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To ensure safe and efficient operation, operators in process industries have to

make timely decisions based on time-varying information. A holistic assessment of

operators’ performance is, therefore, challenging. Current approaches to operator

performance assessment are subjective and ignore operators’ cognitive behavior. In

addition, these cannot be used to predict operators’ expected responses during novel

situations that may arise during plant operations. The present study seeks to develop

a human digital twin (HDT) that can simulate a control room operator’s behavior,

even during various abnormal situations. The HDT has been developed using the

ACT-R (Adaptive Control of Thought-Rational) cognitive architecture. It mimics

a human operator as they monitor the process and intervene during abnormal

situations. We conducted 426 trials to test the HDT’s ability to handle disturbance

rejection tasks. In these simulations, we varied the reward and penalty parameters

to provide feedback to the HDT. We validated the HDT using the eye gaze behavior

of 10 human subjects who completed 110 similar disturbance rejection tasks as that

of the HDT. The results indicate that the HDT exhibits similar gaze behaviors as the

human subjects, even when dealing with abnormal situations. These indicate that the

HDT’s cognitive capabilities are comparable to those of human operators. As possible

applications, the proposed HDT can be used to generate a large database of human

behavior during abnormalities which can then be used to spot and rectify flaws in

novice operator’s mental models. Additionally, the HDT can also enhance operators’

decision-making during real-time operation.
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1. Introduction

Modern industries utilize dependable equipment, cutting-edge automation and control

strategies, and sophisticated safety management systems to ensure safety. Despite this, accidents

continue to occur with varying degrees of severity (Khan et al., 2015). Studies indicate that

human error accounts for most of these accidents—the root cause of 60–80% (Brauer, 2016).

For instance, a study of severe industrial accidents involving hazardous chemicals from 2008

to 2018 revealed that over 76% of these can be traced back to human errors (Jung et al., 2020).

Therefore, ensuring optimal human performance is key to ensuring safety in industries. Process

industries rely on human-automation collaboration to ensure safety. The human operators in

the control room monitor the process and intervene when abnormal situations arise (Shi et al.,

2021). However, digitalization and the increase in sophistication of automation have altered
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the operator’s role and introduced additional challenges (Nazir et al.,

2014; Di Flumeri et al., 2019). Operators need to gather, separate,

and use information from several information sources to maintain

optimal operating conditions (Zhang et al., 2020). Figure 1 shows

an example of a human-machine interface that provides real-time

information from a dynamically changing process. Using this, the

operator has to continuously monitor the process, determine if it

is normal, and intervene during abnormalities to ensure safety (as

elaborated in section “2.Materials andmethods”). This increases their

cognitive workload, especially when they are not adequately trained

or lack experience. Therefore, there is a critical need to characterize,

understand, and improve operators’ performance, especially during

abnormal situations.

There are two facets to addressing operators’ performance

challenges—strengthening their competence and monitoring their

behavior in the wild (Dai et al., 2016) in real-time. To enhance

competence, researchers have primarily focused on providing suitable

feedback to operators based on their performance. This requires

performance evaluation in real-time. Approaches for evaluation

typically rely on expert judgment (Nazir et al., 2015), which is

subjective and ignores operators’ cognitive behaviors (Ikuma et al.,

2014; Iqbal et al., 2018). Cognitive behavior is widely regarded as a

substantial factor, especially during abnormal situations and accident

causation (Zarei et al., 2021). There are hardly any studies that focus

on real-time monitoring of operators’ performance, with the notable

exception of Bhavsar et al. (2016) and Shi and Rothrock (2022). This

is due to the lack of availability of operator behavioral information.

Even if such data can be obtained, it is practically infeasible to train

operators for every possible situation. As a result, it is necessary to

develop tools with the ability to simulate operator behavior during

a variety of industrial situations. Such a tool can forecast how an

operator will perform during real-time plant operations (Kluge et al.,

2014).

In this work, we develop a human digital twin that simulates

control room operators’ behavior during abnormal situations. In

recent years, researchers have proposed human digital twins to

understand human behavior (Hafez, 2021) and enhance performance

in various fields, including healthcare, sports (Miller and Spatz, 2022),

driving (Wang et al., 2022), and aviation (Meyer et al., 2020). HDTs

have been suggested as a means to monitor human performance

in the real world, identify under-performance, and promote overall

system enhancement (Miller and Spatz, 2022) through various

interventions such as interface design.

The successful development of HDTs requires information about

human perceptual, cognitive, and behavioral needs. Our previous

studies have demonstrated that eye tracking can provide insights

into human operators’ cognitive behavior (Srinivasan et al., 2019;

Shahab et al., 2021a). Eye tracking entails tracking the movement

of the eye and identifying the person’s point of gaze. It is based on

the “eye-mind” hypothesis, which states that eye movement serves

as a trace of the human’s dynamic attention allocation (Just and

Carpenter, 1980; Rayner, 1998). The human eye is made up of

various components that work together to permit visual processing

and perception, such as the pupil and retina. The sensitivity of the

retina varies, with the fovea having the greatest. Light is focused

on the fovea by eye movements such as saccades, smooth pursuits,

and fixations on visually interesting areas (referred to as areas of

interest, AOIs). During a reading activity, for example, readers’

eyes concentrate on words and swiftly travel between them via

saccades. The most common approach to eye tracking is video-based

monitoring of eyemovements (Holmqvist et al., 2011). Here a pattern

of infrared light illuminates the eye. The reflected light is captured

by a camera which produces the image of the eye. This image is

analyzed using proprietary image analysis methods to estimate a gaze

vector. A typical eye movement comprises of fixations and saccades

(Holmqvist et al., 2011). Fixation is the interval during which the eye

stays stationary and is required to process the information provided

on the Human-Machine Interface (HMI). A saccade is a movement

of the eye from one focus to another.

Our studies with control room operators reveal distinct mental

models of expert and novice operators (Sharma et al., 2016; Shahab

et al., 2021b). Such studies of mental models can reveal shortcomings

in operators’ understanding of the process and can be used to

enhance their skills (Shahab et al., 2022a). Based on the operator’s

eye gaze patterns, we have developed quantitative metrics, such as

the association metric, which quantifies the operator’s use of critical

sources of information, and the salience metric, which evaluates the

operator’s proactive monitoring strategy (Shahab et al., 2021c). Based

on these previous experiences, in this work, we develop an HDT

that seeks to replicate the human operator’s response during various

process abnormalities. We validate the developed HDT using the eye

gaze behavior of real human operators.

The developed HDT can address the challenges associated with

operator performance during training as well as during real-time

plant operation. Firstly, during training, the developed HDT can

simulate the human operators’ control actions and eye gaze behavior

at different levels of expertise. This simulated behavioral data may

then be utilized to create a vast knowledge base which can then

provide the basis to spot flaws in the mental models of novice

operators as they deal with abnormal conditions. Secondly, the HDT

can be used to predict the behavior of the human counterpart during

real-time plant operation. When an abnormal situation occurs, the

HDT can be used to predict whether the human counterpart can

deal with the situation. In addition, it can also provide relevant

cues to the human operator, thereby assisting in enhancing their

situational awareness. Adequate situational awareness and skills are

crucial, especially when dealing with abnormal situations (Salmon

et al., 2006; Srinivasan et al., 2022).

2. Materials and methods

In this section, we discuss the development and validation of

the proposed human digital twin for process control applications.

A human digital twin (HDT) is the digital representation of a real-

world human (Miller and Spatz, 2022). An HDT with cognitive

skills and human-like intelligence can tackle complex problems.

Such HDTs can be created using cognitive architectures. Cognitive

architectures may be conceived of as a model for human behavior

simulation. The cognitive architecture consists of modules for

perception and action to imitate overall human behavior during a

task. In this work, we used the ACT-R (Adaptive Control of Though-

Rational) cognitive architecture to develop the human digital twin.

2.1. ACT-R

ACT-R is a popular cognitive architecture that is based on a

rigorous theory of human cognition (Anderson, 2007). It explains
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FIGURE 1

Human machine interface of the process simulator.

human cognition by a model of the knowledge structures that

underlie cognition (Anderson et al., 2004; Anderson, 2007). ACT-

R consists of a symbolic layer and a sub-symbolic layer which

are tightly coupled together. The ACT-R’s symbolic layer is based

on a modular representation of how the human brain processes

information (Albrecht andWestphal, 2014). There is a visual module

for perceiving visual cues, a motor module for controlling actions,

and a goal module for keeping track of desired outcomes. The

symbolic layer stores these modules and also the details of the

underlying memory structure. There are two types of memory

structures in ACT-R: declarative memory and procedural memory.

The factual information maintained in human memory is known as

declarative memory. In ACT-R, it is the standard system for storing

and retrieving information (Fleetwood and Byrne, 2006). It aids in

the definition of things, events, and processes, as well as their traits

and inter-relationships. Declarative information is represented in

structures called chunks. A chunk is defined by its type and its slots.

Chunk types can be regarded as categories (e.g., human beings), and

slots as attributes of the categories (e.g., age or gender).

The procedural memory in ACT-R stores the procedures and

skills necessary to achieve a given goal. These are stored as production

rules, i.e., IF–THEN condition–action mappings that “fire” when

the conditions are satisfied and execute the specified actions. The

production conditions (the “IF” side of the production rules) are

matched to a set of buffers that define the current state of the various

ACT-R modules (such as the visual module). The buffers provide

the interface between the production rules and ACT-R modules.

Any production rule whose conditions are matched is fired, which

may alter the contents of buffers by instructing modules to do a

job, such as shifting the user’s attention or retrieving a chunk of

declarative memory.

Given the visual nature of the graphical user interfaces, the user’s

attention to the display is of key importance for the HDT of a control

room operator. The vision module takes care of what ACT-R sees

on the display. As shown in Figure 2, it consists of two systems:

the “where” system and the “what” system (Anderson et al., 2004).

When a production makes a request to shift attention, the “where”

system performs a visual search and returns a chunk representing

the location of the object on the display (Figure 2). The “where”

system helps the ACT-R with the knowledge of the location of various

objects on the display. To identify objects, a request to the “what”

system is made. When a chunk representing a visual place is given

to the “what” system, the “what” system will move the attention to

that position, analyze the object that is there, and create a declarative

memory chunk that represents the object (Anderson et al., 2004), as

depicted in Figure 2. The firing of production rules directs the “what”

system tomove attention from one location on the display to another.

In this way, the vision module simulates fixations and saccades.

The symbolic layer of the ACT-R (declarative and procedural)

is controlled by the sub-symbolic layer, whose parameters have to

be optimized to the environment’s structure (Best et al., 2002).

These variables represent the fundamental adaptivity, robustness,

and stochasticity of human cognition, especially in settings that are

characterized by unpredictable, chaotic, and incomplete information.

These parameters control many production rules, and the important

ones (related to current work) are listed in Table 1. For instance,

the speed with which ACT-R performs motor activities is governed

by burst-time and feature-burst-time, which decide the relaxation

time after a motor activity. Similarly, the initiation-time parameter
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FIGURE 2

Working of ACT-R’s vision module.

controls the preparation time for motor activity. Further, the retrieval

of a chunk from the declarative memory depends on the retrieval

threshold (τ). A chunk will only be retrieved if its activity is above

τ. The activity of a chunk reflects the probability that a chunk will

be helpful at a given time. The parameter :lf determines the speed of

a chunk retrieval. The majority of learning processes in ACT-R are

driven by sub-symbolic mechanisms (Best et al., 2002). In addition,

they can be affected by the reward/penalty system, which provides

feedback after the execution of production rules. The reward/penalty

value (R) decides the likelihood that a production rule will be used in

the future (Dimov et al., 2020).

The ACT-R theory is embodied in software that is implemented

in ANSI Common Lisp (Bothell, 2020). An ACT-R model needs to be

customized for domain-specific applications. Next, we describe the

model’s customization for process control tasks.

2.2. Human digital twin development

We have developed an HDT of a control room operator

responsible for supervising a process plant. The chemical process

consists of a Continuous Stirred Tank Reactor (CSTR) to react

ethene and water and a distillation column for product separation

and has been implemented in a process simulator developed in-

house using MATLAB. A total of eleven process variables govern the

process. The role of the operator is to monitor the process and take

corrective actions during abnormal situations. The operator would

use the HMI shown in Figure 1 for this purpose. The HMI mimics a

distributed control system in a typical industrial context. Any process

TABLE 1 ACT-R parameters tuned for HDT of process operator.

S. No ACT-R parameters Value

1 Motor-burst-time 0.02

2 Motor-feature-burst-time 0.02

3 Motor-initiation-time 0.02

4 τ (retrieval threshold) −0.5

5 :lf (determines speed of chunk retrieval) 1.15

6 Reward/penalty (R) Varied

7 K (domain-specific parameters) 0.15

8 α (domain-specific parameters) 0.10

abnormality is notified to the operator by aural and visual alarms—

a beep sound and a change in the color of the alarmed variable’s tag

from black to red. The HMI also displays a summary of the alarms

and their state (high or low), as seen at the bottom of Figure 1.

When any abnormality occurs, the operator is required to intervene

appropriately and control the process using the sliders in the HMI,

which trigger the manipulation of the control valves in the process.

The operator can also obtain time-based information on process

variables and predict the effect of any action(s) they take using the

process trend panel, as shown in Figure 1. Any process disruption

must be managed within 2 min of its occurrence; otherwise, the

process will automatically undergo an emergency shutdown.We next

discuss the operation of the HDT.

Mimicking the human operator, the digital twin’s role is to

monitor the process and intervene when an abnormal situation arises.

For this purpose, the memory structures—declarative chunks and

production rules—in the ACT-R’s symbolic layer are customized, as

shown in Figure 3. The HDT has two declarative chunks—an error

chunk and an action chunk—each having two slots. The slots of

the error chunk store the name of the process variable that has an

error (i.e., deviation) and the nature of the error (above or below

the safe operation range). The action chunk stores the name of the

control valve that has been operated and the direction of the move.

The behavior of the process in response to the action is stored in

the declarative memory. Thus, error chunks add different errors that

arise in the process to the declarative memory of the model, while the

action chunk enumerates all the actions the model has taken.

The production rules of the HDT help the digital twin deal

with process abnormalities. Figure 3 shows the various production

rules and indicates their goals (e.g., Observe and Monitor; Notice-

Audio-Alarm; Attend-to-Alert). The production rules achieve their

goal through various steps (e.g., Start-gaze and Gazing); further, the

arrows indicate the flow of control between the goals. The HDT uses

a total of 48 production rules to accomplish different goals during

process abnormalities.

The HDT’s behavior during process abnormalities can be

explained in two phases: Problem identification and Problem-solving.

In the problem identification phase, the digital twin familiarizes

itself with the abnormality in the process. It requires locating the

source of disturbance and its deviation (high or low) by attending

to the alarm panel and/or tags. The problem-identification phase has

four goals and 13 production rules which are fired during process

abnormalities (Figure 3). Once the digital twin familiarizes itself with

the nature of the abnormality, it moves to the problem-solving phase

(Figure 3). This phase can be described as a continuous cycle of

Conceptualization, Experimentation, and Reflection (Li and Maani,

2011). Each of these phases has its own production rules, as shown

in Figure 3. The problem-solving phase is cognitively more complex

than the problem-identification phase.

For example, during normal process operation, the production

rules in the “Observe & Monitor” goal direct the HDT to observe

the process parameters (Figure 3). When an abnormal situation

occurs, the HDT first familiarizes itself with the abnormality by firing

production rules from the “Notice-Audio-Alarm” goal and “Attend-

to-alert” goal in the problem identification phase. Then it attends

to the alarm panel of the HMI to identify the source of disturbance

by firing rules from the “Attend-to-alarm” goal. Next, the HDT fires

productions from the “Check-PV &Open-Trend” goal to identify the

tag corresponding to the process variable mentioned in the alarm and

opens the trend of the process variable on the HMI.
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FIGURE 3

Production rules in the human digital twin of process operators.

The digital twin then proceeds to the conceptualization segment

of the problem-solving phase. Conceptualization involves the

understanding of the disturbance (grasping the root cause and

magnitude of disturbance) and the available control actions which

would return the process to the normal limits. It has three goals

and a total of 12 production rules. For example, the firing of

production rules from the “Insights-from-Trend” goal scans the trend

panel for relevant information like the process variable’s current

value and its normal operating conditions. The productions in

the “Evaluate-Current-Scenario” goal help the HDT understand the

nature (below or above the safe operating condition) and magnitude

of the disturbance. With the knowledge of such finer details of

the abnormality, the HDT starts proposing plans to control the

disturbance by firing productions from the “Retrieving-Current-

Mental-Models” goal (Figure 3). Here, the digital twin recalls or uses

the mental models of the process currently in its declarative memory

to solve the current disturbance (error chunk). If a useful chunk

is available in the mental models (from the declarative memory),

the “full-retrieval” production is called; else, the “fail-retrieval”

production is called.

When the conceptualization segment has created a firm set of

conclusions and actions, the HDT moves to the experimentation

segment. This entails executing actions based on the decisions

made in the conceptualization segment. The experimentation

segment consists of four goals (1) Learning-from-a-set-of-actions,

(2) Operating-a-Trial-Valve, (3) Operating-the-Right-Valve, and (4)

Taking-Action. The firing of productions from the goals “Try-a-

valve” and “Operating-the-Right-Valve” (Figure 3) depends on the

declarative memory of the HDT. The digital twin can take action by

firing any one of these productions. Once a valve is chosen, it is first

manipulated slightly to get a sense of the calibration of the valve. By

firing productions from the “Taking-Action” goal, the HDT moves

the mouse to the desired button and manipulates the control valve by

an appropriate amount. To see the effect of the valve manipulation,

the human digital twin also waits for a short time. TheHDT stores the

information of the control valve operated and the resulting changes in

the process variable in the working memory. If the HDT had fired the

“full-retrieval” production in the conceptualization segment, then the

productions from the goals “Try-a-valve” and “Operating-the-Right-

Valve” would be fired sequentially in the experimentation segment.

This signifies that the HDT has found a chunk related to the current

disturbance in its declarative memory.

During the reflection phase, the results of the experimental

phase are considered. If the desired outcomes are achieved, the
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FIGURE 4

Human machine interface of the process simulator used by the HDT.

initial perception and judgments are reinforced in the declarative

memory. For instance, if the HDT successfully controls the process

using a control action, then that control action will be stored in

the declarative memory along with the disturbance, and a reward

will be given to the HDT. In case the control action of the HDT is

incorrect (i.e., fails to bring the variable within the normal limits),

the HDT will receive a penalty for using that action. In the future,

when the HDT is confronted with a similar abnormal situation,

it will use the corrective action based on the reward/penalty it

received in the previous such situations. In this way, the human

digital twin establishes causal linkages between the control actions

and their effect on the process and stores them as chunks in the

declarative memory. The production rules of the “Reward-Centre”

goal take care of the rewards/penalties (Figure 3). Based on the

reward/penalty allotted by the “Reward-Centre,” the HDT iterates the

Conceptualization-Experimentation-Reflection loop till the process

reaches the normal state.

The production rules operate in tandem with the ACT-visual

R’s module. As discussed previously, the visual module consists of

two buffers—one for “where” and the other for “what” information.

During process abnormalities, the firing of the production rule from

the “Attend-to-alert” goal (Figure 3) triggers a shift of the HDT’s

attention to the alarm panel. The production rule “Encode-alert”

creates a visual chunk in the “where” buffer of the vision module

with the information on the alarm panel location. Then, by firing

the “Attend-alert” production rule, the HDT fixates on the alarm

panel to obtain information about the disturbance. The firing of the

“Encode-alert-tag” rule changes the information of the “where” buffer

from the location of the alarm panel to the location of the alarmed

process variable. The HDT moves its attention to the variable tag

from the alarm panel by firing the “Attend-alert-tag” rule. In this way,

the HDT generates fixations and saccades while dealing with process

abnormalities.

As discussed previously, the symbolic layer of the ACT-R is tightly

coupled with the sub-symbolic layer. To mimic the human operator’s

behavior, it is important to include parameter values specific to

process control tasks in the ACT-Rmodel.We tuned some of the sub-

symbolic parameters of the ACT-R according to the need in process

control tasks, as shown in Table 1. The values for these parameters

were chosen not to strictly replicate the performance of any one single

participant (which could overfit the model) but to reflect typical

responses. For instance, we tuned the parameters that account for

the speed of motor actions (mouse clicks on the valves and process

variable tags) of the ACT-R (Table 1), such as burst time, feature burst

time, and initiation time. These parameters were given values lower

than the default ACT-R value due to the simplicity of motor actions

in the process control task. Similarly, the value of the parameter :lf is

set to be slightly higher than 1 to mimic the difficulty faced by human

operators in recalling relevant information during abnormalities.

In addition to the sub-symbolic parameters, the HDT also

contains parameters that account for variability in the manipulation

of the control valve by different operators, i.e., gentle or abrupt

manipulation.When n is the total number of steps required to control

a disturbance, the variability in human actions can be expressed

mathematically as:

sn = 1 + k ×
yn
d

1 + yn
d

− yn−1
d

× sn−1 (1)

ǫ = α × (yu − yl) (2)

where sn and sn−1 are the amount of control valve manipulation

required at nth step and (n − 1)th step, respectively. yn
d
and yn−1

d
are

the deviation of process variable before the nth step and (n − 1)th

step, and yu and yl are the upper and lower limits beyond which

the process variable is in alarm status, respectively. The amount of

slider manipulation is modeled as a proportional controller with

proportional constant k, where k defines the aggressiveness (in

terms of the amount manipulated at each action) of the HDT while

manipulating the control valve. A high value of k would imply that

the digital twin manipulates the valve by a larger amount at each step
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while taking the control action and thus would make fewer steps to

control the scenario. The parameter α measures the safety tolerance

for a process variable in theHDT. For example, some operators would

stop control actions when the process variable just reaches within the

bounds of the normal operating limit, while others try to bring the

variable to the midpoint of the normal range (i.e., the steady-state

value). Thus, this perception of safety tolerance of the operator is

captured through α as a percentage of the range of safe operating

conditions. A large value of α would mean that the digital twin

would move the process variable well into the safe operating range.

Nominal values for k and α are shown in Table 1. In addition to these,

ACT-R uses a reward/penalty center to improve its performance.

The HDT receives a reward (R) for taking the correct control action

and successful completion of the task, while it obtains a penalty for

manipulating incorrect control action and automatic shutdown of the

plant. Based on the feedback from the reward and the penalty center,

the HDT updates its declarative memory and uses it to control the

disturbance in the future.

Next, we discuss the methodology to validate the developed

human digital twin using human subject studies.

2.3. Human digital twin validation

The aim of the HDT is to mimic the behavior of a human

operator. So, the successful development of an HDT requires that

the cognitive abilities must be comparable to those of the human

operator. In this section, we discuss the validation of the proposed

human digital twin. First, we generated the simulated operator

behavior from the HDT. To compare cognitive capabilities, we

compared the gaze of the HDT with the eye gaze behavior of human

subjects who performed similar tasks.

2.4. Human digital twin simulations

The chemical process simulation was implemented on

MATLAB R© R2021b, while the ACT-R model was hosted by a

Python R© script that also supported the HMI. Data was transferred

between the MATLAB R© simulation and Python through a TCP/IP

connection. Figure 4 shows the HMI created for the HDT model

which is similar to that of the HMI used by operators. The human

digital twin model was simulated for 76 runs, each with different

values of rewards and penalties. During each run, the model learns to

control the disturbance after a few trials. Here, a trial is the repetition

of the same task by the model during a run. In total, this resulted in

426 different trials. Out of these, the HDT successfully completed the

task in 350 trials and failed in 74. We ran the ACT-R simulation for

a combination of three different values of the reward/penalty, i.e.,

0.5, 5, and 10. For example, during a typical run, if the HDT takes a

correct control action to control a disturbance, it receives a reward

value of 0.5. For an incorrect control action, it obtains a penalty of

–5. Similarly, for successful completion of the task, it gets a reward

value of 5, and for automatic shutdown of the plant, it obtains a

penalty of –10. If the feedback given to the HDT in the form of

reward/penalty is not appropriate, the HDT may take many trials

during a run to succeed in controlling the disturbance. In essence, the

HDT’s reflection on its performance is impacted by modifying the

magnitude of reward/penalty. This is in line with prior studies where

it was reported that feedback is an important aspect of improving the

operator’s performance during training (Kluge et al., 2009).

We recorded process variables data from the MATLAB R© process

simulator, HDT actions in response to abnormalities, and HDT gaze

data from the vision module of the ACT-R, as discussed in the

preceding section.

2.5. Human subjects

We used data from the human subject study reported in our

earlier work (Kodappully et al., 2016) to validate the HDT model.

A total of 11 participants with a background in control systems were

involved in the study. The participants performed similar disturbance

rejection tasks as performed by the HDT—monitor the process

and intervene during abnormalities. Prior to conducting tests,

participants were given handouts that explained their responsibilities

as operators, the technical details of the process, and how to interact

with the HMI. In addition, a video tutorial was provided, which

demonstrates the use of HMI to control the process. Task-specific

instructions are shown on the screen prior to starting each task. These

instructions include information about the nature of the abnormality,

disturbed variable (s), and the control action to be used to bring

the process back to normal. For instance, a typical task involves a

disturbance in the cooling water flowrate, which results in a low

or high alarm on the F102 tag that measures the cooling water

flowrate. The participant is expected to monitor the process and

execute corrective actions (manipulate control valve V301) using

the HMI to bring the process back to a normal operating limit.

The reader is referred to Kodappully et al. (2016) for details of

the protocol followed. Overall, the participants performed 110 tasks

involving various scenarios. During each task, we collected process

data, operator actions, and eye tracking data (using the Tobii TX 300

eye tracker).

2.6. Data analysis

It is expected that the HDT should show similar cognitive

behavior as its human counterpart. The eye gaze pattern serves as a

trace of attention allocation by the human. Therefore, we compared

the performance of the HDT and the human operator using eye gaze

data. For analyzing the gaze data, we divided the HMI into various

areas of interest (AOIs), such as process variable tags, control sliders,

trend pane, and alarm summary. We term the process variables that

are directly affected by a disturbance as the primary variables for

that scenario and the rest as secondary variables (Kodappully et al.,

2016). Similarly, tags and sliders are also categorized into primary

tags, primary sliders (correct control action to bring the plant to the

normal operating state), secondary tags, and secondary sliders. For

instance, consider a task during which a disturbance occurs in the

form of a decrease in coolant flow to the CSTR (F102), which causes

low alarm F102. The corrective action is to increase the opening of

the coolant flow valve (V301). During this task, the primary tag is the

coolant flow tag (F102), the primary slider is the coolant flow valve

(V301), and the primary trend is the trend of F102.

To compare the performance of the HDT and the human

operator, we consider sequences containing two AOIs visited

consecutively—we term these as a 2-tuple transition. Similarly, three
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AOIs visited in succession are termed a 3-tuple transition. We

consider such transitions during various phases of a task, such

as after the occurrence of the alarm till the first control action

(diagnosis phase) and from the first action till the last action

(execution phase). Prior studies have shown that operators use

time-based information to foresee the effect of their control action

(Yin et al., 2008; Shahab et al., 2022b). Therefore, we identified

the percentage of gaze transitions involving the trend panel and

primary variables for both the human operator and the HDT. These

include two tuple transitions such as “trend panel→ primary slider,”

“primary slider→ trend panel,” and “primary tag→ trend panel.” In

addition, we also calculated three tuple transitions “trend panel→

primary slider→ trend panel” and “primary slider→ trend panel→

primary slider” during two different phases of the task as discussed

above. For instance, the percentage of the two tuple gaze transitions

“primary slider→ trend panel” in a particular phase (diagnosis or

execution) is obtained by dividing the number of transitions from

the primary slider to the trend panel by the total number of two

tuple transitions that occurred during that phase. The gaze transitions

between primary variables and the trend panel indicate that operators

attend AOIs that are directly related to the disturbance, and they use a

proactivemonitoring strategy using the trend of the process variables.

Such gaze behavior is commonly observed in expert operators.

The expert gaze behavior is distinct from those observed in novice

operators (Sharma et al., 2016). Next, we compare the results from

the human operator and the HDT.

3. Results

In the following, the results obtained from the data gathered

through the methods described above are analyzed.

3.1. Human operator behavior

Eleven participants played the role of control room operator

in disturbance rejection tasks. Typically, at the beginning of the

experiment, the participant, after going through the training phase

and reading the task instructions, scans the schematic and identifies

the tags and sliders mentioned in the instructions before starting the

task. During the task, due to the disturbance, one or more process

variables can go beyond normal operating limits, which would lead

to alarm(s). The task of the participant is to bring the process back to

normal by accurately diagnosing the cause of the abnormality and

initiating necessary control actions using the sliders on the HMI.

Once a disturbance occurred, participants typically used the trend

panel to obtain information about the primary variables and then

executed corrective actions using the primary slider to bring the

process back to normal.

As discussed earlier, we calculated two tuple and three tuple

transitions in two phases of the task—the diagnosis phase and the

execution phase. The percentage of gaze transitions between the

primary variables and the trend panel for all the human participants

who successfully completed the task is shown in Figure 5. As depicted

in Figure 5A, the two tuple transitions “trend panel→ primary slider”

and “primary slider→ trend panel” is higher during execution than

in the diagnosis phase. Similarly, as reflected in Figure 5B, three tuple

transitions involving primary variables and the trend panel are higher

in the execution phase. This is because, during diagnosis, participants

identify the root cause of the disturbance and hypothesize about the

correct action to control the disturbance. Accordingly, they locate

the primary variables (such as the primary tag and slider) that help

them control the disturbance. Further, as shown in Figure 5A, they

also use the trend panel to obtain details of the deviation from

the alarm limits, as depicted by the transitions from the primary

tag to the trend panel during this phase. However, when operators

execute the control action in the execution phase, the use of the

trend panel becomes more crucial as it provides more information

than any other AOIs (Kodappully et al., 2016). The trend panel

contains information about the magnitude, status (high or low), and

rate of change of the disturbed variable in response to the operator’s

actions (use of sliders). As a result, during this phase, we see more

transitions to the trend panel (Figures 5A, B), and the primary tag

is no longer relevant as the disturbance has already been identified

in the diagnosis phase. The same is also reflected by the absence of

two tuple transitions “primary tag→ trend panel” in the execution

phase (Figure 5A). Next, we discuss the gaze behavior of the HDT. It

is expected that the HDT should follow the same gaze behavior as the

human participants.

3.2. Human digital twin behavior

To compare the performance of the HDT with that of the human

operators, we calculated the two-tuple and three-tuple transitions

from theHDT gaze behavior during successful tasks.We obtained the

gaze behavior of the HDT from the vision module of the ACT-R. The

gaze transitions of HDT during success are shown in Figures 5C, D.

From Figure 5C, it can be observed that the gaze transitions

from the “trend panel→ primary slider” are higher in the execution

phase than in the diagnosis phase. Similarly, two tuple transitions

“primary slider→ trend panel” are higher in the execution phase

as compared to the diagnosis phase. This signifies that the HDT

obtains most of the information from the trend panel during the

execution phase. As discussed in the previous section, we observed

the same pattern for human participants (Figure 5A). Also, there is a

presence of gaze transitions from the primary tag to the trend panel

in the diagnostic phase only (Figure 5C), which is in line with the

behavior of human participants (Figure 5A). This is because the HDT

focused only on the primary slider and trend panel in the execution

phase highlighting the role of trend as a critical information source.

Similar gaze behavior of the HDT can be observed for three tuple

transitions (Figure 5D). The three tuple transitions “trend panel→

primary slider→ trend panel” is higher in the execution phase than

in the diagnosis phase (Figure 5D), akin to the pattern observed

for human participants (Figure 5B). The results indicate that the

developed HDT mimics the behavior of its human counterparts. It

may be noted that there is a difference in the magnitude of gaze

transitions between human operators and the HDT (Figure 5). This

could be due to the innate nature of human operators; for instance,

even after completing a task, their eye gaze would continue scanning

(random gaze behavior) rather than remain fixated on a specific AOI.

The HDT does not model such behaviors.

In addition to the analysis of the trials where the human

digital twin successfully completed the task, we also calculated HDT

behavior during failure tasks (that resulted in automatic shutdown).

The HDT failed in a total of 76 trials. We calculated the gaze

transitions for these trials, which are shown in Figure 6. It is
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FIGURE 5

Gaze transition analysis during diagnosis and execution phase (A) two tuple gaze transition for human participants for successful trials (B) three tuple

gaze transition for human participants for successful trials (C) two tuple gaze transition for the human digital twin for successful trials (D) three tuple

gaze transition for the human digital twin for successful trials.

FIGURE 6

Gaze transition analysis of the human digital twin during diagnosis and execution phase (A) two tuple gaze transition for the HDT during failure trials (B)

three tuple gaze transition for the HDT during failure trials.

interesting to observe that even when the HDT failed in the task,

the gaze resembles that of the human participants who successfully

completed the task. The two tuple transitions “primary slider→

trend panel” is higher in the execution phase than in the diagnosis

phase (Figure 6A). The same is observed for three tuple transitions

trend “panel→ primary slider→ trend panel” which is higher in

the execution phase (Figure 6B). This clearly suggests that the HDT

attempted to orient the gaze pattern in accordance with the task but

was unable to do so due to a lack of pertinent information in the

declarative memory. Although the gaze transitions exhibit the same

tendency for failure, there is a distinction when compared to HDT’s

successful trials. By comparing Figures 5C,D, Figures 6A, B, it can be

observed that the percentage of both two-tuple and three-tuple gaze

transitions from primary variables to trend panel is higher during

successful tasks than in failure tasks. The HDT learns to control the

abnormality by offering penalties for incorrect actions and rewarding

correct actions. Therefore, with learning, the HDT orients the gaze

pattern and has higher gaze transitions between primary variables

and the trend panel.

4. Discussion

In this work, we developed a human digital twin using the

ACT-R cognitive architecture to simulate a control room operator
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who has to tackle process abnormalities. To our knowledge, this

is the first reported research of its kind in which a human digital

twin is developed to address human performance issues in the

domain of process industries. The developed HDT has been validated

using the human operator’s eye gaze. Our results indicate that the

HDT’s behavior accurately replicates that of the human operators’.

Specifically, gaze transitions between primary variables were found

to follow the same patterns. For instance, in human operators,

the gaze transitions between the trend panel and primary variables

during the execution phase were higher than during the diagnosis

phase (Figure 5A). This signifies that operators use the trend panel

extensively when the requirement shifts from diagnosis to execution.

Observing the trend panel helps in obtaining time-based information

on the process variables. The same behavior is also observed in the

HDT (Figure 5C). This indicates that the production rules defined in

the ACT-R model to solve process abnormalities accurately represent

the cognitive functions of the human operator. It is important to

note that the HDT simulations were carried out by tuning only those

parameters that give the HDT feedback to enhance its performance

across trials. The parameters of the ACT-R vision module were

unchanged, yet the model exhibits gaze patterns comparable to

those of human operators. The HDT learns to control the process

based on the rewards/penalty received, similar to how human

operators improve their performance after obtaining appropriate

feedback. These observations are also supported by the ACT-Rmodel

validation in other safety-critical areas such as driving and aviation

(Salvucci, 2006; Park et al., 2018). For instance, the ACT-R driver

model demonstrates the same gaze behavior as human drivers, i.e.,

mostly attending to the front of the vehicle and transitioning to

other areas for better situational awareness. The ACT-R model also

correctly predicted the gaze time on distant objects as observed for

human drivers (Salvucci, 2006).

As an application, the developed HDT can be used to build an

extensive (synthetic) knowledge base of operator behavior during

various abnormal situations. Such a knowledge base can be used to

anticipate novices’ mistakes and identify factors that would affect

performance, such as high memory demand, attentional tunneling

or distraction, time pressure and high cognitive workload, and poor

situational awareness. For example, our results from the HDT show

that the gaze transitions to primary variables are higher during

success than in failure tasks. This can be used to provide automated

feedback to novice operators to orient their gaze patterns. Providing

such automated feedback is critical since the availability of expert

instructors is decreasing, mainly due to retirement (Komulainen and

Sannerud, 2018). In addition, experts’ gaze patterns can be generated

with the proposed HDT and can be used to guide novice operators

to orient their gaze patterns. There is evidence that guiding novices

with experts’ gaze patterns can enhance their performance in tasks

involving conflict detection performed by Air Traffic Controllers

(Kang and Landry, 2014) and surgical tasks (Vine et al., 2013; Melnyk

et al., 2021). Also, the HDT-based strategy can perform well in terms

of the qualities that make up a reliable operator training assessment

technique, such as consistency, repeatability, and neutrality.

Even after an operator learns the causal relationships in the

process, it is possible that they can commit various errors during real-

time plant operation due to inherent human frailties (Shahab et al.,

2022a). Errors are the outcome of decision-based failures brought on

by limits in human cognition, so they are particularly important when

control room operators are dealing with abnormal situations. During

such instances, many alarms from different parts of the process are

triggered simultaneously, making it difficult for the operator to decide

on the correct recovery strategy, especially within a short time frame

(Naderpour et al., 2015). When confronted with complex situations,

operators often find it challenging to judge which portion should be

prioritized. This leads to an increase in their mental workload. The

proposed human digital twin can help predict operators’ responses

during novel abnormal situations and whether they would be able

to handle such conditions during real plant operation. Additionally,

temporal elements can be updated to keep track of the changing

mental models of the human operator, such as how their behavior

changes over time in response to process demands. It can thus be used

to assist the operator by providing relevant cues and hence enable

better situational awareness.

Even though our results indicated that the HDT performance is

in general agreement with the performance of the human operators,

the proposed HDT has certain limitations. For example, the current

HDT is restricted to cases where only one abnormality occurs at a

time.We intend to expand themodel in the future to address multiple

simultaneous abnormalities. In the future, we also plan to incorporate

operator-specific differences in the HDT model and perform large-

scale experiments. Further, the robustness of the HDT can also be

evaluated using electroencephalography (EEG) data. For instance,

Kim et al. (2019) developed an ACT-R with EEG simulation to

estimate the operator’s mental workload during the air force multi-

attribute task battery. The authors validated the model with the

mental workload of the human operators obtained from EEG during

the same task. Our previous studies with human participants reveal

that EEG-based cognitive measures can be used to track the learning

progress of operators (Iqbal et al., 2021). This can be used to evaluate

the robustness of the human digital twin of the process operator.
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