]fu(x,y,t) (4)

where u is the control variable to achieve the target
displacement profile using continuous actuator.
For set of discrete actuators controlling plate, the control

variable can be taken as
N

Zun 217 y Yy Tny Yn,s Smnvsyn> (5)
n=1

S(2,Y, Tny Yn, Son, Syn) 1S a step function defined in the
equation 6, which denotes the position of the discrete
actuators with sizes (Sgn, Syn) at (Zn, yn).

u(z,y,t) =

S =

0, otherwise

It is assumed that in the discrete controller design, the
actuators are not placed near the boundaries and do not
overlap with other actuators, w, is having a constant
magnitude within the interval and 0 outside, which is
forced by the step function S(z,y, Zn, Yn, Szn;s Syn)-

4. DESIGN OF CONTROLLER

A control force can be applied through the actuators to
the system to attenuate the vibrations of the plate i.e.
w(z,y,t) — 0 and w(z,y,t) — 0 as t — oco. An output
function, described by Ali and Padhi (2009), is extended
to two dimensions Z(¢) and defined as in equation 7 which
ensures w(z,y,t) — 0 and w(z,y,t) — 0 throughout the
domain of interest as Z(t) — 0.

AL (e o

P11 P12

ith a weighing matrix ® = hich is a positive
v WS * Lﬁm ¢22} v POV

definite matrix of designer specific coefficients since this
ensures the convergence of w and w when Z(t) — 0. A sta-
ble error dynamics can be set for the Z function to achieve
the target displacement. A simple decay phenomenon will
satisfy the objective of the controller as in equation 8.

Z(t)+AZ =0 (8)
where A > 0 is a gain generally taken as 1/7, 7 being the
‘time constant’for the decay system.

4.1 Continuous controller

Substituting equation 7 and 4 in 8, the simplified form
obtained is

//( ¢12w+¢22w>)da:dy—v=0 (9)

where,

- /Ob /Oa [(qsnwu') + $1210°) — (d12w + Poow)  (10)
x (;w + %Nw - %[ua F(w)]>

3o

It is now necessary to obtain the optimal solution for the
control forces subjected to the constraint given by the
equation 9. So, a cost function is introduced to optimize
the control parameter u with the constraints using La-
grangian multiplier method as

J—l/ObAQTUdedy
[ (oemnna—]

where A is the Lagrangian multiplier used to convert the
constrained optimization into free optimization problem. r

+A
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is the relative importance factor for controller at different
locations. For optimal solution, the necessary condition is

Vurd =0 (12)

Derivative of J with respect to w and A leads to the
following equations

TU+ — ((251211/ + ¢20w) =0

//< ¢12w+¢22w))dxdy_7_0

Solving for u and A from the equations 13 and considering
equal relative importance for all locations, gives,

— m7(¢12w + ¢221b)
fob Jy (pr2w + baoi)” dady

(13)

(14)

4.2 Proof of convergence of continuous controller

At any point xg, yg € €2, the control solution for continuous
controller can be written as

" my (o, yo)(P12w (w0, Yo) + P22t (w0, Yo)) (15)

U(? foa (prow + (;52211'))2 dxdy} (z0,¥0)

For analysing the solution when w = 0 and w = 0
Vxo,yo € €2, without loss of generality, it can be analysed
in the limit when w — 0 and ¥ — 0 for zg,yo € [xg —
€/2,x0+€/2,y0 —€/2,y0+€/2] € Qe = 0, and w = 0 and
w = 0, everywhere else. The control solution for the small
limited area can be defined as

m(pr2w(zo,yo) + ¢22U'1(5C07 Y0))

7:L(ir()vymt) = —
+€/2 rx +6/2
|:fy00 €/2 foo 6/2 d(Edy:|
yo+e/2 zo+e/2
X / , / ) (pr1wt) + ¢1210%) — (Prow + Pooti)
Yyo—e€/2 xro—€/2

(16)

x (%w +G(w)) +% ([wu'}] o LU’UD }dmdy]

where f is the integrand of the denominator function

(P12w + Poao).

—m X € X (p12w (0, Yo) + P22 (%0, Yo))
f(20,90)? x €2

a(x07y0at) =

X H(¢11w($07y0) (0, 90) + d121 (w0, Y0)?) — (12w (w0, Yo)

W (20, Yo) +G(w(l’07yo)))

o) |

Expanding the above equation, we get

+ P22t (0, Y0)) X (%

L2 ([ w(zo, o) (xo,ym[ (a7)

2

_ | onw(zo, yo)uw (o, yo) + P120° (2o, Yo)
(x()vyOat) - m[ ¢12w+¢22w

+

A priw (o, Y0)? + 2¢120(x0, yo) + P221? (0, o)

solution is a function of only two variables w and w. The
system states are zero everywhere other than the interval
x,y € [ro — €/2,20 + €/2,y0 — €/2,y0 + €/2]. The system
states are small in this region. Hence, a linear behaviour is
assumed in the region, i.e. w(x,yo) = aw(zo,yo), where
a is a constant. Substituting this in the equation 19, we
obtain
(p110 + ¢120*)w? (20, yo)

(¢12 + P22a)w(z0, yo)

m ($11 + 20120 + Pa2a®)w? (20, Yo)
2 (12 + P22a)w(zo, yo)
=0

Hence, u(z,y,t) — 0 as w — 0 and w — 0,Vzo,yo € [To —
€/2,x0+¢€/2,y0—€/2,yo+¢€/2]. This shows the convergence
of the controller of interest.

lim
w(x0,Y0)—0

’[L(ZL’O, y07t) =

(19)

4.8 Discrete controller

For discrete controllers, the formulation is changed to
incorporate the discrete nature of the systems combined
with the continuous plate system. The constraint equation
can be derived by substituting the equations 5, 6, 7 in 8.

(I, Un) =y (20)
where,
Yn+Syn/2 [Tn+Sazn/2 1
In = / / <(¢12w + (152271))) dxdy
Yn—Syn/2 JxTp—Szn/2 m
(21)

For a minimum control effort, a cost function of control
variable along with the constraints is optimized. The cost
function is in the form,

N

J=5 > (ra Qi) + A[(In, ) — 7]

n=1

(22)

where €, = 8., * Syn, area of the n'" controller.
The necessary condition for the optimal solution for con-
trol variable u,, is,

Vian.ad =0 (23)
Solving for the necessary condition as in equation 23, the
control variable is derived as

I
Up = n (24)

Q0 SN (12 /7080,)

4.4 Control singularity

In the optimized solutions for control variable in equa-
tion 24, the denominator approaches zero faster than the
numerator. This can be avoided by introducing an error

function E := w;(t) — w¥ (t), where w;(t) is the observed
displacements of the dynamical system and w? (t) is the
target response of the observed state variables. As pre-
sented by Yeh et al. (1995), dynamic inversion is applied

through enforcing a dynamics to the error function as in

2 @12W + PooW
_ (%w(mo,yo) + G(w(zo, yo))) ]

The third term (S (zo,yo) + G(w(zo,0))) — 0 as w —
0 and w — 0. Disgarding the third term, the remaining

(18)

equation 25 such that it ensures E(t) — 0 as t — 0.
E+K,E+K,E=0 (25)
The K, and K, matrices can be chosen to be diagonal
matrices as Kpi; = wfl and K,;; = 2wy, where w, is the
desired natural frequency and &, is the damping ratio of
the error dynamics. Keeping target state of w;# (t) =0and
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wl# (t) = 0, the final expression of the control parameter

can be obtained as
iy = — [(K, — M7'K) (K, — M~C)] m (26)

Combining the equations, 24 and 26 for discrete con-
trollers, it can be written as

1
TnQn anl(‘[s/rnﬂn)

~[(Kp — M™'K) (K, - M~'C)] m , otherwise

Uy =

(27)
where § is a tolerance value provided by the control de-

signer to bye-pass the singularity condition of the con-
trollers.

5. NUMERICAL RESULTS

The approach handled here is DTA where the control
forces are derived analytically and added to the PDE
of plate and then simulated for numerical results using
finite element analysis. Plates of parameters given in table
1 is considered for numerical simulation. In continuous
controller case, the actuator is considered throughout on
the plate surface. For discrete controller, a 0.2m x 0.2m
patch of nodes in the centre of the plate is chosen to apply
the control forces. The dimensions of the plate and position
of actuator (for discrete case) is given in the figure 1.

Table 1. Table of parameters

Description Parameter Valye
Modulus of Elasticity E 200G Pa
Mass per unit area m 15.7kg/m
Dimension of plate axbxh 0.5x0.5x0.002
Damping coefficient c 2%o fcritical
Displacement of plate w State variable
Plate
E 3
Actuator
£
o £
o o
o
0.2m .
e %
0.5m
- -

\

Fig. 1. Dimension of plate and discrete actuator

A linear analysis if done to obtain the frequencies and

vibration modes of the plate. The vibration of the plate
is set with an initial deflection profile similar to the first
mode of vibration as shown in the figure 2. The vibrations
of the plate with and without controllers are simulated
using non-linear finite element method. The whole plate is
discretized into 100 four-nooded C' continuous elements.
The displacement field of the elements are approximated

Displacement in m

Wicth in m Length in m

Fig. 2. First mode of vibration

with 2 — d polynomial interpolation function represented
in Einstein notation in 28.

w = ’(/JlAZ (28)
where A; is the degrees of freedom of the plate element
and 1; is the shape function. Thus, the PDE is converted
into a set of non-linear second order ODEs.

[M]A + [C]A + [K(A)]A = {U} (29)
where [M], [C)&[K] are the mass, damping and stiffness
matrices of the system. The damping matrix is obtained
using Rayleigh proportional damping C' = oK + M,
where the coefficients & and 8 can be obtained from

1

1 1o v

Sla |t | o
w;

&, is the damping ratio associated with w; frequency. The
gain value A = 50 is taken and the ® matrix is taken as

100 36.8
®= [36.8 15}

The gain matrices K, and K,, are chosen to be diagonal
matrices.

The displacement and velocity norms of the plate with and
without controllers are compared. Figure 3 shows that the
control goal is achieved using both continuous and discrete
controllers where the displacement is quickly brought to
zero. Figure 4 shows the achievement of target velocity by
applying control forces. It is evident from the figures 3
and 4, that, in continuous controller, w&w — 0 as the
integral error Z(t) — 0, but, in discrete controller, though
Z(t) — 0, w&w still suffer non-zero values which can be
compared with the figure 5. For avoiding such cases, more
discrete actuators should be given so that, the target state
values can be achieved with guarantee. This is because, the
controller approaches to become a continuous one. From
the figures, it can be concluded that the optimal dynamic
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Fig. 3. Comparison of displacement norm.
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Fig. 5. Comparison of integral error values.

inversion technique can effectively control the vibrations
of structural components with ensured stability and free
from approximation errors.

6. CONCLUSION

A set of PDE called Foppl-von Kdrman equations, has
been used to derive the governing differential equation
of the geometrically nonlinear simply supported plate. A
constraint law has been induced such that the displace-
ments and the velocities of the plate approaches zero. Us-
ing variational optimization, the control forces have been
derived in closed form using the system PDE to reduce
the approximation errors. Continuous and finite number
of discrete actuators have been considered to apply the
control forces to the structure. Numerical simulation has
been done using finite element approximation for the PDE.
The results have shown that as the integral error tends
to zero, the displacement and velocity of the plate also
tends to zero in continuous controller case whereas the
plate suffers from vibration in the discrete controller case.
Increasing the number of discrete controllers will reduce
such errors since they work together as a continous one.
The method followed in this work shows significant use
in the implementation of controllers for controlling dis-
tributed parameter systems. Since the control forces are of
closed form, the method can be implimented in realtime
problems.
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