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Abstract: Designing biological networks that are capable of achieving specific functionality has been of
sustained interest in the field of synthetic biology for nearly a decade. Adaptation is one such important
functionality that is observed in bacterial chemotaxis, cell signalling and homoeostasis. It refers to the
ability of a cell to cope with environmental perturbations. All of these adaptation networks,involve
negative feedback loops or open loop control strategies. A typical enzymatic network is a circuit of
enzymes whose connections are characterized by enzymatic reactions that exhibit non-linear dynamics.
Previous approaches to design of enzymatic networks capable of perfect adaptation have used brute
force searches encompassing the complete set of possibilities to identify suitable circuit designs. In
contrast, this work presents a systematic algorithm for circuit design, using a linear systems-theoretic
approach. The key idea is to set up a design-oriented problem formulation as against employing a brute
force search in the space of possible circuits. To this effect, we first linearize the non-linear dynamical
circuit, subsequently, we translate the requirements for adaptation to design specifications for a linear
time-invariant system and imposing these design specifications on the linearized system, we obtain the
minimal topologies or motifs that can perform perfect adaptation, with an optimal set of rate constants.
The optimal set of rate constants is obtained by solving a structure-specific constrained optimisation
problem. In effect, we demonstrate that the proposed approach identifies the key motifs of the biological
network that were identified by the existing brute force approach, albeit in a systematic manner and with
very little computational effort.
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1. INTRODUCTION

The field of systems biology adopts a holistic approach towards
studying and understanding biological systems. Contrary to
reductionist approach, it is based on a ground that a particular
biological behaviour is not just a result of a single machinery
but a response of a large system of interconnected components.
In most of the cases, biological systems are complex, non-
linear, multi-scale and assumed to be modular. This assumption
of modularity helps in separating a small subsystem from a
multi-level, complex biological system.

It is a growing idea which states that design principles for a
particular biological function remains nearly the same irrespec-
tive of the system (or across the organism space) it is a part
of. Current day findings also support this hypothesis (Ma et al.,
2009).

According to the very approach of the systems biology and
above mentioned hypothesis, it can be concluded that there
are a few unified design principles for this biological func-
tionality of adaptation i.e, there are only few topologies or
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sub-systems which can perform perfect adaptation across the
organism space. Now, these design principles in most of the
cases constitute the core and governing part of a large network.
Therefore, the functionality of the entire system can be well
predicted by studying the characteristics of these functional
motifs. There are some techniques to identify motifs which
involve statistical reasoning (Milo et al., 2002).

Adaptation is the ability for a system to reset itself after sensing
an external perturbation.There are two parameters by which
the extent of adaptation achieved by a given system can be
quantified, namely Precision and Sensitivity. Mathematically,
precision is expressed as

J— / h (1
|02=01|/ |L—-1]

where, O, is the new output steady state level and O is the pre-
stimulus output level and /; is the initial input where I, is the
new input.

In a similar way, sensitivity is defined as
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Figure 1. Typical response of adaptation network

where, Opeq is the peak value of output, which gives infor-
mation about how much the system has been able to sense
the change in the Input. By definition of perfect adaptation the
precision should be as high as possible (ideally infinite) and
corresponding sensitivity should be one.

Previously, Ma and co-workers performed an exhaustive search
of the entire design space of three-node networks for minimal
topologies capable of achieving adaptation. Each combination
of the three nodes and edges was tested for thousand different
sets of parameters (Ma et al., 2009). The study revealed that
there are 395 combinations of the enzymes out of over ~
16,000 possible networks that can perform adaptation with
appropriate parameter sets. They observed the presence of any
or both of the two main motifs namely Negative Feedback Loop
with Buffer node (NFBLB) and Incoherent Feed Forward Loop
with Proportioner node (IFFLP) in all 395 combinations from
which they concluded that these two motifs are responsible for
adaptation. In the present paper, we circumvent the brute force
computational efforts of Ma et al. (2009) and propose a generic
algorithm that is computationally much less demanding, to
determine such minimal motifs for any desired functionality
using the fundamentals of linear systems theory.

2. RELEVANT LINEAR SYSTEMS THEORY CONCEPTS

The aim of the paper is to determine the admissible motifs
of a three-enzyme network, which are capable of producing a
desired output (adaptation) using a systems-theoretic approach.
This necessitates a conceptual understanding of LTI systems
theory. In this section, we outline relevant concepts from linear
systems theory, which are central to understanding our ap-
proach.

Linearity is a property of a system which enables the output to
change proportionally with the change of the input. Along with
scalability a linear system should as well exhibit superposition
property (Stefani et al., 2002).

Further, a system is time invariant if the output experiences a
0 amount of time delay with the input delayed by the same
amount of time.

2.1 State space approach

From the perspective of systems theory, any system of networks
can be characterised by the values of its state variables at any
given point of time. The generic state space representation for
any system can be written as

PO fix(e)uio).x) @
y(0) = (x(e)u(t). 1) @

[x1 (t) x2(t) - xn(t)]T are the states,
u=[ut) uz(t) U (1 )] are the inputs,
I

y=i (1) ya2(r) - ( )
r—[rl() 2(t) - ()]T are the parameters of the system.
Now, f(x(¢),u(r ),r) and g(x(7),u(r),r) can be linearized by
evaluating the Jacobian and therefore the above non-linear
system(3) can be boiled down to it’s linearized form as

where, x(7) =

are the outputs and

d
dlt‘ — Ax+Bu (52)
y = Cx+Du (5b)

where A € R B € R™™ C € RP*" and D € R?*™ are the
state-space matrices for the given system.

A non-linear system can be linearized with respect to an equi-
librium point, by evaluating the Jacobian of the system. Jaco-
bian is a popular operator in vector calculus which computes
the first order partial differentiation of a vector valued function
with respect to a vector valued variables. So, for a vector valued
function { the jacobian of { with respect to a vector € is defined

as
9Gi

Jij:T‘C,‘j

(6)
In this case the associated A and B matrices are the jacobian of
f with respect to the states x and control inputs u respectively
evaluated at initial conditions. Similarly, the corresponding
C and D matrices for the linearized system are the jacobian
of g with respect to x and u respectively evaluated at initial
conditions.

2.2 Conversion from state space to transfer function

The system represented in the state space form (5), can also be
expressed in it’s equivalent transfer function form as

Y(s) = GU(s) (Ta)
G(s) = (C(sI—A)"'B+D) (7b)

where, G € R”*™ and s is the Laplace variable For a single
input single output(SISO), the transfer function matrix boils
down to a scalar function of the Laplace variable s.

2.3 Effect of poles and zeros

A linear time invariant system can be characterized by some of
it’s parameters which are poles, zeros e.t.c.. Typically, poles are
associated with the stability of the system. If the system poles
are situated in the left half of the s-plane then the system is said
to be stable. Depending on the values of pole (real or imaginary)
the system shows different transient characteristics.

Zero mainly determines the direction of output response a zero
on the right half s plane results in inverse response of the
system output. Adding a zero to the system can result into high
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Figure 2. A generic 3-node network

overshoot, lower settling and peak time. For a fixed set of poles,
the value of the peak time and rise time are minimum if the
system consists of a zero at the origin.

2.4 Relative stability

In linear systems theory, relative stability is defined as the
distance of the poles of left-half s plane from the origin. For
a system specified by equations (3) & (4) the eigenvalues of
the A are the poles of the system. For a linearized system, A is
only a function of the parameters. Therefore, to tune a system
for maximising the relative stability, it is a common idea to
maximise the absolute values of the poles:

O = max (arg(TT;—(;),A:)) ®)

Where, As are the eigenvalues of A and also the poles of the
system. Now, for a system with zero situated near origin, max-
imisation of the above optimisation problem will be equivalent
to the minimisation of gain, which can enable the system to
achieve its initial value asymptotically.

3. PROBLEM STATEMENT
3.1 System Description and Kinetics

The network, as illustrated in Fig. 3.1 contains three enzymes
which catalyses the activation or repression of other enzymes.
Enzyme (A) is the input node and the output of the system is
the concentration profile of (C).

Each enzyme can have three types of effects either on itself
or on the other two enzymes: it can activate (itself or other),
repress (itself or other) or have no effect. Thus, for a three-
enzyme network, the possible combinations of enzyme interac-

. NP . . .
tions (or topologies) is 3" where, n is the number of interacting
enzymes. For this three node network, n = 3, the number of
possible combinations is 37 = 19, 683.

For the fully connected network of fig 3.1 the rate equations can
be written as follows
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where Fj, is the basal enzyme acting on .4 and B it is repressing
the concentration of A and 5.

3.2 Objectives

The objectives of this paper are

(1) To design minimal motifs (containing not more than three
edges) capable of performing adaptation.

(2) To obtain the optimal values of the parameters, i.e. the rate
constants for the motifs so identified.

4. METHODOLOGY

This section addresses the problem of determining suitable
structures for adaptation along with the search for optimal
parameters. As it can be seen from the equations (9), the system
follows non-linear dynamics. There may be a number of ways
of achieving perfect adaptation in a non-linear system that can
be found after a careful and systematic investigation. This paper
addresses this reality and works with the linearised version of
the system for better clarity to start with. The paper aims for
outlining a generic computation friendly strategy to obtain the
design principles for any biological functionality followed by
a clever search in the parameter space. In order to resolve the
structure, the system of rate equations are linearized and it is
reduced to a single zero three poles system. From this, the
admissible pole zero location for adaptation can be mapped
on the linearized system as a condition for adaptation. With
these, the possible structures are determined. Then to search for
appropriate rate constants the optimization problem mentioned
above (expression 8) is formulated along with the structure
specific constraints.

4.1 Linearization

The fact that the desired response of the adaptation network can
be achieved by standard linear time invariant systems of specific
pole zero combinations and along with that, it is possible to map
the characteristics (sensitivity and precision) to gain and peak
value of the equivalent LTI system justifies the analysis of the
non-linear system of M-M equation in its linearized domain.

It is found that the enzymatic network following Michaelis—
Menten kinetics equation (9) has a single stable steady state.

As the non-linear system is linearized with respect to a stable
equilibrium point it is evident that the eigenvalues of the corre-
sponding A matrix or the system poles are situated in negative
s plane.

4.2 Conditions on the linearized system for adaptation

The main task after linearizing the non-linear system is to map
the precision and the sensitivity of the non-linear system to
some of the characteristics of linearized system.

(1) The system should be stable, i.e. all the eigenvalues of A
matrix should be negative.

(2) The steady state value of the non-linear system should be
the same as the initial output level. That means the final
value of the linearized system should be zero ideally, if
the linear system was relaxed before. This in turn leads to
the condition of zero gain system.
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Now, the condition for a system to have a precision of infinity
(i.e. the system returns to its initial value at large times) turns
out to be a linearized system having a gain of zero. The
corresponding sensitivity of the system can be mapped with the
peak value of the linearized system. The zero position for the
linearized three pole one zero system is at

dfsdjc djcdfs
dA dB
d1 dje

dA

Now the transfer function in pole-zero format, using (7a) is

(10)

o bi(azaz —azax)
asi
G_ . 9
I (s — eigi(A))

where a;; is the (i,j)"" element of A and b; is the i’* element of

an

4.3 Determining potential structures of the three enzyme
circuit

After obtaining the conditions of adaptation for the linearized
system i.e, zero gain and high peak value we translate these
conditions as some constraints on pole zero position. Using
these constraints along with the requirement of minimum no. of
edges it is possible to determine the possible circuit structures
capable of performing adaptation.

The gain for the linearized system is obtained as

z

K=a—m—

H[:] Pl

where, Z is the only zero, « is a constant and P,’s are the three

poles of the linearized system. Hence, to have a gain nearly

zero, the zero position should be less than the pole position and

ideally, the zero should be placed at the origin of the s-plane.

As a3; cannot be zero to have a finite zero the numerator in

equation 10 should be zero. This in turn can be achieved in two
ways:

12)

(1) Both terms of the numerator are zero individually.
(2) Both terms of the numerator are non-zero and equal.

Therefore, where both the terms are zero individually, there can
be three scenarios:

(1) ax» =0,a3=0,a =0
(2) an=0,a1=0
(3) ax=0,a3=0

Scenario I  Now, we know a3; cannot be zero-valued to have
a zero positioned at a finite distance from the origin. Implying
the condition |A| < 0, and restricting number of connections to
three we get ajpax3 <0

So, ajp and a3 has to be of opposite sign because 4 has to
activate C that means a3; has to be positive. So it yields a set of
structures where A activates C, C activates/represses B and B
represses/activates A(Figure 3(a)).

Scenario2 ay)=0anday; =0
Now, imposing |A| < 0 and minimal number of edges (i.e. 3),

ayi(—axnas) <0

Now, for the stability condition the matrix A should be negative
definite, i.e.

a <0
azpax; <0

So, a3z, and ay3 will be of the opposite sign; the corresponding
structure, therefore, is: A activates C, C activates/represses B,
B represses/activates C (see Figure 3(b)).

Scenario 3 Now, for the third case
a» =0,a3 =0
—apaziaz; +apaziay <0

Now imposing the same conditions as above ajpaz; < 0

A activates C, B activates/represses A, A represses/activates
B (Figure 3(c)).

In all of the above three scenarios there is one thing common
in the minimal structures of the network which is a presence
of a net negative feedback involving the node B.This kind of
minimal network is called Negative Feedback Loop with Buffer
Node (NFBLB).

Now, for the second type problem

where,

a»1azy = axaz; and none of the elements are zero

So imposing the condition of |A| < 0 and minimal edges(3
edges)

ayjaxaz; <0
ax» <0

a
So, as; ﬁ <0
Now a3; is always positive so, ap; and azp has to be of the
opposite sign always so, it is
A activates C, B activates/represses C, A represses/activates B
(Figure 3(d)).
In the second case it can be inferred from the structure of these
motifs that there are two paths between node .4 to node C. As it
can be seen in the both the cases the net signs of the path from
A to C are opposite, which leads to a special class of motifs
named Incoherent Feed Forward Loop with Proportioner node
(IFFLP).

4.4 Search for Optimal Parameters

From different case studies executed in the previous section
for resolving the uncertainties it can be inferred that fixing the
topology only is not enough to guarantee adaptation because the
conditions for the adaptation cannot be fulfilled completely by
ensuring suitable structures. For NFBLB to ensure adaptation
apy, which is a function of the parameters has to be zero and
for IFFLP to do the same axaz; — azjas; should be equal
to zero. The optimal values of the parameter can be resolved
by maximising the relative stability (Chen et al., 2005) of
the system. Now, for the NFBLB class motif, the optimisation
problem can be posed as:

3
min(Heig(A),-) sit.oaxn=0 (13)
i=1
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For the IFFLP class motif, the problem can be formulated,
using the knowledge of the model, as:

3
min(Heig(A)i) s.t.apaz —axazyp =0 (14)
i=1

It can be seen from the optimization function, the minimization
of the objective function takes care of the stability of the system
because it in turn increases the distance between the poles and
the origin in the direction of the left half s-plane.
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Figure 3. Different combinations of admissible topologies

Algorithm 1 Generic algorithm for obtaining design principles

1: Linearize the non-linear system based on suitable equilib-
rium point.

2: Identify the admissible transfer functions which can
achieve the desired functionality.

3: Map the necessary conditions on the non-linear systems on
the linearized version of it.

4: Impose these conditions on the parameters of the transfer
function of the linearized system(e.g. poles, zeros, gain) to
resolve the structural uncertainty.

5: Use equation (8) along with some structure specific con-
strains to maximise the relative stability and hence obtain
optimal parameters.

5. RESULTS AND DISCUSSION

Two different cases are considered for simulation. In all the
cases an input of twenty percent step change is applied at node
A. The corresponding output is measured as the concentration
of C. IFFLP is clearly a better choice than NFLB for simulation
studies because it can be seen that the system matrix for a

IFFLP class motif turns out to be diagonal which is not the
case for NFBLB. So, the objective function formulation ((8))
becomes easier for IFFLP than NFBLB. Further it is possible
to club the parameters of the objective function in the case of
IFFLP which betters the rate of convergence.

5.1 Case 1: IFFLP with an arbitrary set of parameters

In this case, IFFLP is chosen for illustration (Figure 3(d)) For
simulation of the considered motif, an arbitrary but biologically
feasible set of parameters are chosen (Figures 5.2, The system
poles are situated at s = —0.2268, —0.0815,—0.0992 and the
only zero was situated at s = —0.407. Clearly, due to inappro-
priate choice of the parameters the system fails to attain perfect
adaptation but as the zero is located before the poles the system
attains a non-zero finite value of sensitivity and precision.

5.2 Case 2: IFFLP with optimized set of parameters

The parameters are obtained by solving the motif specific
optimization problem discussed in the above section equa-
tion (14). As it seems from the figures(Figures 6 and 5.2)
the systems senses the change in the input, rises accordingly
and at large times almost settles to the previous steady state
value. The linearized system (Figure 5.2) has poles at s =
—3.0864, —0.0352and — 1.5277 and the only zero of the system
is situated at s = 0.00034.

5.3 General inferences

The peak value of the linearized system depends on the initial
rate of change of concentration of 5. If %bzo > %hzo then
it is possible to have a high sensitivity and to have a certain
amount of precision (1 —B) >> K 45 and B << Kz subject
to satisfy the condition of proportionality.

For NFFBLB to achieve adaptation of infinite precision ay; has
to be zero, which essentially turns out to be a condition on the
rate equation for B to be independent of B.

i

B (15)
This happens only for a few restricted sets of parameters where
B works as an non-linear integral controller node which inte-
grates the difference between the steady state and the concen-
tration of C at any instant generates the controller input. At the

ann =0

Table 1. Parameters obtained and arbitrary param-

eters
Parameters  Arbitrary  Optimal

kz A 2 10
Kz a 5 0.5
kap 0.665 0.5001
Kan 0.758 0.0011
kpc 6.433 14
Kpc 37.82 25
kac 2.801 10
Kac 4.551 0.551
kra 0 7.8539
Kra 0 100.3914
Kri 0 10
Krp 0 100.012

Sensitivity 0.35 0.8

Precision 34 12
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Figure 4: Optimally parametrized linear system (response)
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Figure 7. An ill-parametrized linear system (response)

steady state the concentration of C remains independent of A
and B. In order to improve the robustness, an NFBLB with
a self-loop is considered, which upon subsequent analysis is
found to have better robustness over the pure NFBLB class.
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Figure 5: An ill-parametrized non linear system (response)
6. CONCLUSIONS

Biological networks are complex in nature. It is the inherent
non-linear, retroactive and multi-scale nature of the biological
system that makes it very challenging to analyse, model or pre-
dict their responses. The proposed methodology is systematic
as against the exploratory and computationally loaded brute-
force method. It has been shown to successfully identify the
same motifs as the brute-force method was reported to, namely
the NFBLB and IFFLP motifs. Furthermore, a method to de-
termine the optimal set of parameters (for one of the motifs)
that impart the desired precision and sensitivity. Thereby, it is
demonstrated that that the extent of adaptation, i.e., the quan-
titative metrics of adaptation, can be bettered by tuning the
parameters of the underlying motif. The principles and ideas of
the present work are also generic in the sense that they can, with
minor modifications, be applied to the design of biological cir-
cuits for achieving other biological functionalities. Future work
involves several exciting possibilities, among which generaliza-
tion to other functionalities, determining whether linearization
results in false positives / negatives motifs (with respect to the
true non-linear process), and extensions to non-linear systems
attract attention.
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