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Abstract

The development and the application of the scaled boundary finite element method for fracture analysis is reviewed.

In this method, polygonal elements (referred to as subdomains) of arbitrary number of edges are constructed, with

the only limitation that the whole boundary is directly visible from the scaling centre. The element solution is semi-

analytical. When applied to two-dimensional linear fracture mechanics, any kinds of stress singularities are represented

analytically without local refinement, special elements and enrichment functions. The flexibility of polygonal elements

in geometric shape leads to simple yet efficient remeshing algorithms to model crack propagation. Coupling procedures

with the extended finite element method, meshless method and boundary element method to handle changes in the

crack morphology have been established. These developments result in an efficient framework for fracture modelling.

Examples of applications are provided to demonstrate their feasibility.

Keywords: crack propagation; interface crack; scaled boundary finite element method; stress intensity factors;

T -stress

1. Introduction

Within the framework of linear elasticity, stress singularities exist at crack tips, V-notches, re-entrant corners and

free edges formed by dissimilar materials [1, 2, 3, 4]. The best known case of stress singularity is a crack in a homoge-

neous isotropic body. The asymptotic analytical solution reported in the literature [1, 5] illustrates the proportionality

of the stress to r−
1
2 (square-root singularity), where r is the distance measured from the crack tip. When the crack

is on the interface between two dissimilar materials, the stress singularities are of the order r−
1
2+iε [6, 7, 8], where

i =
√
−1 is the imaginary unit and ε is an oscillatory index depending on the ratio of the material properties. Two

of the important parameters that describe the state of stress within the framework of two-dimensional linear elastic

fracture mechanics are the mode I and mode II stress intensity factors, KI and KII . In case of interface cracks, the two

stress intensity factors are always coupled and often expressed as KI + iKII [9, 10]. When the two dissimilar materials

are isotropic, the singular stress field depends on three parameters: KI , KII and ε . Furthermore, when the materials are

anisotropic [11, 12], two additional parameters are needed to describe the singular stress field. V-notches, free edges,
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re-entrant corners and other two dimensional problems of stress singularities can be regarded as particular configura-

tions of a multi-material corner. The asymptotic solution of the singular stress field at a multi-material corner is very

complex [13, 14], and more than two singular stress modes may exist. Hence, an accurate and efficient modeling of

singular stress fields is necessary for the application of linear elastic fracture mechanics to engineering analysis and

design.

The finite element method has evolved to be a robust and industry-accepted numerical method for engineering anal-

ysis and design. However, the presence of singularities poses challenges. Adding to the complexity of computational

fracture modelling is the problem of crack propagation. This is because the finite element method:

• employs polynomial-based interpolation functions that do not resemble the singular stress field.

• requires a conforming mesh topology. As a result, the mesh needs to be updated to account for the changing

crack morphology.

• requires additional post-processing techniques to extract the stress intensity factors [2, 15].

The aforementioned difficulties can be circumvented by improving the approximation capability of the finite element

method. For example, the singular stress field is modelled by refining the mesh in the vicinity of the cracks or by using

special types of elements, such as quarter-point elements [16, 17]. In case of quarter-point elements, the singularity

is captured by the virtue of the location of the mid-side node with respect to the crack tip. A conforming mesh is

handled using sophisticated remeshing algorithms e.g. [18, 19, 20, 21]. The sophistication involved is related to the

requirement of a fine mesh or the use of special elements in the vicinity of the crack tip so that the singular stress

field in the locality can be accurately determined. The restriction of the finite element library, which consists of only

triangular and quadrilateral elements (in two dimensions), also contributes to the complexity in developing remeshing

algorithms. From the perspective of computational effort, the use of remeshing algorithms coupled with the need of

a fine mesh in the vicinity of the crack tip is not efficient as they together consume the bulk of the computational

time in crack propagation simulations. The fracture parameters are computed by employing special techniques such as

path-independent integrals [22, 23], virtual crack closure technique [24], hybrid-element approach [25, 26, 27], Irwin’s

crack closure integral [28], to name a few. Tracey [29] and Atluri et al. [30] proposed a hybrid formulation that has

an inverse square-root singularity near the crack tip. The salient feature of this approach is that it does not require

additional post-processing techniques to estimate the stress intensity factors. Although, the above approaches are

considered to be major milestones in applying the finite element method to linear elastic fracture mechanics, they still

require a conforming mesh (which could be tedious in case of cracks in three dimensions, or when there are multiple

cracks even in two dimensions). Moreover, the interaction integrals have to be specifically formulated when applied to

different types of materials e.g. functionally graded materials [31, 23].

In a continued effort to alleviate the limitations of the finite element method, several techniques have been pro-

posed, such as the meshfree method [32, 33, 34, 35] and the extended finite element method [36, 37, 38]. The meshfree

method, as the name suggests, does not require a pre-defined mesh topology. This makes it attractive to handle crack

morphology changes when the crack propagates. This is accomplished by adding a new pair of nodes to represent the
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newly formed crack surfaces as the crack propagates. On another related front, the extended finite element method

represents the discontinuities, such as cracks or material interfaces, implicitly. This is done by augmenting the con-

ventional finite element approximation basis with a priori known functions that can capture the local behaviour. For

example, a Heaviside function is used to represent the jump across the crack face and asymptotic functions are incor-

porated to capture the singular field in the vicinity of the crack tip. The salient feature is that it does not require special

elements (e.g., quarter-point elements) or mesh adaptation techniques to represent stress singularities and surface dis-

continuities. Both the meshfree method and the extended finite element method have a common goal, ie., reducing the

meshing burden in computational mechanics. Of particular interest is the extended finite element method, because it

is built on the finite element framework and could be combined with any existing finite element codes. The extended

finite element method has already been implemented in commercial software such as Abaqus and Ansys. The fracture

parameters are computed by either using path-independent integrals or by Irwin’s crack closure technique. Xiao and

Karihaloo [25, 27, 39] employed a hybrid technique within the framework of the extended finite element method, thus

facilitating the computation of stress intensity factors without additional post-processing. The success of the extended

finite element method, however, relies on the a priori knowledge of the functions that augment the finite element basis,

so that the enriched approximation can capture the local behaviour accurately. Many fracture problems have been suc-

cessfully modelled by both the meshfree method and the extended finite element method [40, 41, 42]. Despite their suc-

cess in eliminating the need for remeshing, both the extended finite element method and the meshfree method introduce

other numerical difficulties in fracture simulations such as the need for special integration techniques in the enriched

regions in the extended finite element method; imposition of essential boundary conditions [32, 43] and inaccuracies

in defining the crack geometry [33, 34] in the meshfree method. Many techniques have been proposed to address these

difficulties such as the use of level sets in conjunction with the meshfree method [44]. Various techniques to resolve the

integration of the stiffness matrix of enriched elements in the extended finite element method were discussed in detail

by Richardson et al. [45]. The above mentioned techniques can be classified as domain based approach. An alternative

to this is the boundary based approach, viz., the boundary element method [46] and the symmetric Galerkin boundary

element method [47, 48]. The boundary element method reduces the computational complexity of the problem by

reducing the spatial dimensions by one, because only the boundary needs to be discretised. However, it requires the

existence of Green’s function in order to formulate a solution.

Another major milestone is the introduction of the scaled boundary finite element method [49, 50]. This semi-

analytical approach combines the best features of the domain based approaches such as the finite element method and

the boundary based approaches such as the boundary element method. It reduces the spatial dimensions of the problem

by one as in the boundary element method and like the finite element method, it does not require the knowledge of

Green’s function. The method relies on the definition of a new coordinate system, referred to as “the scaled bound-

ary coordinate system”, that decomposes the usual Cartesian definition into a radial-circumferential-like coordinate

system. The boundary (i.e., in the circumferential direction) of the domain is discretised with finite elements, thus

facilitating the computation of the angular variation of the unknown fields. The stress singularity along the radial di-

rection emanating from the singular point is represented analytically. This automatically leads to accurate solutions
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without local mesh refinement around the crack tip or other stress singularity points. Furthermore, no enrichment or

analytical asymptotic expansion is required.

A definition of generalised stress intensity factors at a multi-material corner is proposed in Song et al. [51] based

on the semi-analytical solution of singular stress fields obtained from the scaled boundary finite element method. It is

consistent with the definitions of the classical stress intensity factors at crack tips and valid for all types of singularities.

The generalised stress intensity factors can be determined directly from the scaled boundary finite element solution by

following a standard stress recovery procedure. This method has also been extended to model piezoelectric materials

[52, 53, 54]. The semi-analytical solution of stress field is convenient to use in the finite fracture mechanics [55].

Further improvements of the computed stress field can be achieved using error estimators such as the super-convergent

patch recovery technique [56]. The fracture parameters, such as the stress intensity factors, T -stress and the coefficients

of higher order terms are extracted directly based on their definitions [57, 12]. The scaled boundary finite element

method can handle any configurations of multi-material corners. Since its inception, it has been applied to evaluate the

free-edge stresses around holes in laminates [4], to compute the orders of singularity and stress intensity factors for

multi-material plates under static loading and dynamic loading [58], and to predict the directions of cracks emerging

from notches at bimaterial junctions [59]. Moreover, power-logarithmic singularities and the transition between the

power and the power-logarithmic singularities can be represented by a stable algorithm [12]. These advantages are also

preserved when applied to three-dimensional fracture problems. Recent published literature on the three-dimensional

fracture analysis with the scaled boundary finite element method include homogeneous and interface cracks [60, 61,

62], composite laminates [63, 64, 65] and piezoelectric materials [66].

The scaled boundary finite element method only requires a subdomain (having the same role as an element in the

finite element method) to satisfy the scaling requirement (i.e. the whole boundary is directly visible from a point) in

the discretisation process. There is no restriction on the number of sides a subdomain can have. As a result, it can

be formulated on polygonal elements of arbitrary number of edges, leading to a high degree of flexibility in mesh

generation and remeshing. This feature, together with accurate semi-analytical solutions of stress singularities without

local mesh refinement, greatly simplifies the simulation of crack propagation. A crack propagation modelling approach

using the scaled boundary finite element method was first attempted by Yang [67] using large sized subdomains. The

principles underlying the methodology have been extended to model nonlinear cohesive fracture in concrete [68, 69,

70, 71, 72] and dynamic fracture [73, 74].

The scaled boundary finite element method can be seamlessly coupled with the meshfree method [75, 76], the

boundary element method [77, 78], the finite element method [79, 80, 81] and the extended finite element method

[82, 83]. The principle underlying these approaches is to adopt the scaled boundary subdomains to discretise only the

crack tips and the local regions in their vicinity. The remainder of the domain is discretised using the other methods

of choice. When coupled with the finite element method, a simple remeshing algorithm that involves duplicating and

readjusting the positions of nodes is applied to a background finite element mesh to propagate the crack. When coupled

with the extended finite element method, level sets are used to update the crack trajectory. Complex crack propagation

problems such as those in reinforced concrete [80] can be modelled.
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Further improvements in terms of fully automating the modelling of crack propagation can be achieved using

polygonal elements with arbitrary number of sides [84]. More recently, a hybrid approach which combines the use of

polygon meshes with quadtree meshes proposed by Ooi et al. [85] further improves the computational efficiency of the

scaled boundary finite element method for crack propagation modelling by exploiting the small number of patterns in

the quadtree mesh.

This paper reviews the literature on the developments and the applications of the scaled boundary finite element

method to linear elastic fracture mechanics. The paper is organised as follows: Section 2 presents an overview of the

scaled boundary finite element method with particular emphasis on the concept of the scaled boundary finite element

method when applied to linear elastic fracture mechanics problems. Section 3 briefly reviews the various approaches

in which the scaled boundary finite element method is coupled with existing numerical methods in the literature with a

focus on the more recent development that combines the extended finite element method and the scaled boundary finite

element method. The application of the scaled boundary finite element method to stationary cracks and the accuracy

of the method in determining the fracture parameters for various crack configurations, involving interface cracks, V-

notches, etc. are presented in Section 4. Section 5 discusses the modelling strategy for crack propagation with a focus

on the more recent developments that include the quadtree and polygonal meshes and also the combination with the

extended finite element method. Examples of crack propagation are presented in Section 6. The major conclusions of

the review are summarised in the last section.

2. Modelling of singular stress field by the scaled boundary finite element method

The theoretical formulation of the scaled boundary finite element method is detailed in Song and Wolf [49] and

[86]. The applications to fracture analysis is covered in [51]. In this section, only key concepts of the scaled boundary

finite element method are described.

2.1. Concept of scaled boundary finite element method

The construction of a polygonal element, referred to as a subdomain in the scaled boundary finite element method,

is depicted in Fig. 1. The geometry of a subdomain must satisfy the scaling requirement, i.e. the whole boundary is

directly visible from a point selected as the scaling centre O.

The boundary of the subdomain is divided into line elements (Fig. 1 with nodes shown as solid dots). The nodal

coordinates are arranged in {xb}, {yb}. The geometry of an element is interpolated using the conventional finite element

shape functions [N(η)] formulated in the local coordinate η . The subdomain is described by scaling the boundary with

the dimensionless radial coordinate ξ pointing from the scaling center O (ξ = 0) to a point on the boundary (ξ = 1).

The scaling of the boundary with a value of ξ < 1 is shown in Fig. 1 by the thin line. A point (x, y) inside the domain

is expressed, by scaling a point (xb, yb) on the boundary, as

x(ξ ,η) = ξ xb(η) = ξ [N(η)]{xb} (1a)

y(ξ ,η) = ξ yb(η) = ξ [N(η)]{yb} (1b)
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Figure 1: Scaled boundary finite element modeling of a polygonal subdomain
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Figure 2: Modelling of stress fields around singularity points. The scaling center is chosen at a singularity point. (a) Interface crack. (b) Multi-

material corner

The coordinates ξ , η are called the scaled boundary coordinates. The material in an area covered by scaling a boundary

element (e.g. shaded area in Fig. 1) assumes the property of the element.

This approach is directly applicable to the modelling of singular stress fields. An interface crack and a multi-

material wedge are shown in Fig. 2 as examples. Only the subdomains around the singularity points are considered.

To model one subdomain, a scaling center O is selected at the singularity point. The part of boundary directly visible

from the scaling center is discretised. For an ideal crack with zero thickness, two independent overlapping nodes (one

for the upper crack face and the other for the lower crack face) are defined on the boundary. The crack faces and

material interfaces are not discretised with any elements. They are represented by scaling the corresponding nodes on

the boundary. This also implies that the crack faces and material interfaces must be straight lines. This requirement

can always be satisfied to a given accuracy by applying the substructuring technique.

The scaled boundary coordinates in two dimensions resemble the polar coordinates r and θ . The polar coordinates
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in Fig. 2 are expressed using Eq. (1) as

r(ξ ,η) = ξ rb(η) = ξ

√
x2

b(η)+ y2
b(η) (2a)

θ(η) = arctan
yb(η)

xb(η)
(2b)

where rb(η) is the radial coordinate on the boundary. The angle θ depends on η only. As the whole boundary is visible

from the scaling center, θ(η) is a single-valued function in its principal value (−π < θ ≤ π). The element number and

the local coordinate η can be regarded as a discrete representation of the angle θ .

Along radial lines passing through the scaling center O and a node on the boundary, the nodal displacement func-

tions {u(ξ )} are introduced. The nodal displacements on the boundary follow as {u} = {u(ξ = 1)}. Isoparametric

finite elements are used in the circumferential direction to interpolate the displacement functions piecewisely

{u(ξ ,η)}= [Nu(η)]{u(ξ )}= [N1(η)[I], N2(η)[I], . . .]{u(ξ )} (3)

where [I] is a 2×2 identity matrix. The stresses are expressed as (“,” denotes derivative)

{σ(ξ ,η)}= [D]
(
[B1(η)]{u(ξ )},ξ +[B2(η)]{u(ξ )}/ξ

)
(4)

where [B1(η)] and [B2(η)] describe the strain-displacement relationship [49, 12].

After expressing the governing differential equations in the scaled boundary coordinates, Galerkin’s weighted resid-

ual method [49] or the principle of virtual work [87] can be applied in the circumferential direction η . The scaled

boundary finite element equation in displacement is expressed as

[E0]ξ 2{u(ξ )},ξ ξ +([E0]− [E1]+ [E1]T )ξ{u(ξ )},ξ −[E2]{u(ξ )}= 0 (5)

The coefficient matrices [E0], [E1] and [E2] are assembled from the element coefficient matrices [49], which are similar

to the static stiffness matrices of 1D finite elements. The calculation and assemblage follow those in the standard finite

element method.

The internal nodal forces along radial lines are equal to [49]

{q(ξ )}= [E0]ξ{u(ξ )},ξ +[E1]T{u(ξ )} (6)

2.2. Solution of displacements and stresses

The scaled boundary finite element equation in Eq. (5) is rewritten as a system of first-order ordinary differential

equations

ξ

 {u(ξ )}{q(ξ )}


,ξ

=−[Z]

 {u(ξ )}{q(ξ )}

 (7)

with the Hamiltonian coefficient matrix

[Z] =

 [E0]−1[E1]T −[E0]−1

−[E2]+ [E1][E0]−1[E1]T −[E1][E0]−1

 (8)

7



which has pairs of eigenvalues λi and −λi. Equation (7) is decoupled by the block-diagonal Schur decomposition [88]

of the matrix [Z]

[Z][Ψ] = [Ψ][S] (9)

where [Ψ] is a transformation matrix with independent column vectors. The matrix [S] is block diagonal. Each of the

diagonal blocks is in real Schur form (i.e., a quasi-upper triangular matrix consisting of 2×2 blocks on the diagonal,

corresponding to complex conjugate eigenvalues, or 1× 1 blocks, corresponding to real eigenvalues). The matrix [S]

is sorted in ascending order of the real parts of its eigenvalues (i.e. diagonal entries). The matrices [S] and [Ψ] are

partitioned conformably into, respectively, 2N−1 and 2N block matrices

[S] = diag

[S1] . . . [SN−1]

0 [I]

0 0

 [SN+2] . . . [S2N ]

 (10)

[Ψ] =

 [Ψ(u)
1 ] · · · [Ψ(u)

N−1] [Ψ(u)
N ] [Ψ(u)

N+1] [Ψ(u)
N+2] · · · [Ψ(u)

2N ]

[Ψ
(q)
1 ] · · · [Ψ

(q)
N−1] [Ψ

(q)
N ] [Ψ

(q)
N+1] [Ψ

(q)
N+2] · · · [Ψ

(q)
2N ]

 (11)

The eigenvalues of the diagonal blocks of [S] are disjoint and satisfy

λ ([Si]) =−λ ([S2N+1−i]) (12)

It is worthwhile to note that the better known eigenvalue decomposition is a special case of the block-diagonal Schur

decomposition where the size of all diagonal blocks is 1×1 (i.e., [Si] is a single eigenvalue and [Ψi] is the corresponding

eigenvector). The block-diagonal Schur decomposition is numerically robust, while the eigenvalue decomposition

breaks down when a power-logarithmic singularity exists.

The solution satisfying the finiteness of displacements at the scaling center (ξ = 0) is expressed as

{u(ξ )}=
N−1

∑
i=1

[Ψ(u)
i ]ξ−[Si]{ci}+[Ψ(u)

N ]{cN} (13)

where {ci} are integration constants, and [Ψ(u)
N ] represents the two modes of translational rigid body motion. Substitut-

ing Eq. (13) into Eq. (4) yields the stresses at a specified local coordinate η within a given element

{σ(ξ ,η)}=
N−1

∑
i=1

[Ψσ i(η)]ξ−[Si]−[I]{ci} (14)

where [Ψσ i(η)] represents the stress modes corresponding to the displacement modes [Ψ(u)
i ]

[Ψσ i(η)] = [D]
(
−[B1(η)][Ψ(u)

i ][Si]+ [B2(η)][Ψ(u)
i ]
)

(15)

The stress modes and the stresses are evaluated element-by-element at the Gauss points. For convenience in fracture

analysis, the stress modes are transformed to polar coordinates r, θ (Fig. 2) using Eq. (2).

2.3. Definition and evaluation of generalised stress intensity factors

The solution of the stress field in Eq. (14) is a power series, similar to the asymptotic solution [1]. When the

real parts of the eigenvalues of a diagonal block [Si] are between 0 and −1, the matrix power function ξ−[Si]−[I] is
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singular at ξ = 0. In the following, all such diagonal blocks are grouped into one block denoted as [S(s)] (superscript

(s) for singular) and−1 < λ ([S(s)])< 0 applies. The corresponding stress modes are denoted as [Ψ(s)]. The integration

constants are denoted as {c(s)}. The singular stress field is separated from the solution in Eq. (14) and expressed as

{σ (s)(ξ ,η)}= [Ψ(s)(η)]ξ−[S
(s)]−[I]{c(s)} (16)

Introducing a characteristic length L, ξ is expressed in the polar coordinates r and θ (Eq. (2)) as

ξ =
r

rb(θ)
=

L
rb(θ)

× r
L

(17)

where rb(θ) is the distance from the scaling centre to the boundary along the radial line at angle θ (Fig. 2b). The

matrix power function of ξ is rewritten in the polar coordinates as [51]

ξ
−[S(s)]−[I] =

(
L

rb(θ)

)−[S(s)]−[I]( r
L

)−[S(s)]−[I]
(18)

To avoid proliferation of notations, the same function σ (s) is used to express singular stresses in polar coordinates. The

singular stress field in Eq. (16) is expressed as

{σ (s)(r,θ)}= [Ψ
(s)
L (θ)]

( r
L

)−[S(s)]−[I]
{c(s)} (19)

where the stress modes at the characteristic length L are expressed as

[Ψ
(s)
L (θ)] = [Ψ(s)(η(θ))]

(
L

rb(θ)

)−[S(s)]−[I]
(20)

which is a linear transformation applied to the stress modes [Ψ(s)(η)] (for a given element, η and θ are related by a

single-valued function in Eq. (2b)).

The case of two singular stress modes, i.e. [S(s)] is a 2× 2 matrix, is considered. {c(s)} in Eq. (19) consists

of two integration constants. Following the classical definition, two stress intensity factors are defined using the

two stress components σ
(s)
θ

(r,θ) and τ
(s)
rθ
(r,θ). Equation (19) still holds with the understanding that {σ (s)(r,θ)} =

[σ
(s)
θ

(r,θ), τ
(s)
rθ
(r,θ)]T applies and [Ψ

(s)
L (θ)] becomes a 2× 2 matrix with only the entries corresponding to σ

(s)
θ

(r,θ)

and τ
(s)
rθ
(r,θ) retained. Equation (19) is further simplified by introducing a matrix of orders of singularity

[S̃(s)(θ)] = [Ψ
(s)
L (θ)]([S(s)]+ [I])[Ψ(s)

L (θ)]−1 (21)

Using Eq. (21), Eq. (19) is written as σ
(s)
θ

(r,θ)

τ
(s)
rθ
(r,θ)

=
( r

L

)−[S̃(s)(θ)]
[Ψ

(s)
L (θ)]{c(s)} (22)

The generalised stress intensity factors {K(θ)}= [KI(θ), KII(θ)]
T at angle θ are defined in σ

(s)
θ

(r,θ)

τ
(s)
rθ
(r,θ)

=
1√
2πL

( r
L

)−[S̃(s)(θ)] KI(θ)

KII(θ)

 (23)
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Comparing Eq. (23) to Eq. (22), the generalised stress intensity factors can be evaluated directly from the singular

stress modes by  KI(θ)

KII(θ)

=
√

2πL[Ψ(s)
L (θ)]{c(s)} (24)

The generalised stress intensity factors can be easily evaluated by using Eq. (24) at any given angle θ , which is useful in

determining the direction of crack propagation. The evaluation procedure is the same as the stress recovery procedures

in standard finite elements. This technique is extended to define the stress and electric displacement intensity factors

of cracks in piezoelectric materials [53]

It is shown in [51] that the definition in Eq. (23) includes the classical definitions of stress intensity factors as

special cases. Since the solution of the singular stress field (Eq. (22)) has two integration constants, two generalised

stress intensity factors are sufficient to fully define the singular stress field. It is customary to choose the stress intensity

factors at angle θ = 0. The generalised stress intensity factors KI = KI(0) and KII = KII(0) are defined by formulating

Eq. (24) at θ = 0  σ
(s)
θ

(r,0)

τ
(s)
rθ
(r,0)

=
1√
2πL

( r
L

)−[S̃(s)(0)] KI

KII

 (25)

The following two cases of classical definitions of the stress intensity factors are addressed:

1. Crack in a homogeneous material. The matrix of orders of singularity is equal to

[S̃(s)(0)] = 0.5[I] (26)

Substituting Eq. (26) into the definition of the generalised stress intensity factors in Eq. (25) leads the classical

definition  σ
(s)
θ

(r,0)

τ
(s)
rθ
(r,0)

=
1√
2πL

( r
L

)−0.5

 KI

KII

=
1√
2πr

 KI

KII

 (27)

Note that the characteristic length L vanishes from the definition.

2. Interficial crack between two isotropic materials. The matrix of orders of singularity is

[S̃(s)(0)] =

 0.5 +ε

−ε 0.5

 (28)

where ε is the oscillatory index [9]. Substituting Eq. (28) into the Eq. (25) results in the definition of the complex

stress intensity factor KI + iKII[9] expressed in vector form σ
(s)
y (r,0)

τ
(s)
xy (r,0)

=
1√
2πr

 cos(ε ln(r/L)) −sin(ε ln(r/L))

sin(ε ln(r/L)) cos(ε ln(r/L))

 KI

KII


The magnitude of the complex stress intensity factor

√
K2

I +K2
II is independent of the characteristic length L.

The above procedure can be used to determine the T−stress by extracting the terms with λ ([S]) =−1 [12].
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3. Coupling with other partition of unity methods

The accuracy of the scaled boundary finite element method to model the stress field in the vicinity of singularities

has also inspired coupled methods that combines it with other numerical approaches such as the finite element method

[79, 81], the boundary element method [77, 78], the extended finite element method [82, 83] and the element-free

Galerkin method [76]. These coupled approaches facilitate the treatment of the singularity in the vicinity of a crack tip

using the scaled boundary finite element method in combination with the ease of treating complex boundaries.

The introduction of the extended finite element method [36, 40, 38], based on the partition of unity framework,

has revolutionised the way the singularities and other discontinuities are modelled. The salient feature is that the

internal discontinuities could be modelled independent of the underlying finite element mesh and the mesh need not

be updated when the crack propagates. Built on the finite element framework, the method relies on augmenting the

conventional finite element approximation basis with a priori known functions (analytical or numerical) that capture the

local behaviour. Although robust, it leads to other related difficulties, such as blending problems, numerical integration

of enrichment functions, ill-conditioning of the resulting stiffness matrix and an enlarged system of equations to solve

[38, 89, 90]. Moreover, depending on the problem description, new enrichment functions are required for example,

for orthotropic materials, functionally graded materials, cracks terminating at the interface and bi-material interface

cracks. Another major hurdle is the computation of the fracture parameters such as the stress intensity factors and T−
stress, which requires specialized techniques such as path-independent integrals [23, 22].

Natarajan and Song [91] introduced the extended scaled boundary finite element method, wherein the scaled bound-

ary finite element method was combined with the extended finite element method. Li et al., [83] further extended the

work by combining the extended scaled boundary finite element method with level set method to simulate crack propa-

gation. Egger et al., [56] proposed a blocked Hamiltonian Schur decomposition for the solution process of the extended

scaled boundary finite element method and compared the performance of the method with the conventional finite ele-

ment method and the extended finite element method. It was observed that it yields super-convergence in estimating

the stress intensity factors. Within this framework, as opposed to enriching a small region in the vicinity of the crack

tip with asymptotic functions in the extended finite element method, the region is modelled as a scaled boundary

subdomain. The region behind the crack tip is modelled using the extended finite element framework and the rest

of the region is treated as in the conventional finite element method. This alleviates the requirement of: (a) a priori

knowledge of asymptotic expansions of the displacements and/or stress fields and (b) special numerical integration.

Moreover, the approach can be combined with any existing (extended) finite element code and the fracture parameters

could be estimated from the definition of the generalized stress intensity factors (c.f. 2.3).

This approach leads to different non-overlapping regions (Ω = Ωfem ∪Ωxfem ∪Ωsbfem) (see Fig. 3). The different

regions are identified as:

• Ωfem- Standard elements - contains a set of elements that are not intersected by the cracks. Within this region,

the conventional finite element approximation is employed to represent the smooth behavior.

• Ωxfem- Enriched elements - list of elements that are completely cut by the crack (known as split element in the

11
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Figure 3: A representative finite element mesh with an embedded crack (solid black line). The various regions of partition of unit are identified. In

this descriptive figure, one layer of FE is replaced with the scaled boundary region.

extended finite element terminology). Their nodal support is enriched with Heaviside function to represent the

discontinuity across the crack surface.

• Ωsbfem- Scaled boundary finite element region - set of elements that define the scaled boundary finite element

domain. The asymptotic stress field in the vicinity of the crack tip is represented semi-analytically

As different approximation functions are used in different regions, a coupling scheme is devised in [91, 83], eliminating

the displacement incompatibility in the coupled region. This is achieved using a transition matrix [T ] to match the

nodal displacements along the boundary in the coupling region. For the nodes that are on the boundary of Ωfem and

Ωsbfem, no special treatment is required1. For the nodes that are shared by Ωfem and Ωxfem, the procedure similar to

that of the extended finite element framework is employed. The region that is shared by Ωsbfem and Ωxfem requires

special treatment. In the scaled boundary finite element method, the crack is modelled as an open domain (see Fig. 4)

while it is represented by a Heaviside function in case of the extended finite element method. The augmentation of a

Heaviside function introduces additional degrees of freedom that account for the jump in the displacement across the

crack surface.

The displacement approximations for the extended finite element method and the scaled boundary finite element

method are given by:

{u(x,y)}=

 [N f e(x,y)]{q}+[N f e(x,y)][H(x,y)]{a} (x,y) ∈Ωfem∪Ωxfem

[Nu(η)]{u(ξ )} (x,y) = (x(ξ ,η),y(ξ ,η)) ∈Ωsbfem
(29)

As the displacements are required to be compatible, the displacements from the extended finite element method domain

are matched to the displacements from the scaled boundary finite element method domain through the transformation

1This is because the scaled boundary finite element method employs finite element approximation basis on the boundary, and hence the unknown

coefficients from the scaled boundary finite element method and the finite element method are compatible.
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Figure 4: The coupling of the extended finite element region with the scaled boundary finite element region. ’Circled’ nodes are enriched with the

Heaviside function and ‘Solid’ line represents the crack.

matrix [T ]. For the elements shown in Fig. 4, the displacements from the extended finite element method and the scaled

boundary finite element method are matched by:

{uB}
{uE}
{uA}
{uF}

︸ ︷︷ ︸
{u2

bK}

=


[I] 0 0 0

0 [I] 0 0

N f e
2 (xA,yA)[I] N f e

3 (xA,yA)[I] 0 −2N f e
3 (xA,yA)[I]

N f e
2 (xF ,yF)[I] N f e

3 (xF ,yF)[I] 2N f e
2 (xF ,yF)[I] 0


︸ ︷︷ ︸

[T ]



{q2}
{q3}
{a2}
{a3}

︸ ︷︷ ︸
{u2

xF}

(30)

where [I] is the identify matrix and [T ] is the transformation matrix that relates the displacements on the interface

between Ω
sbfem

and Ω
xfem

. To ensure the compatibility of the displacements and to assemble the stiffness matrix to the

global stiffness matrix, the stiffness matrix in Ω
sbfem

and the force vector are rearranged as: [Kaa] [Kab]

[Kba] [Kbb]

 {u1
bK}

{u2
bK}

=

 { fa}
{ fb}

 (31)

where [Kaa], {u1
bK} and { fa} correspond to the stiffness matrix, the displacement vector and the force vector for the

nodes that are not shared with the element that is completely cut by the discontinuity surface in the Ω
xfem

, [Kbb],

{u2
bK} and { fb} are the stiffness matrix, the displacement vector and the force vector that are shared with the element

that is completely cut by the discontinuity surface and [Kab] and [Kba] are the coupling matrices. Now, applying the

transformation matrix, results in [Kaa] [Kab][T ]

[T ]T [Kba] [T ]T [Kbb][T ]

 {uqS}
{uxF}

=

 { fa}
[T ]T{ fb}

 (32)

The transformation matrix [T ] requires only the evaluation of the shape functions at the crack mouth. The assembly

procedure follows that of the conventional finite elements. The resulting global stiffness matrix retains a similar

structure to that of the conventional finite element method.
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Figure 5: Edge-cracked square body: Geometry and boundary discretisation with 8 cubic elements.

4. Examples of evaluation of stress intensity factors and T−stress

Since its inception, the scaled boundary finite element method has been applied to compute not only the stress

intensity factors, but also T -stress and higher order terms in the vicinity of a singularity e.g. a crack or a notch. The

robustness of the scaled boundary finite element method for such applications has been reported in the literature for

two-dimensional analyses of problems ranging from linear elastic materials [92, 93, 94, 95], laminated composites

[96], piezoelectric materials [97, 52, 98, 53, 54] and elastomers [99]. Applications in three dimensions have also been

reported [64, 60, 100, 61, 62].

In this section, several examples are presented to demonstrate the application of the scaled boundary finite element

method, including one example from the extended finite element method, in evaluating the stress intensity factors and

T−stress. Interested readers may refer to Chowdhury et al. [101] for highly accurate results of the stress intensity

factors and T−stress for several standard specimens. Examples of dynamic stress intensity factors and T−stress are

presented in [102].

4.1. Edge-cracked homogeneous square body

An edge-crack square body under plane strain condition is shown in Fig. 5. The size of the square is 2b. The

length of the crack is a = b. The material is isotropic with Young’s modulus E and Poisson’s ratio ν = 0.25. The

boundary condition is prescribed according to the asymptotic solution of stresses in such a way that KI/(p
√

a) = 1,

KII/(p
√

a) = 1 and T/(KI/
√

a) = 1 apply (p is a constant with the unit of stress).

The square boundary is discretised with cubic (4-node) elements. To perform a convergence study, five meshes

with 8, 16, 24, 32 and 48 elements are used. The nodes are evenly spaced along the edges. The mesh with 8 elements

is shown in Fig. 5.

The stress intensity factors KI , KII and T−stress are determined. The results are normalised and shown in Table 1.

The error of the results obtained with the coarsest mesh (8 elements) is less than 1%. When 48 cubic elements are used,

the results are accurate up to the first 6 significant digits. The relative errors are plotted versus the number of degrees

of freedom (which is inversely proportional to the element length) in Fig. 6a. The slopes of the convergence curves are

approximately equal to −4, showing a super-convergent rate.
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Table 1: Normalised stress intensity factors KI , KII and T−stress of edge-cracked square body

Number of Elements Exact

8 16 24 32 48

KI/(p
√

a) 1.004415 1.000011 0.999994 0.999997 0.999999 1

KII/(p
√

a) 1.007734 1.000835 1.000181 1.000060 1.000009 1

T/(KI/
√

a) 1.005591 1.000208 1.000034 1.000010 1.000002 1
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Figure 6: Convergence of stress intensity factors and T−stress of edge-cracked square body

The convergence with increasing element order is also examined. The boundary is divided into 8 spectral elements

of the same length. The element orders are 4, 6, 8 to 10. A semi-log plot of the errors in the results of the stress intensity

factors KI , KII and T−stress versus the element order is shown in Fig. 6b. Exponential convergence is observed.

4.2. Interface central crack between two anisotropic materials

A rectangular body composed of two orthotropic materials is shown in Fig. 7a. The height and width of the

rectangle are 2H and W = H, respectively. A central crack of length 2a = 0.4W is located on the material interface.

The elastic properties are E11 = 100 GPa, E22 = 50 GPa, G12 = 50.35426 GPa and ν12 = 0.3 for Material 1 and

E11 = 100 GPa, E22 = 10 GPa, G12 = 27.034099 GPa and ν12 = 0.3 for Material 2. Plane stress conditions are

assumed. The characteristic length is chosen as L = 2a.

The rectangular body is divided into 4 subdomains as shown in Fig. 7b. The scaling centres of the subdomains are

indicated by the markers “⊕”. The crack tips are at the scaling centres of subdomains 1 and 2. The boundary visible

from the scaling centres are discretised with 10-th order spectral elements. The matrix of orders of singularity obtained

from the present analysis, denoted as [S̃(s)]present, and from the analytical solution [11], denoted as [S̃(s)]exact, are equal

to

[S̃(s)]present =

 0.500001 −0.044840

0.110382 0.499999

 ; [S̃(s)]exat =

 0.500000 −0.044839

0.110383 0.500000


The two results agree with each other up to the first 5 significant digits. The generalised stress intensity factors are
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Figure 7: Interface central crack between two anisotropic materials. (a) Geometry. (b) Mesh.

(a) Geometry (b) Scaled boundary finite element mesh

Figure 8: Bimaterial interface notch subjected to uniform temperature change

obtained as KI = 1.12P
√

πa, KII = −0.257P
√

πa. They are converted to the stress intensity factors defined in Cho

et al. [11] as
√

K2
1 +K2

2 = 1.776P
√

πa and K2/K1 = −0.146, which agree well with
√

K2
1 +K2

2 = 1.772P
√

πa and

K2/K1 =−0.143 reported in Cho et al. [Table 3, 11].

4.3. Piezoelectric bimaterial with an interface edge notch subjected to temperature change

A V-notched piezoelectric bimaterial body is shown in Fig. 8a with a = 0.4b and h = b. The opening angle of the

notch is equal to 2α . Material 1 is piezoelectric cadmium selenide and material 2 is PZT-6B. The material constants are

given in [53]. The uniform temperature change is T0. The scaled boundary finite element mesh of 5-node (4th-order)

elements is shown in Fig. 8b. The characteristic length is chosen as L = 2a.

The interface edge crack (α = 0) is considered. The stress and electric displacement intensity factors of the crack tip

are evaluated at θ = 0◦. The results of normalised stress and electric displacement intensity factors (KI/(p1
33T0
√

πa),

KII/(p1
33T0
√

πa) and KIV/(β
1
3 T0
√

πa)), where the superscript “1” in p33 and β3 represents material 1, are listed in

Table 2 for increasing element order. It is observed that the results obtained using 10-th order elements converge to the

first five significant digits. The converged orders of singularity are λ =0.5, 0.5±0.0197i.
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Table 2: Normalised intensity factors of an interface edge crack in cadmium selenide/PZT-6B

Element order 4 6 8 10 14

KI/(p1
33T0
√

πa) 6.8563E-4 7.1596E-4 7.0537E-4 7.0537E-4 7.0537E-4

KII/(p1
33T0
√

πa) 5.2955E-2 5.2900E-2 5.2898E-2 5.2897E-2 5.2897E-2

KIV/(β
1
3 T0
√

πa) 7.6679E-2 7.6679E-2 7.6181E-2 7.6156E-2 7.6156E-2
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Figure 9: Interface edge notch in cadmium selenide/PZT-6B with varying opening angle α

The change in the stress intensity factors with varying notch opening angle α is investigated. The orders of sin-

gularity are shown in Fig. 9a when varying the opening angle. A real order λ3 and the real part Re(λ1,2) of a pair

of complex conjugate eigenvalues decrease when α varies from 0◦ to around 6.9◦. As α increases further, three real

orders of singularity exist. Two real orders of singularity λ1 and λ2 separate as α increases further. The stress and

electric displacement intensity factors are shown in Fig. 9b. It is observed that KII and KIV increase as the interface

notch becomes wider, whereas KI decreases.

4.4. Interface edge crack between two isotropic materials subjected to tension

A bimaterial body with an edge crack (a/L = 0.5) subjected to uniform tension (p = 1) is considered (see Fig. 10).

The material is assumed to be isotropic with Young’s modulus, E1 = 1 and E1/E2 = 2 and Poisson’s ratio ν1 = ν2 =

0.3. Note that consistent units are used in this example. A state of plane strain is considered. This problem is solved by

employing the extended scaled boundary finite element method. The discontinuities (both the crack and the material

interface) are represented independent of the underlying finite element mesh. The material interface that does not

contain the crack is treated within the extended finite element framework. A small region in the vicinity of the crack

tip is replaced with the scaled boundary domain, which is identified by:

• Selecting the nodes whose nodal support is intersected by the discontinuous surface, viz., crack or the material

interface.
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Figure 10: Interface edge crack between two isotropic materials subjected to far field tension: geometry and boundary conditions.

Table 3: Convergence of the mode I and mode II stress intensity factors for an interface edge crack in tension. The results are normalised with the

stress intensity factors reported in [103].

Number of layers
Normalized stress intensity factors

KI KII

3 0.98209 1.01866

4 1.00319 1.01007

5 1.00103 1.00037

6 1.00043 0.99776

7 0.99968 0.99664

8 0.99929 0.99963

• The elements containing these nodes are selected and only the information on the boundary of this set of elements

is retained. The degrees of freedom of the nodes within the domain are condensed during the solution process.

Within this region, i.e, Ωsbfem, the scaled boundary formulation is employed to compute the stiffness matrix. Note

that no special numerical integration technique is required. Figure 11 shows a typical finite element mesh used for this

study. The scaled boundary region Ωsbfem is indicated by A−B−C−D. In this example, the interface aligns with the

element edge. To represent the jump across the crack face, the ‘circled’ nodes are enriched with the Heaviside function.

The crack is aligned to the bimaterial interface and a structured quadrilateral mesh is used for the spatial discretisation.

The influence of the number of layers on the numerical stress intensity factors is demonstrated in Table 3 for a
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Figure 11: A typical discretization for a bimaterial interface crack.

structured mesh of 51 × 102 quadrilateral elements. It is inferred that the results from the extended scaled boundary

method converge and are close to the solution reported in the literature [103]. From this study, it can be concluded that

for a given mesh, 4-5 layers of elements if replaced with the scaled boundary finite element domain yields reasonably

accurate solutions.

5. Modelling of crack propagation

The scaled boundary finite element method allows a problem domain to be discretised into polygons with arbitrary

number of sides. This feature is very convenient for applications that involve continuous change in the problem geom-

etry such as crack propagation. The changes in the mesh instigated by crack growth can be easily accommodated using

simple yet efficient remeshing algorithms or level sets. Since the scaled boundary finite element method is accurate in

modelling the singular stress fields in the vicinity of crack tips, these approaches eliminate the need for fine crack tip

meshes and result in robust techniques for crack propagation analyses. This section reviews the more recent develop-

ments of the scaled boundary finite element method-based approaches for crack propagation modelling and presents

several of their applications in various fields in fracture mechanics.

5.1. Extended scaled boundary finite element method

The extended finite element method facilitates the use of structured quadrilateral meshes. The geometric disconti-

nuities are represented independent of the underlying mesh topology using level sets and the local behaviour is captured

through the augmented asymptotic functions. In the conventional extended finite element method, as the crack prop-

agates, new set of nodes whose nodal support is intersected by the discontinuity are identified. The approximation

functions of these nodes are then augmented with appropriate functions. In the extended scaled boundary finite ele-

ment method, as the crack propagates, new set of nodes are identified. However, instead of enriching the approximation

basis, the crack tip region is modelled as a scaled boundary finite element subdomain and appropriate level set functions

are added to the mesh to model the crack geometry. Figure 12 shows a representative crack path and its propagation.

For more details, interested readers are referred to the recent work of Li et al. [83].
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Fig. 9. The crack path and its evolution: (a) original geometry and (b) final geometry.

Fig. 10. A three-point bending beam for crack propagation (mm).
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Fig. 11. The Load-LPD curves for different mesh densities.

J.-b. Li et al. / Computers and Structures 167 (2016) 50–68 55

Figure 12: Representative crack path and its trajectory. ’Circled’ nodes are treated within the extended finite element framework and the nodes

marked with ’squares’ are represented by the scaled boundary domain. Note that only the boundary nodes are considered and the degrees of freedom

on the interior nodes are condensed during the solution process.

The coupling of the scaled boundary finite element method with the extended finite element method enables crack

propagation to be modelled without remeshing. At the same time, it preserves the accuracy of the computed stress

intensity factors without the need of special integration techniques in the region around the crack tip as would be

required in an approach that is purely based on the extended finite element method.

5.2. Polygon meshes

A methodology for modelling crack propagation using polygonal meshes was developed by Ooi et al. [104]. Polyg-

onal meshes are generated from Voronoi diagrams [105] or from a Delaunay triangulated mesh [104, 106]. The re-

sulting polygon mesh automatically satisfies the scaling requirement. The polygon containing the crack tip is called

a “crack polygon”. To ensure the accuracy of solution of the singular stress field, an edge of the cracked polygon is

discretised with multiple line elements. In order to model the crack propagation process, two different polygonal-based

remeshing algorithms have been proposed by Ooi et al. [104] and Shi et al. [107], Ooi et al. [108].

The algorithm developed by Shi et al. [107] and Ooi et al. [108] involves the local remeshing of a small area in

the vicinity of the crack tip. It is robust and ensures the generation of high-quality polygon meshes. The remeshing

algorithm is depicted in Fig. 13 for one crack propagation step. The background triangular mesh used to generate the

polygon mesh is also drawn in the figure. The triangles cut by the crack increment are first identified (enclosed by the

thick solid lines in Fig. 13b and Fig. 13c). A patch is constructed by adding one layer of triangular elements connected

to the cut ones (indicated by the thick dotted lines in Fig. 13b and Fig. 13c). The triangular elements inside the patch

are removed (Fig. 13d) and a Delaunay triangulation is performed on the empty patch considering the presence of the

crack (Fig. 13e). A local polygon mesh, as shown in Fig. 13f, can then be generated from the new triangular mesh

following the procedures described in [104]. As the remeshing involves only a small patch of polygons around the

crack tip at each crack propagation step, it results in a minimal amount of change to the global mesh structure.

The use of polygon meshes provides appealing alternative approaches for model problems in engineering involving

crack propagation. Many aspects of crack propagation have been explored using these approaches e.g. nonlinear crack

propagation in concrete [84, 107], elasto-dynamic crack propagation [108] and functionally graded materials [109].
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Figure 13: Local remeshing algorithm of polygonal mesh

5.3. Hybrid quadtree-polygon meshes

The scaled boundary finite element method is highly complementary with quadtree meshes owing to the flexibility

in the shapes of the subdomain. A quadtree algorithm involves recursive division of each parent cell into four children

until the resolution is fine enough (see Fig. 14a for an example). It is particularly efficient for data storage and retrieval.

In computational mechanics, the direct use of quadtree meshes is hindered by the existence of hanging nodes (Fig. 14a).

The quadtree decomposition is usually employed in finite element mesh generation algorithms for its efficiency and

followed by the triangulation of quadtree cells. Since the scaled boundary finite element method can directly model a

quadtree cell as an arbitrary-sided polygon, the triangulation process is eliminated.

To derive the most efficiency from quadtree meshes, it is useful to use balanced quadtree meshes [110] in which the

sizes of the adjacent cells differ at most by a factor of 2. In a balanced quadtree mesh, the patterns of the cells depend

on the existence of the midpoint nodes (Fig. 14b, where the locations of possible midpoint nodes are indicated by solid

dots). The total number of unique cell patterns is equal to 24 = 16. These are referred to as the “master cells”. All the

other cells can be obtained by scaling one of the master cells. In an analysis, only the stiffness (and mass) matrices of

these 16 cells need to be computed for a given material. These are stored for quick data retrieval and scaling according

to the size of the actual cells [85]. For isotropic materials, the unique patterns are reduced to 6 by considering rotation.

Some of the square quadtree cells are trimmed by the crack path and the boundary of the problem domain (Fig. 15).
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These trimmed cells are polygons and can also be directly modelled as scaled boundary subdomains. The region

enclosing the crack tip is modelled as a crack polygon. The mesh consisting of a mixture of square and polygonal

subdomains is referred to as a hybrid quadtree-polygon mesh [85]. Typically, the bulk of the mesh consists of the

square cells that can be scaled from master cells. During the simulations, only the stiffness matrices from the arbitrary

sided polygons need to be computed. This approach increases the computational efficiency in simulations that require

repetitive computation of stiffness and/or mass matrices such as that in crack propagation.

The remeshing process during crack propagation is depicted in Fig. 16. The current mesh around the crack tip is

shown in Fig. 16a. The crack increment and the radius of a circle Ωcir controlling the size of the crack polygon are

given as inputs. A balanced quadtree mesh is created around the new crack tip (Fig. 16b). The size of the quadtree

cells is chosen in a way that there are sufficient nodes on the boundary of the cracked polygon for accurate computation

of the singular stress field around the new crack tip. The crack polygon is created by merging the cells that overlap

Ωcir into a single crack polygon. Each of the cells cut by the crack path are then split into two leading to the mesh in

Fig. 16c.

Applications of the hybrid quadtree-polygon approach for crack propagation modelling has been reported for sev-

eral fields in fracture mechanics including nonlinear cohesive fracture [111] and elasto-dynamic fracture [112]. For
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Figure 16: Remeshing algorithm using polygonal meshes via local remeshing.

such types of problems which involve repetitive computations of the stiffness and mass matrices, the use of hybrid

quadtree-polygon meshes was capable of limiting the time required to compute these variables to only 9.5% of the

total CPU time over the entire simulation [112].

6. Examples of crack propagation

This section presents several examples of applications of the scaled boundary finite element method for crack prop-

agation modelling. The examples are intended to cover a broad range of applications including quasi-static fracture,

dynamic fracture, fatigue fracture, cracks at the interface or terminating at the interface and cracks in heterogeneous

materials. The application of the scaled boundary finite element method using polygonal meshes, the hybrid-polygon-

quadtree meshes and the extended scaled boundary finite element method will be presented. The first example demon-

strates the efficacy of the extended scaled boundary finite element method, wherein a structured quadrilateral mesh is

adopted. The next two examples employ the scaled boundary finite element method with adaptive quadtree decomposi-

tion and the last two examples demonstrates the applicability of handling discontinuities with arbitrary sided polygons.

The results from the scaled boundary finite element method are compared with the finite element solution.

The crack growth direction is determined by the maximum hoop stress criterion, which states that the crack will

propagate from its tip in the direction θc where the circumferential stress σθθ is maximum. The critical angle is

computed by solving the following equation:

KI sinθc +KII(3cosθc−1) = 0 (33)

Solving the above equation, gives the crack propagation angle:

θc = 2arctan

 −2
(

KII
KI

)
1+

√
1+8

(
KII
KI

)2

 (34)
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Figure 17: Geometry and boundary conditions for a crack terminating at the material interface. The thick solid line represents the crack and is

assumed to be in material 2 with Young’s modulus E2 and Poisson’s ratio ν2 and terminating at the interface between material 1 and 2. The angle of

the crack is ψ .
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Figure 22: Crack terminating at the material interface: stress σyy ahead of the crack tip (along the
path A − B, see Figure 21). The results are compared with the finite element analysis in which a
conforming mesh is generated. The ratio of Young’s modulus is E1/E2 = 1000 with E2 = 1.
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Figure 18: Stress along the loading direction (see Fig. 17) ahead of the crack tip. The present result (xSBFEM) is compared with a fine finite element

model that employs quarter point elements to represent the singular stress field (FEM).

6.1. Propagation of a crack terminating at an interface

A crack terminating at the bimaterial interface of a bimaterial body is considered. The crack is assumed to be

in material 2 and terminating at the interface between the two materials (see Fig. 17) and the body is subjected to

a uniform tension p. Appropriate Dirichlet boundary conditions are enforced to arrest any rigid body motion. A

structured quadrilateral mesh (50× 100) with 5 layers of elements replaced with the scaled boundary finite element

method is used for this study. Figure 18 shows the stress in the y−direction (σyy ahead of the crack tip). The results

from the present formulation compared favorably with the stresses computed using a very refined finite element model

with a conforming mesh.

Next, the case of a crack deflecting into the material is considered. A crack impinging the interface between

two dissimilar materials may advance by either propagating along the interface or deflecting into the material. The
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Figure 25: Mode I and II stress intensity factor variation as a function of crack advancement. The
crack increment is set in advance and the direction of the crack propagation is computed from
Equation (48).
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Figure 26: Crack trajectory for a crack impinging at the interface and deflected into material 1.
Two cases are considered: (a) a crack perpendicular to the interface and (b) crack oriented at an
angle. The solid black line denotes the discontinuous surface.
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Figure 19: The variation of mode I and mode II stress intensity factor for various crack growth increments. The crack increment is set in advance

and the direction of the propagation is based on maximum hoop stress criteria. .

(a) ψ = 0◦ (b) ψ = 20◦

Figure 20: Crack trajectory for a crack terminating at the interface and further propagation into material 1 for two different inclination of the crack,

ψ = 0◦ and ψ =20◦. The solid black line denotes the crack and dotted line denotes the location of the material interface.

competition between these two scenarios has been thoroughly dealt in the literature [113, 114]. The material properties

are assumed to be E2 = 100E1. The initial crack is assumed to be in material 2 and deflects into the material 1 as it

propagates.

Figure 19 shows the variation of the stress intensity factors (mode I and mode II) with crack length a/L. The

influence of the initial orientation of the crack is also shown. Since the loading is mode I, the crack propagates in a

straight line. For a crack impinging at an angle ψ , initially KII is not zero and hence the crack advances at an angle

that is not equal to zero. However, due to the f tensile loading, KII progressively becomes zero as the crack eventually

propagates in a straight line. The crack propagation direction is based on the maximum hoop stress criteria. The crack

trajectory is shown in Fig. 20 for two different inclination of the crack, ψ = 0◦ and ψ =20◦. In this example, 5 layers

of FE mesh is replaced with the scaled boundary domain.
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Figure 21: Cracked beam with three holes.
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Figure 22: Initial meshes of the cracked beam with three holes.

6.2. Crack propagation in a beam with three holes

A well-known numerical benchmark for crack propagation problems, the cracked beam with three holes [e.g.

19, 115, 21] under three-point bending condition is considered (Fig. 21). The load is P = 4.45N. The dimensions are

given in the figure. The beam is made of polymethylcrylate (PMMA). The material properties are: Young’s modulus

E = 29×106kPa and Poisson’s ratio ν = 0.3. Two cases, I and II, as indicated in Fig 21 are considered. The simulations

were carried out under plane stress conditions.

In both cases, the beams are discretised using hybrid polygon-quadtree meshes as shown in Fig. 22a and Fig. 22b.

For Case I , the mesh has 438 cells of which 320 are the square cells and 78 are irregular polygons (including the

crack cell). In Case II, the mesh has 476 cells of which 354 are square cells and 122 are irregular polygons. A crack

incremental length of ∆a = 0.5mm is adopted in the simulations in both cases.

The final meshes for both Case I and Case II are shown in Fig. 23a and Fig. 23b, respectively. It is observed

the bulk of the cells in the mesh are still square cells and there is only a minimal increase in the number of arbitrary

sided polygons (generally along the crack paths). The initial position of the crack affects the trajectory of the crack

propagation. In Case I, the crack initially curved towards the bottom hole. The crack then deviates from its initial path

and deflects towards the the middle hole. In Case II, the crack steadily curves towards the middle hole. The simulated

crack trajectories in both cases showed good agreement with the experimental results reported by Bittencourt et al. [19]

and the finite element simulation of Azocar et al. [21] as shown in Fig. 24.

26



(a) Case I (b) Case II

Figure 23: Final crack paths for cracked beam with three holes.
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Figure 24: Comparison of predicted crack paths for the cracked beam with three holes with published results in the literature.

6.3. Impact on a PMMA specimen with a crack emanating from a hole

This example involves the dynamic fracture of a PMMA specimen during a split Hopkinson pressure bar test [116].

For the simulation, the material properties of PMMA reported in [116] are: Young’s modulus E = 3300MPa, Poisson’s

ratio ν = 0.42 and density ρ = 1180kgm−3. A dynamic fracture simulation is performed under plane strain conditions.

The crack velocity history reported by Fedelinski [117] is specified. The crack is stationary between 0 ≤ t ≤ 200µs.

It then propagates at a velocity c = 210ms−1 between 200µs < t < 270µs and finally stops propagating between

270µs≤ t ≤ 320µs. Thereafter, the crack propagates again at a velocity of c = 160ms−1 until t = 500µs. The impact

loads, σ1 and σ2, at the vertical edges of the plate are applied according to the dynamic input reported in [117].

Figure 26 shows the hybrid quadtree-polygon mesh of the specimen. The hybrid mesh has 472 cells comprising

of 1 crack cell, 419 square cells and 52 irregular polygonal cells. The dynamic fracture analysis is carried out using a

time step of ∆t = 5µs.

Figure 27 shows the stress intensity factor history of the crack. The dynamic stress intensity factors computed

by the scaled boundary finite element method were observed to agree reasonably well with those computed with the

boundary element method by Fedelinski [117].

The crack propagation path predicted using the scaled boundary finite element method is shown in Fig. 28. The

crack initially curves at an angle of approximately 340o from the horizontal axis. The crack then reorients itself and

propagates along the horizontal axis when t ≥ 320µs. When compared with the boundary element simulations of [117],
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Figure 25: PMMA specimen subjected to impact loads at both ends.

Figure 26: Hybrid mesh of PMMA specimen subjected to impact loads at both ends.

good agreement is observed. The final mesh of the PMMA specimen at the end of the simulation is shown in Fig. 29.

The number of cells has increased to 2191. Only 531 of these are irregular polygons. The remaining 1660 cells are

square cells.

6.4. Fatigue crack propagation

The fatigue fracture of the Arcan specimen [118] subjected to mixed-mode loading shown in Fig. 30a is considered.

The initial crack length at the notch tip a0 is 2.997mm and the thickness of the specimen is 1.6mm. The specimen is

made of aluminum (AA2024-T351) with material properties: Young’s modulus E = 73.1GPa, Poisson’s ratio ν = 0.33,

Paris exponent m = 2.9 and Paris constant C = 5.3×10−11. Plane stress conditions are assumed.

An external cyclic loading P with a constant amplitude ratio of R = Pmax
Pmin

= 0.1 is applied at a loading angle α

measured from the horizontal axis. The magnitude of the external load is first determined by a static analysis so

that the initial equivalent stress intensity factor of the crack is K(ini)
eq =

√
K2

I +K2
II = 7.59MPa

√
m consistent with the

experiments performed by Gaylon et al. [118]. Two loading angles α = 30◦ and α = 60◦ are considered.

The specimen is discretised with polygon meshes of arbitrary number of sides. Figure 30b shows the polygon mesh.

The mesh has 483 polygons and 1043 nodes. The fatigue fracture analysis is carried out using a crack incremental

length of ∆a = 3mm.

Figures 31a and b compare the predicted crack paths with the experimental measurements of Gaylon et al. [118].

For the loading case with α = 30◦, the predicted crack path compares very well with the experimental result. For the
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Figure 27: Time history of stress intensity factors for PMMA specimen subjected to impact loads.
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Figure 28: Predicted crack locus of the PMMA specimen subjected to impact loads.

loading case with α = 60◦, barring the initially vertical crack path observed in the experiments but not captured by

the present method, the predicted crack path is almost parallel to the experimental measurements. Figure 32 shows the

final polygon meshes for the load cases α = 30◦ and α = 60◦.

Figures 33a and b compare the predicted fatigue life of the Arcan specimen with the finite element simulations of

[119] for α = 30◦ and α = 60◦, respectively. Good agreement is observed. The fatigue life for the load case α = 30◦

is estimated to be 129,859 cycles, whereas it was 126,608 cycles in [119]. For the load case α = 60◦, the estimated

fatigue life is 60,621 cycles whereas it was 60,855 cycles in [119].

6.5. Crack propagation in a heterogeneous material

An approach for extending the scaled boundary finite element method to the modelling of heterogeneous materials

was conceptualised by Chiong et al. [120] and applied to functionally graded materials. This is achieved by introducing

scaled boundary shape functions that are valid for any star convex polygons. The shape functions are continuous,

conforming and linearly complete. For a polygon encapsulating a singular point e.g. a crack or a notch, the shape
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Figure 29: Final mesh of the PMMA specimen subjected to impact loads.
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Figure 30: Arcan specimen.

functions can analytically represent its asymptotic behaviour leading to an accurate procedure to model singularities

without the need of local mesh refinement or special techniques.

A functionally graded specimen with two cracks branching from the tip of an existing crack is shown in Fig. 34a.

The thickness of the specimen is 6mm. Crack propagation under a uniform tension is considered. The gradients of the

Young’s modulus E, Poisson’s ratio ν and critical stress intensity factor KIC vary in the y−direction and are depicted

in Table 4, where 0≤ ζ ≤ 1 is the normalised length of the specimen. Plane stress conditions are assumed.

The specimen is discretised using a polygon mesh (Fig. 34b). The mesh has 569 polygons and 1332 nodes. A crack

Table 4: Variation of material properties E, ν and KIC of glass-epoxy functionally graded material.

ζ 0.00 0.17 0.33 0.58 0.83 1.00

E(GPa) 3.0 3.3 5.3 7.3 8.3 8.6

ν 0.35 0.34 0.33 0.31 0.30 0.29

KIC(MPa.m1/2) 1.2 2.1 2.7 2.7 2.6 2.6
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Figure 31: Predicted crack paths for Arcan specimen.

(a) At loading angle α = 30◦ (b) At loading angle α = 60◦

Figure 32: Final polygon meshes for Arcan specimen.
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Figure 33: Predicted fatigue life for Arcan specimen.
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Figure 35: Comparison of predicted critical loads for a functionally graded specimen with branched cracks in Fig. 34.

propagation simulation is carried out using a crack propagation length of ∆a = 1.5mm.

A comparison of the scaled boundary finite element method predicted critical loads in Fig. 35 and the predicted

crack paths in Fig. 36a with the FEM simulation reported by Kim and Paulino [31] show very good agreement. Due

to the material heterogeneity, the crack propagation between the two crack is unsymmetric when compared with the

simulations performed using a homogeneous specimen [31]. The crack tends to be more curved in the region where

the magnitude of the Young’s modulus is small. Fig. 36b shows the final polygon mesh. The local remeshing algorithm

makes only very little change to the overall global mesh structure throughout the entire simulation compared with the

FEM results of Kim and Paulino [31].
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Figure 36: Predicted crack path in functionally graded specimen with branched cracks in Fig. 34.

7. Concluding remarks

The major developments of the scaled boundary finite element method as applied to linear fracture analysis have

been reviewed. Applications to the modelling of stress singularities, evaluation of stress intensity factors, T−stress,

and the simulation of crack propagation are presented. In a single formulation, the scaled boundary finite element

method has overcome several key challenges in two-dimensional linear fracture analysis and possesses the following

salient features:

1. No analytical asymptotic solutions are required in the definition and in the evaluation of generalised stress in-

tensity factors. It is thus applicable to cracks, V-notches and multi-material corners composed of any number of

isotropic and anisotropic materials.

2. The meshing burden is significantly reduced by modelling the region around the singularity point as polygonal

subdomain. Only the boundary of the subdomain, excluding the straight crack faces and the material interfaces

is discretised. No local mesh refinement around the singularity point is required.

3. All types of stress singularity (real power singularity r−λ , complex power singularity r−(λR±iλI) and power-

logarithmic singularity r−λ lnr are modelled analytically in a unified framework.

4. A unified definition of the generalised stress intensity factors for all types of stress singularities is proposed.

This definition is consistent with the standard definitions of stress intensity factors for cracks in homogeneous

materials and on interfaces of dissimilar isotropic materials.

5. The generalised stress singular intensity factors and the T−stress are determined by standard stress recovery

techniques as in the finite element method without addressing any singular functions numerically.

6. The use of polygonal subdomain of arbitrary number of edges greatly simplifies the modelling of crack propa-

gation.

7. It can readily be combined with any existing finite element code.
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