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[1] One of the principal sources of uncertainty in hydrological models is the absence of
understanding of the complex physical processes of the hydrological cycle within the
system. This leads to uncertainty in input selection and consequently its associated
parameters, and hence evaluation of uncertainty in a model becomes important. While
there has been considerable interest in developing methods for uncertainty analysis of
artificial neural network (ANN) models, most of the methods are relatively complex and/
or require assumption about the prior distribution of the uncertain parameters. This paper
presents an effective and simple way to perform uncertainty analysis for ANN-based
hydrologic model. The method is based on the concept of bootstrap technique and is
demonstrated through a case study of the Kolar River basin located in India. The method
effectively quantifies uncertainty in the model output and the parameters arising from
variation in input data used for calibration. In the current study, the uncertainty due to
model architecture and the input vector are not directly considered; they have been
minimized during the model calibration. The results from the case study suggest that the
sampling variability of the training patterns as well as the initial guess of the parameters of
ANN do not have significant impact on the model performance. However, despite good
generalization properties for the models developed in this study, most of them fail to
capture the hydrograph peak flow characteristics. The proposed method of uncertainty
analysis is very efficient, can be easily applied to an ANN-based hydrologic model, and
clearly illustrates the strong and weak points of the ANN model developed.
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1. Introduction

[2] Hydrologic simulation or modeling is a powerful
technique of hydrologic system investigation for the
researchers and the engineers involved in the planning
and development of integrated approach for water resources
management. To date, a wide variety of rainfall-runoff
models have been developed and applied for water resour-
ces planning. Most of these models are based either on
physical considerations or on a system theoretic approach.
In the physical approach, the primary motivation is the
study of physical phenomena and their understanding, while
in the system theoretic approach the concern is with the
system operation, not the nature of the system by itself or
the physical laws governing its operation.

[3] Most hydrological models (both physical as well as
system theoretic) are complex and stochastic in nature and
contain certain degree of uncertainty. In the case of phys-
ically based or conceptual models the complexity increases
as the number of model parameters increase. Further, the
understanding of the physics of the processes becomes
more predominant in such models. Whereas system theo-
retic models do not consider the physical characteristic of
the parameters, but they map the data from input to output
using transfer functions. The uncertainty in hydrological
models arises due to the absence of understanding of the
complex physical processes of the hydrologic cycle within
the system. This lack of understanding leads to uncertainty
in selection of the model inputs and consequently its
associated parameters. Hydrologists have been inclined to
simplify these complex natural processes into simpler
way of modeling by assuming the model inputs and the
processes to be deterministic. As a consequence most of
these models have been applied in a deterministic way
[Christiaens and Feyen, 2002] assuming that the input
variables and the parameters (after calibration) represent
the reality in an accurate way.
[4] The development and application of system theoretic

models to hydrological processes have increased in the
recent years. The reason for such an increasing interest
resides in their intrinsic generality, flexibility, and global
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performance in most applications where other models
either tend to fail or become cumbersome. One of the
powerful techniques that have gained momentum in the
last few decades is the artificial neural network (ANN), as
it has been successfully applied to a wide range of
problems in hydrology [Hsu et al., 1995; Sajikumar and
Thandaveswara, 1999; Sudheer et al., 2002, 2003]. Gener-
ally, in almost all applications, an ANN model is tested for
its generalization properties by means of statistical evalua-
tion measures, and no quantification of its predictive uncer-
tainty is reported. The quantification of the uncertainty
associated to the results provided by ANN models is
essential for their confident and reliable use in practice.
[5] The primary sources of uncertainty are input data, the

model parameters, and the structure, in addition to the
measured data used during calibration. The uncertainty eval-
uation provides the degree of behavior of each set of water-
shed parameters, which in turn are translated into confidence
interval estimates on the output of the model [Wagener,
2003]. There are various methods available for quantifying
the uncertainty in physical hydrologic models [Christiaens
and Feyen, 2002; Beven and Binley, 1992], while little
discussion is found in hydrologic literature regarding the
uncertainty analysis of the ANN hydrologic models except
a few [Kingston et al., 2005; Khan and Coulibaly, 2006;Han
et al., 2007].
[6] Three main approaches exist for the estimation of

accuracy of ANNs: the delta method, based on a Taylor
expansion of the regression function f(x; ŵ) (where x is the
vector of input variable and ŵ is the weight parameters)
upon which process estimation is based [Rivals and
Personnaz, 1998; Dybowski and Roberts, 2000]; the boot-
strap method, based on a resampling technique [Efron,
1979; Efron and Tibshirani, 1993]; and the Bayesian
approach, based on Bayesian statistics to express the
uncertainty of the network weights in terms of the proba-
bility distributions and integrate them to obtain the proba-
bility distribution of the target conditional on the observed
training set [Dybowski and Roberts, 2000; Bishop, 1995]. A
few applications in hydrology to quantify the uncertainty
associated with ANN models have focused on the Bayesian
approach [Kingston et al., 2005; Khan and Coulibaly, 2006;
Han et al., 2007], which is computationally expensive since
it requires Monte Carlo solutions of the integrals. The
bootstrap method is the simplest approach since it does
not require the complex computations of derivatives and
Hessian-matrix involved in the delta method or Monte
Carlo solutions involved in the Bayesian approach. Abrahart
[2003] employed bootstrap technique to continuously sam-
ple the input space in the context of rainfall-runoff model-
ing and reported that it offered marginal improvement in
terms of greater accuracies and better global generaliza-
tions. He suggested further research involving bootstrap
technique for estimating confidence interval of the outputs.
To the best of the authors’ knowledge, no application has
been reported that used bootstrap method to quantify
confidence interval of outputs from ANN hydrologic
models. The major focus of this paper is to illustrate the
use of bootstrap method to quantify uncertainties associated
with ANN hydrologic models. The presented method can
be employed to quantify the uncertainties in parameters and
predictions arising from the choice of data used for the

model calibration, while other sources of uncertainty are
assumed to be minimized (through trial and error proce-
dure) during the calibration of the model.

2. Background

[7] The most common method of uncertainty analysis in
traditional hydrologic models is to select a set of models
(structures and parameters) and evaluate the performance of
each of them in terms of some statistical measure, and
assign a ‘‘degree of believability’’ to each model based on
the performance of the model. This degree of believability
is translated into uncertainty estimates on the model output.
The approaches differ in the suit of assumptions underlying
each technique based on which methods are used to
compute the relative degree of believability [Beven and
Freer, 2001; Wagener, 2003]. Different methods have
evolved in uncertainty analysis in past few decades (e.g.,
error propagation method [Rogers et al., 1985]; mean value
first-order second-moment [Janssen et al., 1992]; advanced
first-order second-moment [Morgan and Henrion, 1990];
among many others). These methods have an advantage of
having large application area. These methods, however, rely
mostly on linear local approximation of the model, their
results are biased by the selection of base point, and they
may cause possible high costs in model development,
implementation, and calculation. Most of these methods
are based on a Taylor expansion of the regression function
upon which the estimation is based, and require complex
computations of derivatives and Hessian-matrix inversion.
Hence application of these techniques to ANN uncertainty
estimation becomes computationally expensive.
[8] An alternative method is based on Monte Carlo

simulation which is cost-effective, suitable for models with
many parameters, large application area, simultaneous sam-
pling of parameters, direct estimation of distributions of
outputs, and simple to use and implement. Beven and
Binley [1992] proposed the Generalized Likelihood Uncer-
tainty Estimation (GLUE), which is a Bayesian Monte
Carlo simulation based technique, for uncertainty analysis
of hydrological models. It should be noted that the GLUE
procedure requires that the sampling ranges be specified for
each parameter to be considered. The sampling of the
parameter space is generally done by Monte Carlo simu-
lations using uniform random sampling across the specified
parameter range. Furthermore, GLUE requires a formal
definition of likelihood measure to be used and the criteria
for acceptance or rejection of the models, which is a
subjective choice [Freer and Beven, 1996]. Consequently
the limitations of Monte Carlo simulations, which include
computational inefficiency and spurious correlation among
parameters due to sampling procedure used in parameter
selection, are also associated with the GLUE. Monte Carlo
simulation based methods for uncertainty analysis can be
applied to ANN, only if the distribution of the weights is
known a priori as well as the parameter sampling procedure
takes care of the correlation between the weights. When the
distribution of weights is not known a priori, prior distri-
bution must be assumed. Recently, Kingston et al. [2005]
employed Bayesian training approach for accounting the
uncertainty in ANN parameters during training. In this
approach the distribution of the parameters has been as-
sumed a priori, which is updated to posterior distribution
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using likelihood following Baye’s theorem while new data
are presented. A similar approach is employed by Khan and
Coulibaly [2006]. While the Bayesian training approach
has certain advantages like elimination of over-fitting
problems, the success of the approach mainly depends on
the selection of suitable prior and noise models and the
computation methods employed for integrating the posterior
distribution of parameters [Khan and Coulibaly, 2006].
Note that poorly designed prior probability distributions
can result in serious distortions of results [Adkison and
Peterman, 1996].
[9] Shrestha and Solomatine [2006] proposed a method

to compute the predictive uncertainty of a model. The
method employs fuzzy c-means clustering to partition the
input space into different zones having similar model
errors; constructs the prediction interval (PI) for each
cluster on the basis of empirical distributions of the errors
corresponding to all input patterns in each cluster; and
translates the PIs of clusters to examples by means of
fuzzy computing. While this method has the advantage of
not requiring any assumption about the prior distribution
of the parameters, it totally ignores the uncertainty associ-
ated with the parameter estimation. This is a severe
limitation for this method, since ANN has the weakness
of ‘‘equifinality’’ problem. It should be noted that the
constructed PIs will be biased by the choice of clusters
in the input space. Han et al. [2007] proposed a method to
understand the uncertainty in ANN hydrologic models
with the heuristic that the distance between the input
vector at prediction and all the training data provide a
valuable indication on how well the prediction would be.
However, their method did not quantify the uncertainty of
the model parameters or the predictions.
[10] Hence a method that works under joint stochastic-

deterministic modeling framework, and deals with the
uncertainty associated with the model input as well as
the parameters that results in an uncertainty band around
the deterministic simulations, is to be considered in eval-
uating the uncertainty associated with ANN. When suffi-
ciently large sets of examples (training patterns) are
available, the sampling variability in weights can be
approximated by bootstraps [Stone, 1974]. The bootstrap
is a computational procedure that uses intensive resam-
pling with replacement, in order to reduce uncertainty
[Efron and Tibshirani, 1993]. In addition, it is the simplest
approach since it does not require the complex computa-
tions of derivatives and Hessian-matrix inversion involved
in linear methods or the Monte Carlo solutions of the
integrals involved in the Bayesian approach [Dybowski
and Roberts, 2000].
[11] It is envisaged that the resampling mimics the

random component of the process, and that the variance
can be reduced through averaging over numerous different
partitions of the data. The bootstrap mechanism is often
used to process hundreds or thousands of subsets, such that
an empirical estimate of a specified output distribution is
produced, and from which certain fundamental character-
istics of the population can be calculated, e.g., mean,
variances, or cumulants [Abrahart, 2003]. Bootstrap tech-
nique can also be used to produce statements about
probabilities, to generate inferences about true parameters,
or to determine confidence intervals. Accordingly, the

current study employed bootstrap technique for uncertainty
analysis of ANN models.

3. Methodology

[12] Consider an ANN to be trained for performing the
task of nonlinear regression (input-output mapping), i.e.,
estimating the underlying nonlinear relationship existing
between a vector of input variables x and an output target
y (assumed monodimensional for simplicity of illustration)
based on a finite set of input/output data examples (pat-
terns), D � {(xn, yn), n = 1, 2,. . ., np}. It can be assumed
that the target y is related to the input vector x by an
unknown nonlinear deterministic function my(x) corrupted
by a Gaussian white noise e(x), such that

y ¼ my xð Þ þ e xð Þ; e xð Þ � N 0; s2
e xð Þ

� �
: ð1Þ

[13] The objective of the regression task is to estimate
my(x) by means of a regression function f(x; ŵ), dependent
on the network parameters ŵ to be properly determined on
the basis of available data set D. The parameters ŵ, called
weights, are usually determined by a training procedure
which aims at minimizing the quadratic error function,

E ¼ 1

2np

Xnp
n¼1

ŷn � ynð Þ2; ð2Þ

where ŷn = f(xn; ŵ) is the network output corresponding to
input xn. If the network architecture and training parameters
are suitably chosen and the minimization done to determine
the weights values is successful, the resulting function f(x; ŵ)
gives a good estimate of the true but unknown function
my(x). Indeed, it is possible to show that in the ideal case of
an infinite training data set and perfect minimization
algorithm, a neural network trained to minimize the error
function in equation (2) provides a function f( ) which
performs a mapping from the input x into the expected value
of target y, i.e., the true deterministic function E[yjx] = my(x)
[Bishop, 1995]. In other words, the network averages over
the noise on the data discover the underlying deterministic
generator. Unfortunately, all the training sets are finite and
there is no guarantee that the selected minimization
algorithm can achieve the global minimum.
[14] In practical regression problems, there are actually

two types of predictions that one may want to obtain in
correspondence to a given input x: an estimate of f(x; ŵ) of
the underlying deterministic function my(x) and an estimate
of the target value y itself as given by equation (1). To these
estimates it is crucial to associate their corresponding
measure of confidence. This requires that the various
sources of uncertainty affecting the determination of
weights ŵ be properly accounted [Dybowski and Roberts,
2000]. It must be considered that from a probabilistic point
of view, the data set D � {(xn, yn), n = 1, 2,. . ., np} used for
training the network is only one of an infinite number of
possible data sets which may be drawn within the given
input volume Vx and from the underlying statistical error
distribution. In other words, this variability in the training
set is due to the variability in the sampling of input vectors
xn, n = 1, 2,. . ., np and in the random variability of the
corresponding target output yn. Each possible training set
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can give rise to a different set of network weights ŵ.
Correspondingly there is a distribution of regression func-
tions f(x; ŵ) with variance (with respect to the training set
D) E{[f(x, ŵ) � E(f(x, ŵ)]2} in which E(f(x, ŵ) is the
expected value which is the ensemble average.
[15] Another source of uncertainty in the estimate of my(x)

comes from an inappropriate choice of the network archi-
tecture. Indeed, in case of a network with too few nodes (too
few parameters), a large bias occurs since the regression
function f(x; ŵ) has insufficient flexibility to model the data
adequately, which results in poor generalization properties
for the network. On the other hand, excessively increasing
the flexibility of the model by introducing too many
parameters, e.g., by adding nodes, increases the error
variance because the network regression function tend to
over-fit the training data. A trade-off is typically achieved
by controlling the model complexity by early stopping of
the training so as to achieve a good fit of the training data
with a reasonably smooth regression function which is not
an over-fit to the data [Bishop, 1995]. The quantification of
the accuracy of the estimate f(x; ŵ) of the true deterministic
function my(x) in terms of confidence interval mainly
depends on the estimation of its variance:

s2
f xð Þ ¼ E

�
f x; ŵð Þ � Eð f x; ŵð Þ½ 
2

�
: ð3Þ

[16] The current study employed bootstrap techniques for
quantifying the variance. Bootstrap sampling requires that B
bootstrap samples be drawn at random with replacement
from the original training set of np input/output patterns D �
{x, y}. The generic bth sample Db is constituted by the same
number np of input/output patterns drawn among those in D
although, due to the sampling with replacement, some of the
patterns in D will appear more than once in Db, whereas

some will not appear at all. Each bootstrap set Db is then
used as a data set of training a different neural network to
give regression function ŷb(x) = f(x; ŵb), where ŵb is thereby
obtained network weight values. Then, in correspondence of
a new input x, the bootstrap estimate ŷboot is given by the
average of the B regression functions,

ŷboot xð Þ ¼ f x; fŵb; b ¼ 1; 2; :::;Bgð Þ ¼

PB
b¼1

f x; ŵbð Þ

B
; ð4Þ

and the bootstrap estimate ŝboot
2 (x) of the variance ŝf

2(x) is
given by

ŝ2
boot xð Þ ¼

PB
b¼1

ŷb xð Þ � ŷboot xð Þ½ 
2

B� 1
: ð5Þ

[17] It is worthmentioning that when resorting to bootstrap
sampling, particularly on a small data set D, it is important
that all the B networks be well trained, in order to avoid that
some biased network components of the bootstrap ensemble
significantly affect the mean and variance of the estimate.
[18] In the bootstrap method of uncertainty analysis, the

total example set is divided into two sets: training sets and
validation sets. The validation set is kept aside, and random
bootstrapping with replacement is performed on the training
set in order to evaluate the variation in performance with
varying training sets. The ANN model is trained on the
bootstrapped training set (BTS) with fixed initial weights;
the remaining patterns in the training set apart from BTS are
employed for split sample validation so as to avoid any
over-fitting. Note that in order to perform the split sample
validation, it is required to keep track of the patterns being
picked during bootstrapping. After one such model is

Figure 1. Map of Kolar basin.
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trained, another training set is drawn from the pool using
bootstrapping, and the network is trained on the new BTS
using the same initial weights used earlier. A sufficiently
large number of networks are trained using this procedure
(300 in the current study). All the networks so developed
are evaluated on the validation set kept aside by computing
various performance indices.
[19] The variation in the weights of the network and the

output of the network over the whole trained network is a
measure of the uncertainty in the model parameters and
predictions, respectively, that are coming from the variation
in the training data set. Given a test input vector (x), a
prespecified prediction interval for output (y) is an interval
[L, U], such that P(L 
 y 
 U) = C, where C is typically
0.95 or 0.99, and the probability is computed over repeated
random selection of the calibration set and repeated obser-
vations of y, given the test input x.

4. Case Example

4.1. Study Area and Data

[20] In order to demonstrate the proposed method of
uncertainty analysis of ANN models, a case study on an
Indian River basin is presented herein. For the bulk of the
study, hourly data of rainfall and runoff from Kolar basin
(Figure 1) in India is used. An ANN model for forecasting
the river flow at 1-hour lead time has been developed in this
study and analyzed for uncertainty. Data are collected during
monsoon season (July, August, and September) for 3 years
(1987–1989). Note that areal average values of rainfall data
for three rain gauge stations have been used in the study. The
Kolar River is a tributary of the river Narmada that drains an
area about 1350 km2 before its confluence with Narmada
near Neelkant. In the present study the catchment area up to
the Satrana gauging site is considered, which constitutes an
area of 903.87 km2. The 75.3-km-long river course lies
between north latitude 21�090–23�170 and east longitude
77�010–77�290. More details on the basin are given byNayak
et al. [2005].

4.2. Modeling Exercise

[21] One of the most important steps in the ANN hydro-
logic model development process is the determination of
significant input variables [Bowden et al., 2004a, 2004b].

Generally some degree of a priori knowledge is used to
specify the initial set of candidate inputs [e.g.,Campolo et al.,
1999; Thirumalaiah and Deo, 2000]. However, the relation-
ship between the variables is not clearly known a priori, and
hence often an analytical technique, such as cross correlation,
is used [e.g., Sajikumar and Thandaveswara, 1999; Luk et
al., 2000; Silverman and Dracup, 2000; Sudheer et al.,
2002]. The major disadvantage associated with using cross
correlation is that it is only able to detect linear dependence
between two variables, while the modeled relationship may
be highly nonlinear. Nonetheless, the cross-correlation meth-
ods represent the most popular analytical techniques for
selecting appropriate inputs [Bowden et al., 2004a].
The current study used a statistical approach suggested by
Sudheer et al. [2002] to identify the appropriate input vector.
The method is based on the heuristic that the potential
influencing variables corresponding to different time lags
can be identified through statistical analysis of the data series
that uses cross correlations, autocorrelations, and partial
autocorrelations between the variables in question.
[22] In order to ensure good generalization ability by an

ANN model, a number of empirical relationships between
the number of training samples and the number of connec-
tion weights have been suggested in the literature [Maier
and Dandy, 2000]. However, network geometry is generally
highly problem dependent and these guidelines do not
ensure optimal network geometry, where optimality is
defined as the smallest network that adequately captures
the relationships in the calibration data (principle of parsi-
mony). In addition, there is quite a high variability in the
number of hidden nodes suggested by various rules. While
research is being conducted in this direction by scientists
working with ANNs, it may be noted that traditionally
optimal network geometries have been found by trial and
error [Maier and Dandy, 2000]. Consequently in the current
application the number of hidden neurons in the network,
which is responsible for capturing the dynamic and complex
relationship between various input and output variables,
was identified by various trials.
[23] The trial and error procedure started with two hidden

neurons initially, and the number of hidden neurons was
increased up to 10 with a step size of 1 in each trial. For
each set of hidden neurons, the network was trained in batch
mode (offline learning) to minimize the mean-square error
at the output layer. In order to check any over-fitting during
training, a split sample validation was performed by keeping
track of the efficiency of the fitted model. The procedure of
split sample validation is to check the performance of the
model on the split-sample validation set at every iteration of
the training, and suggest an early stopping when there is no

Table 1. Summary of Statistics of the Performance Measures for

300 Models

Performance Measures

Statistical Measures

Mean Median
Standard
Deviation

Coefficient of
Skewness

Root-mean-square error 58.222 58.258 8.838 �1.073
Coefficient of efficiency 0.902 0.905 0.027 0.232
Mean bias error �1.880 �1.93 0.600 0.731
Coefficient of correlation 0.957 0.961 0.013 �0.281

Figure 2. Artificial neural network (ANN)model structure.
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significant improvement in the model performance. Note
that while training the network using split sample valida-
tion, care has been taken to avoid any premature stopping of
the training. The parsimonious structure that resulted in
minimum error and maximum efficiency during training as
well as split sample validation was selected as the final form
of the ANN model.
[24] A sigmoid function is used as the activation function

in the hidden layer and a linear transfer function at the output
layer. As the sigmoid function has been used in the model, the
input-output variables have been scaled appropriately to fall
within the function limits using the range of the data. A
standard back propagation algorithm [Rumelhart et al., 1986]
has been employed to estimate the network parameters.
Adaptive learning and momentum rates [Nayak et al.,
2005] have been employed for the model training.
[25] On the basis of the methodology suggested by

Sudheer et al. [2002], the following inputs have been
identified for the ANN model: R(t-9), R(t-8), R(t-7), Q(t-2),
Q(t-1), where R(t) represents the rainfall and Q(t) represents
the runoff at any time period t. The output of the network was
considered as Q(t). From the total available data for 3 years,
6525 patterns (input-output pairs) were identified for the
study and were split into training (5500 sets) and validation
(1025 sets) data sets. Note that the 1025 sets considered for
validation were corresponding to a continuous hydrograph. A
single hidden layer is considered in the study based on
various research studies conducted on this basin [Nayak et
al., 2005; Chetan and Sudheer, 2006]. Out of the 5500
training examples, 4500 patterns were randomly bootstrap-
ped every time. The optimal number of hidden neurons was
found to be three by trial and error procedure. Note that the
number of hidden neurons was varied for only the first model,
and for the subsequent models the number was fixed as that
was found optimal for the first model so as to maintain
consistency. It should be noted that earlier studies using

bootstrap have revealed that variation in forecast due to
changes in structure or architecture are small in comparison
with those that arise from sample splitting [LeBaron and
Weigend, 1998]. Thus the uncertainty arising from the
architecture has not been considered in this study. In this
study a total of 300 networks have been trained for the
analysis.
[26] The ANN network structure in the present study is

shown in Figure 2. The following nomenclature is used to
represent the links in this paper: the link connecting I1 (input

Table 2. Summary Statistics of the Weights and Biases for 300

Models

Weight Mean SD Minimum Maximum

WI1H1 2.2606 6.8558 0.0400 51.8120
WI1H2 �1.4271 1.2574 �7.9018 0.5149
WI1H3 0.1696 0.2485 �0.3696 1.4233
WI2H1 0.1581 0.5680 �2.5079 7.9536
WI2H2 �0.6799 0.5564 �2.5378 0.5543
WI2H3 0.0775 0.2187 �1.1424 1.3929
WI3H1 0.5042 1.6997 �0.0382 23.1163
WI3H2 �1.2952 0.7605 �2.8182 0.5544
WI3H3 0.0714 0.2243 �0.3753 1.4606
WI4H1 �2.6998 9.6876 �74.4496 19.3496
WI4H2 31.8005 16.1115 �2.2918 59.9072
WI4H3 2.9275 4.0943 �1.2747 41.9548
WI5H1 5.1304 8.3442 �8.7833 73.1378
WI5H2 �26.9738 13.2200 �50.6115 3.8400
WI5H3 2.1293 4.0402 �30.9881 5.0820
B1 �6.9587 6.2993 �49.5073 �4.2341
B2 �2.0137 3.2215 �10.6204 3.1343
B3 �0.3610 2.4702 �14.6202 1.8279
WH1O1 23.2133 8.5931 0.7727 35.5384
WH2O1 3.3487 7.6715 0.5128 52.7662
WH3O1 8.2925 6.1327 1.1218 33.6254
B4 �9.6577 6.9008 �48.3798 �3.0453

Figure 3. ANN-computed flows for a typical event during
validation (mean of 300 simulations): (a) when hidden node
1 (H1) is put off, (b) when hidden node 2 (H2) is put off, and
(c) when hidden node 3 (H3) is put off.
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1) to H1 (hidden node 1) is WI1H1; I1 to H2 is WI1H2; I1 to H3

is WI1H3; and so on for other inputs. Links connected from
hidden node to the output node are designated as WH1O1 (H1

to O1), WH2O1 (H2 to O1), andWH3O1 (H3 to O1), and so on.

5. Results and Dicussions

[27] As discussed earlier, the uncertainty in parameter
estimation and the predictive uncertainty have been evalu-
ated for the ANN model developed for forecasting the river

flow for Kolar Basin at a lead time of 1 hour. The results of
the study are discussed in detail in the following sections.

5.1. ANN Models’ Performance

[28] The performance of the models (300 independent
models) has been evaluated using various statistical indices
such as root-mean-square error (RMSE), Nash-Sutcliffe
efficiency [Nash and Sutcliffe, 1970], and the coefficient
of correlation between the measured and computed flow
values. The summary statistics of the performance indices
across the 300 models are presented in Table 1. It is
observed that the variation of RMSE for most of the models
is not very significant. The RMSE statistic has a mean value
of 58.22 m3/s with a standard deviation of 8.84 m3/s. It is
noted that 90% of the models produce an RMSE within a
band of ±5% around the mean value, suggesting that the
impact of training samples does not have a significant effect
on the model predictions. It is found that most of the models
forecast the flows with a correlation (between computed and
measured flow) varying from 0.94 to 0.96. A similar
behavior is observed in the case of efficiency statistic.
The models possess efficiency with a mean value of 90%,
which according to Shamseldin [1997] is very satisfactory.
The deviation of efficiency from mean value is only to the
tune of ±5%. In addition, the mean value of the mean bias
error is �1.88 and standard deviation is 0.6, which is also
very satisfactory. Overall, the results indicate that the
variation in training patterns do not have a significant effect
on the overall model performance.

5.2. Uncertainty in Model Parameters

[29] The network architecture being 5-3-1 (Figure 2), the
model has 22 parameters including the bias terms. A
summary of statistics of the variation of all the 22 param-
eters are presented in Table 2. It can be noted from Table 2
that some of the input-hidden weights (WI1H3, WI2H3,
WI3H3) do not have much variation as their range is very
small (fewer than three units). It is interesting to note that all
these weights are connections from rainfall information,
where as the connections from discharge nodes (WI4H1,
WI5H1, WI4H2, WI5H2, WI4H3, WI5H3) have high variation
and large values as is evident from Table 2. It is also
observed that the weight pairs (WI4H1, WI5H1), (WI4H2,
WI5H2), and (WI4H3, WI5H3) are strongly correlated to
each other with a correlation coefficient of �0.989, �0.989,
and �0.793, respectively. However, it is to be noted that the
strength of the relationship between the weights from
rainfall inputs and weights from flow inputs is found to
be weak. Hence flow inputs are much more significant in
generating the predictions compared with the rainfall
inputs and therefore flow inputs require larger weights
(see Table 2).
[30] It is noted from Table 2 that the mean value of

weight connection between first hidden node and the output
is relatively high (23.21 units) compared to the weights
from other hidden nodes, indicating that the response from
first hidden node plays a major role in the model output.
However, this behavior may also be due to over-parametri-
zation of the network since we employed linear transfer
function at the output node and the ANN may be trying to
overcome this over-parameterization by saturating the hid-
den node. In order to confirm the reason behind this
behavior of the first hidden node, an empirical trial was

Figure 4. ANN-computed flows for a typical event during
validation (mean of 300 simulations): (a) when bias
parameter on hidden node 1 (H1) is put off, (b) when bias
parameter on hidden node 2 (H2) is put off, and (c) when
bias parameter on hidden node 3 (H3) is put off.
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conducted by putting off the individual hidden nodes (one at
a time) during the validation phase. The resulting hydro-
graph during this experiment are presented in Figures 3a
through 3c. Note that the mean value of the predicted flows
from 300 networks is presented in Figure 3. It is evident
from Figure 3a that the response of the first hidden node is
highly significant in effective prediction of the flows. A
similar pattern is observed in the predicted values of flow
when the third hidden node is put off (Figure 3c). It may be
noted that the value of weight connection between third
hidden node and the output is relatively lesser compared
wtih that of first hidden node (Table 2). Hence it can be
concluded that the higher value of weights for first hidden
node may not be resulting from saturation problem. The
results presented in Figure 3b indicate that the response
from second hidden node mainly affects the rising limb of
the flood hydrograph.
[31] In order to assess the sensitivity of the bias parameter

associated with each of the hidden node, a similar experi-
ment was conducted by putting off each of them indepen-
dently while validating the model. The results are presented
in Figures 4a–4c, from which it is evident that the bias
parameter at first hidden node (B1) is highly sensitive in
computing the output effectively, compared with the other
two. This result also reinforces the earlier inferences that
first hidden node is more sensitive in the flow prediction.
[32] The probability distribution of each of the model

parameters is identified, and the parameters of the
corresponding distribution are presented in Table 3 for all
the 22 model parameters. The distribution parameters pre-
sented in Table 3 are quantified using the Best Fit program
(Palisades Corp., Ithaca, New York), which considers 28
different distributions to the data, and ranks them according
to a specified criterion. The parameters of the probability

distributions are estimated using maximum-likelihood esti-
mator [Haan, 2002]. The chi-square goodness of fit test was
performed to evaluate and rank the distributions that best
described the data. It can be observed from Table 3 that the
weights and bias parameters follow different probability
distribution, indicating that an assumption about prior
probability distribution of the ANN model parameters is
difficult. Hence predictions based on methods that uses
Bayesian approach for uncertainty analysis (e.g., GLUE,
Bayesian neural network, etc.) will lead to biased output,
since these methods rely mostly on the a priori assumption
about the distribution of model parameters. The distribution
of optimized weights and bias (selected) are presented in
Figure 5 for demonstration. Note that the distribution for
other parameters is not presented here for brevity. It is noted
that six of the model parameters (WI2H1, WI2H3, WI3H1,
WI3H2, WI4H3, WI5H1) follow ‘‘log logistic distribution’’
but with varying shape and location parameters. Similarly
for those parameters which follow ‘‘logistic distribution’’
(WI1H2, WI5H3, B1, B3, WH1O1), it is observed that the
mean and variance of the distribution do not follow any
specific order. These results suggest that any a priori
assumption about the model parameters’ distribution will
lead to additional uncertainty in the model output.

5.3. Uncertainty in Model Predictions

[33] The variations in model predictions by the 300
models are presented using box plot for two typical flood
events in the validation data set in Figures 6 and 7,
respectively. It can be observed that the base flow portion
of the hydrograph is well forecasted by the models irre-
spective of the variation in training samples. This may be
due to more example data present in the each training set in
the low flow range. It is clear from these figures that ANN
models do fail to preserve the peak flow characteristics of
the hydrograph. However, the trend of variation in the flow
hydrograph is well preserved by the models, which is
evident from Figure 8, which depicts a series of continuous
events. It is observed that the rising limb of the flow
hydrograph is most of the time underestimated by the
models, while the falling limb is mostly overestimated.

5.4. Uncertainty in High-Flow Predictions

[34] It has been reported by many researchers that ANN
models fail to capture the peak flows in a hydrograph [Imrie
et al., 2000; Sudheer et al., 2002]. This observation is
confirmed in the current study by analyzing the high flow
prediction uncertainty by the ANN models. To analyze the
uncertainty in the high flow predictions (hereinafter high
flows are defined as Q � m + 2s), frequency plots of a few
typical high flow values are shown in Figures 9–12. It is
noted that the models fail to compute any of the high flow,
except for a few. It is worth mentioning that the actual value
of the high flow does not fall in the prediction confidence
interval for the model. While the reason for such behavior
of ANN is not clearly known, it can be attributed to a lower
number of examples available in the high flow domain for
capturing the nonlinear dynamics. It may be noted that only
5% of the total training examples were in the high flow
domain as defined earlier. It may also be plausibly due to
inaccurate representation of the state of saturation by the
input vectors as envisaged by Campolo et al. [1999]. It may

Table 3. Parameters of Probability Distribution of Weights and

Biases Obtained From 300 ANN Modelsa

ANN Parameters
Best Describing
Distribution

Parameters of the
Distribution

WI1H1 Pearson5 0.8612, 0.1207
WI1H2 logistic �1.2538, 0.5635
WI1H3 extreme value 0.0625, 0.1763
WI2H1 log logistic �6.5902, 6.7340, 54.9310
WI2H2 Weibull 6.2909, 3.2272
WI2H3 log logistic �8.3324, 8.4019, 88.4230
WI3H1 log logistic �0.0503, 0.3360, 4.4742
WI3H2 log logistic �3.6077, 2.1983, 5.1720
WI3H3 lognormal 0.9071, 0.2252
WI4H1 Weibull 86.7450, 585.2700
WI4H2 triangular �9.6057, 50.7620, 60.2570
WI4H3 log logistic �1.4920, 3.4224, 2.9183
WI5H1 log logistic �10.8300, 14.2550, 8.1444
WI5H2 triangular �50.8980, �41.3680, 8.8260
WI5H3 logistic 2.8222, 1.2648
B1 logistic �5.5831, 1.9065
B2 normal �2.0137, 3.2215
B3 logistic 0.06969, 0.9251
WH1O1 logistic 24.5201, 4.2732
WH2O1 Pearson5 0.8463, 0.1958
WH3O1 inverse Gaussian 7.8405, 9.0398
B4 beta general 5.2362, 0.6417, �63.3200, �3.0453

aThe parameters of the distribution are presented in the order of their
appearance in the equation describing the distribution available in any
standard text book [e.g., Haan, 2002].
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Figure 5. Empirical probability distribution of selected parameters of the network.
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be noted that the current study did not consider the
uncertainty associated with selection of inputs.
[35] It is interesting to note that the empirical distribution

of peak flow predictions corresponding to 1663, 1930, and
2028 m3/s are observed to be bimodal in nature. This
behavior of the predictions can be attributed to the random
sampling employed during bootstrapping of training patters;
it is possible that the bootstrapped subset for some of the
networks (out of 300) might not have selected these peak
flows. Since ANN is not good in extrapolation [Minns and
Hall, 1996], the predicted peak may be less than the actual.
This observation suggests scope for further studies related
to analysis of uncertainty of ANN using conditional boot-
strapping.

5.5. Impact of Initial Guess of Parameters

[36] In order to measure the effect of assumed initial
values on the model’s performance an analysis has been

conducted by changing the initial guess of weights and
biases and the model’s predictive uncertainty has been
evaluated. During this analysis, six sets of initial values
have been assigned during the training of ANN, and 300
networks have been trained using each of the initial guesses
through bootstrapping of the training patterns. Note that the
bootstrapped training samples were kept same for each of
the initial guesses in order to have a true comparison of the
models’ performance. The prediction characteristics of the
models in terms of the mean of the 300 network outputs for
this analysis are presented in Figure 13 (for one typical
hydrograph in the validation data set). Note that the hydro-
graph presented in Figure 13 is the ensemble mean of 300
network outputs. It is observed that the initial values of the
parameters do not significantly affect the models’ perfor-
mance in low flow periods. Though the mean predictions

Figure 7. Box plot of predicted discharges from 300
model simulations for a typical flood event (single peak
event 2) during validation.

Figure 9. Uncertainty in high flow predictions for actual
flow rate of 570 m3/s.

Figure 6. Box plot of predicted discharges from 300 model
simulations for a typical flood event (single peak event 1)
during validation.

Figure 8. Box plot of predicted discharges from 300
model simulations for a typical continuous flood event
(multiple peak events) during validation.
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are slightly different during the flood, it is observed that the
deviation is larger only in the rising limb. It may also be
noted that some of the predictions with different initial
guesses coincide, indicating that the predictions are not
significantly biased by the initial guesses. However, it is
to be noted that the range of predictions within 300 net-
works (inferred from box plots) with different initial guesses
are found to be the same. Note that the box plot is not
presented here for brevity.

6. Summary and Conclusions

[37] This paper presents a method to conduct uncertainty
analysis for ANN hydrologic models. The method, which is
based on bootstrap technique, is demonstrated by a real
world case study of Kolar basin in India. The analysis of
results illustrate that the proposed method of uncertainty

analysis of ANN models is very effective. The results of the
case study suggest that the sampling variability does not
significantly affect the performance in the case of ANN
model developed for the Kolar basin. It is worth mentioning
that despite good generalization properties for all the 300
models developed, the models fail to capture the peak flow
characteristics of the hydrograph. This observation is sig-
nificant, as in a flood forecasting context accurate estima-
tion of peak flow is very important. The results also suggest
that the performance evaluation solely based on global
statistical indices such as RMSE, efficiency, etc., which is
being practiced currently, does not provide good confidence
in model’s use. The study also suggests the requirement of a
good performance indicator that can be used for evaluating
ANN models’ applicability for practical use. Note that the
proposed method evaluates the uncertainty associated with
sampling variation of training patterns only. It should be
noted that in the current study, the model architecture has

Figure 11. Uncertainty in high flow predictions for actual
flow rate of 1930 m3/s.

Figure 12. Uncertainty in high flow predictions for actual
flow rate of 2028 m3/s.

Figure 13. Predicted discharge (mean of 300 simulations)
by ANN model with varying initial values of parameters
during training.

Figure 10. Uncertainty in high flow predictions for actual
flow rate of 1663 m3/s.
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been considered to be deterministic. Also, the input variables
have been fixed initially before the uncertainty analysis.
Hence more rigorous studies are required to accommodate
the uncertainties associated with model architecture and input
selection.
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