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Given a finite set of points in R
3, polyhedronization deals

with constructing a simple polyhedron such that the vertices

of the polyhedron are precisely the given points. In this pa-

per, we present randomized approximation algorithms for

minimal volume polyhedronization (MINVP) and maximal

volume polyhedronization (MAXVP) of three dimensional

point sets in general position. Both, MINVP and MAXVP

problems have been shown to be NP-hard and to the best of

our knowledge, no practical algorithms exist to solve these

problems. It has been shown that for any point set S in

R
3, there always exists a tetrahedralizable polyhedroniza-

tion of S. We exploit this fact to develop a greedy heuristic

for MINVP and MAXVP constructions. Further, we present

an empirical analysis on the quality of the approximation re-

sults of some well defined point sets. The algorithms have

been validated by comparing the results with the optimal

results generated by an exhaustive searching (brute force)

method for MINVP and MAXVP for some well chosen point

sets of smaller sizes. Finally, potential applications of min-

imum and maximum volume polyhedra in 4D printing and

surface lofting respectively have been discussed.

1 Introduction

Given a finite set of n points, S ∈ R
3, polyhedroniza-

tion of S is a way of connecting n points in S to form a

simple polyhedron that is topologically homeomorphic to a

sphere. In 1994, Grunbaum [1] proved the existence of a

polyhedronization for every 3-dimensional point set. How-

ever, Grunbaum’s method may yield Schonhardt polyhedra

which can not be tetrahedralized [2, 3]. In an extension of

this work, Agarwal et. al [4] showed that, for any point set

S∈R
3, there always exists a polyhedronization which can be

decomposed into a union of tetrahedra. Further, Edelsbrun-

ner et.al [5] showed that every convex polyhedron can be de-

composed into O(n2) tetrahedra. Our work is mainly moti-

vated by the existence of a tetrahedralizable polyhedra for 3-

dimensional point sets. In this work, we address the problem

of polyhedronization with an additional volume constraint

(minimum volume and maximum volume).

1.1 Problem Definition

S.P Fekete et.al [6] put forward a volume constrained

polyhedron construction problem in higher dimensions. The

problem is referred to as FACE which is formally stated as

the following:

Definition 1. FACE: Let d ≥ 2 and 1 ≤ k ≤ d. Let a finite

set S of points in d-dimensional Euclidean space is given.

Among all simple polyhedra that are feasible for vertex set S,

find one with the smallest volume of its k-dimensional faces.

In our work, we consider one of the three dimensional ver-

sion of FACE. We focus on the problem FACE with param-

eters d=3 and k=2, i.e. the problem of computing smallest

volume polyhedron (MINVP) of any three dimensional point

set. MINVP Problem, in its general form is the following:

Definition 2. MINVP Problem: Given a finite set S of n

points in R
3, find the simple polyhedron with the smallest

volume from all feasible simple polyhedra for S.

A closely related maximization problem is MAXVP Problem,

which can be stated as follows:

Definition 3. MAXVP Problem: Given a finite set S of n

points in R
3, find the simple polyhedron with the largest vol-

ume from all feasible simple polyhedra for S.

1.2 Theoretical Challenges

Though there exist quite a few algorithms for construct-

ing polyhedra from three dimensional point sets, most of

them are theoretical in nature. We couldn’t find any imple-

mented results in some of these work [4] [3]. To the best of

our knowledge, no prior work exist on volume constrained

polyhedronization and hence the problem represents an in-

triguing challenge.

In [6], FACE is shown to be NP-hard for any choice of

d and k and hence MINVP and MAXVP problems are also

NP-hard. For any given point set, there exist polyhedroniza-

tions [1], but finding how many of them exist is a compu-

tationally hard problem and hence a deterministic algorithm

does not exist for the same. As a consequence, minimal vol-

ume polyhedronization (correspondingly maximum volume



polyhedronization) of any point set of appreciable size be-

comes an extremely hard one. The two-dimensional version

of the problem (minimum area and maximum area polygons)

is already shown to be NP-complete [6] and an infeasibility

of a constant factor approximation algorithm is mentioned

in [7]. Being a direct extended version of minimal area

(maximal area) polygonization, it is most likely that mini-

mum volume (maximum volume) polyhedronization could

also end up in a similar fate.

An exhaustive searching method for MINVP/MAXVP

construction appears to be impractical. It considers all pos-

sible combinations of 2n− 4 triangular faces of the point set

S. For each combination, it checks whether a simple closed

polyhedron is feasible or not. If a simple closed polyhe-

dron can be formed, volume information will be updated.

Finally, the polyhedron with smallest/largest volume will be

returned. So overall, this method takes a time complexity of

Θ(
( (n

3)
2n−4

)

) [8]. So a brute force method for MINVP/MAXVP

construction seem to be clearly infeasible for point sets of

larger sizes.

1.3 Possible Applications

Apart from the theoretical interests (please refer Section

1.2), both MINVP and MAXVP have potential to be em-

ployed in many futuristic applications. For instance, in 4D

printing, minimum volume representations of 3D faces made

of smart materials that can expand or contract themselves,

saves huge amount of space and shipping costs. In space

exploration, such a volume reduction could help space agen-

cies to reduce overall costs for sending large printed parts to

outer space using the limited space available in the rockets

or other space carriers and let the parts assemble themselves

into desired object and shape (refer to 4D Printing in Sec-

tion 7). Another potential application for minimum volume

representations arises in shortest path computation on a 4D

polytope. In [9], polyhedral unfolding has been used in com-

puting the shortest path between two points along the poly-

hedral surface. Similarly, an appropriate usage of MINVP of

3D facets of the unfolded 4D polytope can considerably re-

duce the search space of the shortest path algorithm and con-

sequently improve the computational complexity by a large

extent. MAXVP can be applied in lofting of surfaces from a

series of planar and convex contours which in turn find appli-

cations in medical imaging, digitization of objects and geo-

graphical information systems [10]. We have conceptualized

a technique for surface lofting with the help of maximum

volume polyhedronization in Section 7.

1.4 Our Contribution

We explore randomized methods for MINVP and

MAXVP constructions. Some interesting observations on

the properties of MINVPs and MAXVPs have been made

and analyzed. Our major contributions are as follows:

1. We present randomized techniques for optimal volume

tetrahedralizable polyhedronizations of point sets in R
3.

The running time of our algorithm is significantly bet-

ter than the exhaustive search algorithm for the optimal

volume polyhedronization.

2. We define concepts such as trap regions and local rear-

rangements in a polyhedron and exploit these ideas to

show that the presented algorithms are capable of gen-

erating polyhedronizations of any point set.

3. We take some well defined convex point sets and ana-

lyze the approximation quality of the results generated

by both MINVP and MAXVP algorithms. Further, em-

pirical results have been shown to demonstrate the prac-

tical potential of our algorithms.

4. We discuss a potential application of MINVP in 4D

printing, which is considered as the future of manufac-

turing. Further, we conceptualize an idea surface lofting

from closed contours using MAXVP.

Rest of this paper is organized as follows: Related work

has been mentioned in Section 2. Some ground work re-

quired for the description of the randomized algorithm is

given in Section 3. Section 4 presents the incremental con-

struction of MINVP and MAXVP along with the complexity

analysis. Section 5 illustrates some of the experimental re-

sults. Correctness of the algorithms is established in Section

6. Applications of MINVP and MAXVP are elaborated in

Section 7. In Section 8, we reflect on various properties of

MINVP and/or MAXVP and conclude the paper.

2 Related Work

In 2008, Agarwal et.al [4] proposed various methods for

polygonization and polyhedronization of point sets. Specif-

ically in polyhedronization, they simplified Branko Grun-

baum’s [1] work on polyhedronization and showed that ev-

ery 3-dimensional point set admits a tetrahedralizable poly-

hedronization. An O(n1+ε) (where ε> 0) algorithm for com-

puting xy-monotonic and tetrahedralized polyhedronization

of a point set S in R
3 is also presented in [4]. Further, they

put forward four types of star shaped polyhedronizations all

of which enjoy several useful properties. They refer them

as hinge, orange, cone and pyramid polyhedronizations. All

the four allows for efficient point location queries (O(logn)
time for point location queries). Moreover, the last three gen-

erates tetrahedralization and all but cone polyhedronization

are Hamiltonian.

Among the four types of polyhedronizations defined by

Agarwal et.al [4], hinge polyhedronization produces poly-

hedra which allows for tetrahedralization whose dual is a

chain. This is called as serpentine polyhedronization. One

of the open problems posed by Agarwal et.al in their pa-

per [4] was on bounded degree serpentine polyhedronization.

Whether it is always possible to generate serpentine poly-

hedronization with bounded degree? G. Barequet et.al [3]

show that bounded degree polyhedronization for point sets in

general positions is always possible in R
3. He proposed an

O(n log6 n) randomized algorithm for bounded degree poly-

hedronization that has vertices with a degree of at most 7.

In [11], O’Rourke suggests that a minimal surface area

polyhedron will represent the most natural polyhedral model



of a given set of 3-dimensional points. An approximation al-

gorithm is presented for computing the polyhedron with the

minimal surface area. Basically, it starts from the convex hull

of the given point set and then shrinks towards the minimal

surface area polyhedron by employing a simple local trans-

formation called as flip transformation. However, a fixed ap-

proximation factor is not guaranteed by this algorithm which

is mentioned as the main drawback of this method [11].

Another work in this direction has been done by

Veltkamp [8]. He presents a method for constructing polyg-

onal or polyhedral boundary passing through all the points

in the given set based on a parameterized geometric graph

called as γ-neighborhood graph [8]. However, to the best

of our knowledge, apart from a preliminary work on vol-

ume constrained polyhedronization by the authors [12], there

does not exist any work which specifically addresses optimal

volume polyhedronizations.

3 Notations and Definitions

Let S={p0,p1,p2,...,pn−1} denotes a set of n points and

each point pi is represented by its x, y and z coordinates. We

assume that duplicate points are not present in the input set

S. Two sets are updated and maintained till the termination

of the algorithm. A Point set Pi−1 consists of all the random

points selected till the i− 1th iteration and a Face set F i−1

consists of all the faces that the current polyhedron has in

an arbitrary order. Each element in F i−1 is a triangle, △
(pl,pm,pn) where 0≤l≤i− 1, 0≤m≤i− 1, 0≤n≤i− 1 and

l6=m 6=n. In the ith iteration, polyhedron size is defined as the

number of points on the current polyhedron (Pi−1). Recall

that MINVP is always composed of triangular face. So if

polyhedron size is n then the size of face set is 2n− 4 [13].

We define different types of polyhedral faces for the con-

venience of presenting the algorithm. Let Pi−1 be a polyhe-

dron and p be a point to be inserted to Pi−1. Further consider

that T be the tetrahedron that p forms with one of the face of

Pi−1.

Definition 4. An anchoring face joins the newly formed

tetrahedron, T with the polyhedron Pi−1. In Figure 1, the

triangle with red edges constitutes the anchoring face.

Fig. 1. A polyhedron which illustrates different types of faces

Definition 5. A reference face is any face of the tetrahe-

dron T except the anchoring face. For eg. triangles with

blue edges represent reference faces in Figure 1.

Definition 6. A p face is any face of the polyhedron Pi−1

except the anchoring face. For eg. p faces are shown as

black edged triangles in Figure 1.

Definition 7. If a reference face f of T intersects with any

of the p faces (except when the f shares a common edge with

the neighboring p face of the anchoring face) then f is la-

belled as intersecting and subsequently T is called as an in-

tersecting tetrahedron.

If all the reference faces of a tetrahedron T , are non-

intersecting, then T is referred to as a non-intersecting tetra-

hedron. Intersections between triangular faces are deter-

mined using volume predicates [13]. Ray crossing method

[13] is used to check whether the selected random point p

is in the interior/exterior or on the boundary of the current

polyhedron Pi−1.

We denote the randomized approximation algorithm

for MINVP construction as RAA MINVP and the polyhe-

dron returned by RAA MINVP as RAND MINVP. Simi-

larly, RAA MAXVP is used as an abbreviation for random-

ized approximation algorithm for MAXVP construction and

the corresponding polyhedron as RAND MAXVP in the rest

of the paper.

4 The Algorithm

In this section, we describe the algorithms for mini-

mal and maximal volume polyhedronizations. MINVP and

MAXVP construction algorithms build the polyhedra by ei-

ther attaching or detaching tetrahedra in a greedy fashion

while keeping the required volume constraint as invariant.

However, starting point of both the methods differ. While in

MINVP construction, it is a random tetrahedron, MAXVP

construction uses the convex hull of the point set. The pro-

posed algorithms are fairly simple for implementation and

maintenance. An analysis of the worst case time complexity

of RAA MINVP algorithm is also presented in Lemma 4.1.

4.1 Randomized Minimal Volume Polyhedronizations

(RAA MINVP)

Initialization: The algorithm starts by constructing an

initial tetrahedron. The tetrahedron is formed by select-

ing four points uniformly at random from the point set S.

Tetrahedron is denoted by P3={p0, p1, p2, p3} (please note

that the subscripts are used to denote the randomly selected

points from the set S. The first randomly selected point is de-

noted by p0 and so on). P3 is used as the initial polyhedron,

with the face set F3={f0, f1, f2, f3}.

Iteration: Once the initial step of tetrahedron formation

is completed, the algorithm runs for n− 4 iterations. In each

of these iteration i, a point pi is selected uniformly at ran-

dom from the set S \Pi−1 and determines whether it lies in

the interior or in the exterior or on the boundary of the previ-

ous polyhedron Pi−1. After determining relative position of

pi with the previous polyhedron Pi−1, algorithm proceeds as

follows.



1. If the point pi lies in the interior Pi−1, then search for

the largest volume non-intersecting tetrahedron that the

point pi makes with the faces of Pi−1. Let us denote the

tetrahedron as Ti=(pp, pi, pq, pr) where pp, pq, pr∈Pi−1.

Remove the volumetric space bounded by Ti from the

polyhedron Pi−1. Update point set Pi−1 by adding

the point pi to form the new polyhedron Pi. Up-

date the face set F i−1 by adding three new reference

faces, △(pp, pq, pi), △(pq, pr, pi) and △( pr, pp, pi) of

the tetrahedron and deleting the old anchoring face,

△(pp, pq, pr) of the polyhedron to get the new face set

F i.

2. If the point pi lies outside the Pi−1, then search for the

smallest volume non-intersecting tetrahedron that the

point pi makes with the faces of Pi−1. Let us denote the

tetrahedron as Ti=(pp, pi, pq, pr) where pp, pq, pr∈Pi−1.

Add the volumetric space bounded by Ti to the polyhe-

dron Pi−1. Update point set Pi−1 by adding the point

pi to form the new polyhedron Pi. Update the face set

F i−1 by adding three new reference faces, △(pp, pq, pi),

△(pq, pr, pi) and △( pr, pp, pi) of the tetrahedron and

deleting the old anchoring face, △(pp, pq, pr) of the

polyhedron to get the new face set F i.

3. If the point pi lies on any face of previous polyhe-

dron Pi−1, then divide the face into three new faces

which will be added to the new polyhedron. Let the

point pi lies on the face, △(pp, pq, pr). Algorithm

updates the point set as Pi=Pi−1∪{pi}. The face set

will be updated as F i=F i−1-{(pp, pq, pr)}∪{(pp, pq, pi),

(pq, pr, pi), (pr, pp, pi)}.

4. If the point pi lies on any edge of previous polyhedron

Pi−1, then divide the adjacent faces of the edge into

two new faces resulting in the creation of four new

faces which will be added to the new polyhedron.

Let the adjacent faces of the edge pq on which the

point lies are △1(pp, pq, pr) and △2(pp, pq, ps). Al-

gorithm updates the point set as Pi=Pi−1∪{pi}. The

face set will be updated as F i=F i−1-{(pp, pq,pr),

(pp, pq, ps)}∪{(pp, pr, pi), (pq, pr, pi), (ps, pp, pi),

(ps, pq, pi)}.

Finalization: Once the iterations are completed, the algo-

rithm returns the final point set Pn−1 and face set Fn−1.

Sizes of Pn−1 and Fn−1 will be n and 2n− 4 respectively.

The boundary of the final RAND MINVP is composed

of triangular faces contained in Fn−1. Various stages in

RAA MINVP algorithm are illustrated in Figure 2 .

Lemma 4.1 computes the time and space complexity of

the RAA MINVP.

Lemma 4.1. RAND MINVP of a set S of n points in R
3 can

be constructed in O(n3) time using linear space.

Proof. There exists a loop for randomly picking the points

pi from the point set S \ Pi−1 which runs for n− 4 times.

In each iteration of this loop, another loop for find-

ing the smallest volume tetrahedron runs for 0 through

2i − 4. RAND MINVP is always composed of triangular

faces which implies that Euler’s formula can be applied to

Fig. 2. Illustration of RAA MINVP algorithm. (a) Point set S (b) Ini-

tial random tetrahedron P0 and S \P = {p,q} (c) Selected random

point q lies outside P0 and the associated non-intersecting tetrahedra

in green color (d) The smallest volume tetrahedron that q forms with

a face of P0 has been attached to form next polyhedron, P1 (e) Next

point selected, p lies inside P1 and associated non-intersecting tetra-

hedra in green color (f) The largest volume tetrahedron is removed to

obtain the final polyhedron, which is RAND MINVP of S.

RAND MINVP. For a n vertex RAND MINVP, there exists

2n-4 faces [13]. In the second loop, one more loop runs

for 2i− 5 times for checking for intersections of tetrahedron

with the current p faces except the anchoring face. So the

total time complexity is ∑n−1
k=4(2i−4)× (2i−5)=∑n−1

k=4(4i2 −
18i+ 20) which is equal to O(n3)+O(n2)+O(n)≃O(n3). So

the overall time complexity is O(n3). RAA MINVP utilizes

only two sets (Point set and Face set) of Θ(n) and Θ(6n−12)
for its operation. Hence it takes only linear space for the con-

struction of RAND MINVP.

Lemma 4.2. RAND MINVP of a set S of n points in R
3 is

always tetrahedralizable.

Proof. This property follows immediately from the construc-

tion of RAND MINVP. RAA MINVP starts with an initial

tetrahedron which is tetrahedralizable. Assume that we have

incrementally constructed a polyhedron P which is tetrahe-

dralizable till ith iteration. In i+ 1th iteration, if the selected

point is outside the current polyhedron, it adds a tetrahedron

to P which preserves the tetrahedralizable property of the

polyhedron. If the selected point lies on an edge, two tetra-

hedra whose faces share the edge are further divided into two

each, giving rise to four new tetrahedra (effectively two, as

four new tetrahedra replace the two old tetrahedra). similarly,

if the selected point lies on a face, three new faces induce

three new tetrahedra from the old tetrahedra. If the selected

random point is inside the current polyhedron, RAA MINVP

deletes a tetrahedron from the inner volumetric space of the

current polyhedron P. So the tetrahedralization structure of

the P may be redefined and this leads to the formation of a

new polyhedron which is tetrahedralizable.

Intersection checking employed in cases 1 and 2 of the it-

eration of RAA MINVP algorithm ensures that the resultant



polyhedron Pi in each iteration is simple and closed. Further,

it is trivial to observe that the cases 3 & 4 do not violate the

topology of Pi and hence RAND MINVP of any set of points

is always homeomorphic to a sphere.

4.2 Randomized Maximal Volume Polyhedronizations

(RAA MAXVP)

The method is similar to the RAA MINVP algorithm.

Algorithm starts with the convex hull of the point set. Con-

vex hull of the point set is constructed using the O(n2) in-

cremental algorithm presented in [13]. Once the convex hull

of the given point set is constructed, then in each iteration,

it selects one of the interior points (remaining points lying

inside the convex hull) uniformly at random. The selected

point is checked for the spatial containment in the previous

polyhedron (initially, it is the convex hull). If the point lies

in the interior of the previous polyhedron, then the smallest

volume non-intersecting tetrahedron that the selected point

forms with the faces of the previous polyhedron is removed

to generate the current polyhedron. Otherwise, i.e. if the

selected point lies external to the previous polyhedron, then

the largest volume non-intersecting tetrahedron that the se-

lected point forms with the faces of the previous polyhedron

is added to it to generate the current polyhedron. The steps

3 and 4 of the RAA MINVP is repeated, if the point lies on

any face or edge of the previous polyhedron.

Lemma 4.3. For any finite set of convex points, S ⊆R
3 and

| S |=n, RAA MAXVP always constructs an optimal maxi-

mum volume polyhedronization of S in O(n2) time.

Proof. This is obvious as RAA MAXVP algorithm starts by

computing convex hull of the given point set. For convex

point sets, the maximum volume polyhedronization is the

convex hull itself and this is computed using incremental al-

gorithm that runs in O(n2) [13].

It can be observed that, if all but one points are convex

in a point set S, then RAA MAXVP generates an optimal

volume polyhedronization. In such cases, RAA MAXVP

constructs convex hull and then interior point is attached

to the face with which it forms the smallest volume tetra-

hedron. The running time of RAA MAXVP algorithm is

O(n3). The analysis is similar to the running time analysis

of RAA MINVP algorithm including an extra cost of O(n2)
incurred from the construction of convex hull.

5 Experimental Results

Both the algorithms were implemented in C++ on MS

Visual Studio 2008. The results are generated as stl files

and viewed using SolidView 2011 3D modeling software.

Several experiments were conducted on different point sets

to evaluate the quality of RAA MINVP and RAA MAXVP

algorithms. We experimented on well defined point sets

such as platonic, prismatic, pyramid point sets and few

non-convex point sets from Princeton shape benchmark

(PSB).Both RAND MINVP and RAND MAXVP were gen-

erated for each of them and the generated results were ana-

lyzed for the optimality.

A machine having Intel core i5 processor with 2.40

GHz and 2GB RAM was used for performing computa-

tions. 20 trials were used to generate RAND MINVP

(RAND MAXVP) of each of the point sets. One trial con-

sists of 100 executions which implies that, for a point set,

the algorithm was run for 2000 times before making a con-

clusion on the upper bound (or lower bound) on the optimal

volume. It should be noted that some of the resulting poly-

hedron might not look like a closed one, which is basically

due to lack of good viewing direction for them. However,

we have verified that the resulting one is a polyhedron in the

real sense of it. We categorize point sets into convex and

non-convex point sets. The characterization is based on the

convex hull of corresponding point set, which is defined as

follows:

1. Convex point set-A point set S∈R
3 is said to be convex

if all the points in S are co-located on the convex hull of

S.

2. Non-convex point set-In a non-convex point set S, some

of the points lie inside the convex hull of S.

5.1 Standard Convex Point Sets

We conducted a study on the behavior of RAA MINVP

on platonic solid point sets which include tetrahedron(4

points), octahedron(6 points), cube(8 points), icosahe-

dron(12 points) and Dodecahedron(20 points). Since every

convex polytope can be tetrahedralized [14], RAND MINVP

is always generated for convex point sets. From the experi-

Fig. 3. RAND MINVP generated for convex point sets. (a) Tetrahe-

dral (b) Octahedral (c) Cube (d) Icosahedral and (e) Dodecahedral

platonic point sets. (f) Triangular (g) Square and (h) Pentagonal pris-

matic point sets. (i) Square (j) Hexagonal and (k) Octagonal pyramid

point sets.

ments, it seems to suggest that RAA MINVP generate opti-

mal MINVP for certain convex point sets such as tetrahedral,

octahedral and cubic ones. However, it should be noted that

there is no a priori data available on the optimal MINVPs

of icosahedral and dodecahedral point sets. Hence, we have

shown the polyhedra with the least volumes obtained in our

experiment (In Figures 3(a)-3(e)). RAA MAXVP algorithm



Table 1. Minimum volume table for various point sets. The edge

lengths of platonic solids used in our experiment are as follows:

Cube:8, Octahedron:
√

2, Icosahedron:2, Dodecahedron:
√

5 − 1.

All values given in the Table are in cubic units.
Trial No. Octahedron Cube Icosahedron Dodecahedron

1 1.000000 426.6667 5.64793 5.333193

2 1.000000 426.6667 9.804977 3.370587

3 1.000000 512 6.569188 5.647893

4 1.000000 426.6667 8.059731 4.921115

5 1.000000 426.6667 3.23599 7.272938

6 1.000000 512 1.745466 3.939772

7 1.000000 426.6667 9.550531 5.273342

8 1.000000 426.6667 8.471874 5.333197

9 1.000000 512 5.805292 3.175858

10 1.000000 512 7.138566 4.92126

11 1.000000 512 8.314388 4.823854

12 1.000000 512 5.393302 6.119998

13 1.000000 426.6667 2.824082 5.018406

14 1.000000 512 5.490474 4.41187

15 1.000000 426.6667 7.902322 4.823846

16 1.000000 426.6667 6.314587 2.88401

17 1.000000 426.6667 7.138478 4.606546

18 1.000000 426.6667 3.902739 2.824037

19 1.000000 512 6.726525 6.823735

20 1.000000 426.6667 8.059624 4.411965

Volume ≤ 1.000000 426.6667 1.745466 2.88401

Convex hull Volume 1.333 512 17.4528 14.4717

generated the platonic solids itself for these point sets.

Table 1 reports on the volumes of polyhedra obtained in

20 trials for platonic point sets. An upper bound on the vol-

ume of optimal polyhedra are listed in the second last row.

Last row lists corresponding convex hull volumes of each

point set. For octahedral point set, we get a variance of zero

for the set of volumes implying that a polyhedron with con-

stant volume was generated for the entire experiment. For

cube point set, we get only two polyhedra-convex hull (cube)

and a polyhedron with volume less than cube volume. How-

ever, experiments on icosahedral and dodecahedral point sets

resulted in a number of different polyhedra as indicated by

fourth and fifth columns of Table 1.

We considered the prismatic point sets like triangu-

lar prismatic (6 points), square prismatic (8 points) and

pentagonal prismatic point sets. The results obtained by

RAA MINVP algorithm is shown in Figures 3(f)-3(h).

RAA MAXVP algorithm generated the convex hulls for

these point sets and the convex hulls of these points sets are

prisms. It should be noted that the RAND MINVP of tri-

angular prismatic point set is the triangular prism itself as

shown in Figure 3(f).

For pyramid point sets, both RAA MINVP and

RAA MAXVP algorithms generated the pyramid itself as

shown in Figures 3(i)-3(k).

5.2 Non-convex Point Sets

In 1992, Ruppert et.al. [15] showed that it is NP-

complete to decide whether a polyhedron can be tetrahedral-

ized or not. Further, it is not so straightforward to tetrahedral-

ize non-convex polyhedra without adding Steiner points and

hence MINVP and MAXVP construction for non-convex

point sets is extremely harder. However, we experimented

with non-convex points of models taken from PSB. Figure

Fig. 4. RAND MINVPs and RAND MAXVPs generated for some

non-convex point sets taken from Princeton shape benchmark. Fig-

ures 4(a), 4(d), 4(g) & 4(j) show the models, Figures 4(b), 4(e), 4(h) &

4(k) show the RAND MINVPs and Figures 4(c), 4(f), 4(i) & 4(l) show

corresponding RAND MAXVPs.

4 illustrates the RAND MINVPs and RAND MAXVPs for

point sets of models taken from PSB. Sizes of point sets in

Figure 4(a), 4(d), 4(g) and 4(j) are 41, 22, 48 and 40 respec-

tively. From Figure 4, it is clear that even if the models are

non-manifolds (Figure 4(j)), corresponding RAND MINVP

and RAND MAXVP are always 2-manifolds as shown in

Figures 4(k) & 4(l). Further, we also experimented with ran-

domly generated point sets of appreciable sizes (point set of

sizes 1000 and 1500 ). The polyhedra with an upper bound

on the minimal volume from our experiments are shown in

Figures 5(a)-5(d).

5.3 Validation of the Algorithms

In order to validate the results generated by

RAA MINVP algorithm, we implemented the brute

force algorithm (BFA) for minimum volume polyhedroniza-

tion of point sets. The brute force method uses an exhaustive

searching for the set of valid polyhedra and picks up the

polyhedron with the least volume as explained in Section

1.1. The inherent limitation of this exhaustive searching

method is the exponential time it incurs (Θ(
( (n

3)
2n−4

)

) [8]). For

instance, while the point set of size 5 has 210 combinations



(a) 300 (b) 500 (c) 1000 (d) 1500

Fig. 5. RAND MINVPs generated for large sized random Point Sets.

Point set sizes have been mentioned along with the sub figures.

of triangular faces to be generated, point set of size 6

generates 125970 combinations of triangular faces thereby

scaling the running time by a factor of 600. Hence we limit

our validation experiment to point sets of smaller sizes (In

fact we consider various point sets of size up to 7).

Table 2. Running times of RAA MINVP and brute force algorithm for

various point sets. Times are reported in seconds (s), minutes(m),

hours(h) and days(d).

Serial Point set RAA MINVP BFA

No. Size

1 5 2.007 s 2.010 s

2 6 2.048 s 5.167 s

3 7 2.148 s 47 m 55.76 s

4 8 3.425 s 265 d 2 h 6 m 40.45 s∗

For all the point sets that we considered, RAA MINVP

generates an optimal minimal volume polyhedron. This is

verified by the results generated by the brute force algorithm.

However, RAA MINVP may take several executions to gen-

erate the optimal results. In our experiment, each trial con-

sists of hundred executions of RAA MINVP and on an aver-

age, we obtained the optimal result in 2-3 trials. Table 2 re-

ports the running times of BFA and RAA MINVP for point

sets of sizes 5 to 8. Time taken for the total number of trials

is reported in the case of RAA MINVP in Table 2. It is to be

noted that, the running time of BFA for point set of size 8 is

approximate and computed by multiplying the time taken for

generating one combination in the previous cases (point sets

of size 5, 6 & 7) by the number of possible combinations for

point sets of size 8. From Table 2, one can observe the huge

difference between the times taken by BFA (≈ 265days ) and

RAA MINVP (3.425 seconds) for point set of size 8.

Figure 6 shows the optimal minimal volume polyhe-

dronizations of some point sets of sizes 5 to 7. In each of

these cases (Figures 6(a)-6(e)), the polyhedra generated by

both RAA MINVP and brute force method were identical in

terms of shape and volume.

Fig. 6. Optimal minimal volume polyhedronizations generated by

RAA MINVP for various point sets of sizes 5 (Figures 6(a)-(c)), 6

(Figure 6(d)) and 7(Figure 6(e)). All these results have been verified

for the optimality using brute force algorithm.

6 Correctness of Algorithms

In RAND MINVP and RAND MAXVP algorithms, if

none of the faces is completely visible from the selected

point, an attempt to add or remove a tetrahedron to current

polyhedron will result in a non-simple polyhedron. In such

situations, the algorithms have to be restarted in order to ob-

tain a new polyhedronization. Thus it becomes crucial to

address the following questions in order to establish the va-

lidity of the given approaches.

1. For any point set S ⊆ R
3, does there exist an ordering

of points in S, which when subjected to the rules of the

algorithms generates a polyhedronization?

2. Does there exist an ordering of points upon which

RAA MINVP (RAA MAXVP) generates optimal (min-

imum/maximum) volume polyhedronization?

In this section, we address these questions in detail. For con-

venience, we use the term valid sequence (πv) to refer to

the sequence which generates a polyhedron and optimal se-

quence (πo) to refer to the sequence which generates the op-

timal polyhedron. For the ease of presenting the idea, here-

after we refer to RAA MINVP algorithm though most of the

statements are equally applicable to RAA MAXVP.

(a) 2D (b) 3D (c)

Fig. 7. Illustration of trap regions in 2 and 3 dimensions. Figure 7(c)

shows the shape of the trap region of the configuration in Figure 7(b).

It is to be noted that planes in Figure 7(b) do not intersect each other.

6.1 Existence of πv

We start by illustrating a failure case of RAA MINVP

algorithm which use the concept of trap regions in polyhe-



Fig. 8. Illustration of local rearrangement in 3D with minimal set of blocking points, B = {c,d} and the trapped point q (i). Bird’s eye view of

the polyhedron with few faces from the top and bottom removed. (ii). Top view (iii). Bottom view. Figures 8(iv)-(vi) illustrate the rearrangement

from the top view with the removed/added tetrahedra zoomed in.

dra and throw some light on how it can be resolved by local

rearrangements.

Trap regions A trap region in a polyhedron is a region in

R
3 from where no polyhedral faces are completely visible.

Formally, one can define the trap region of a polyhedron as

the following:

Definition 8. Trap region (T (P)) of a polyhedron, P.

T (P) = {x ∈ R
3 | x ∈ R

3 and no faces of P are completely

visible from x}.

Trap region exists for certain polygons and polyhedra.

For e.g. a trap region in 2D is illustrated Figure 7(a). Figure

7(b) illustrates a configuration of planes which forms a trap

region in the interior of the arrangement. Front plane (P4),

back plane (P5) and side plane (P3) are perpendicular to xy-

plane and top and bottom planes are parallel to the xy-plane.

Even though, planes do not intersect each other, adjacent (in

a logical sense) planes are very close to each other. It should

be noted that albeit three planes with a suitable alignment

with xy-plane is sufficient to form a trap region, for simplic-

ity and ease of visualization we use the configuration with

5 planes to illustrate the idea. The trap region inside such

a configuration assumes an approximate shape of triangular

prism (Figure 7(c)) which is quite evident from the arrange-

ment in Figure 7(b). We assume that all five planes are part

of five polyhedral faces.

In the context of RAA MINVP algorithm, any point

lying inside a trap region will not be able to form non-

intersecting tetrahedra with any of the polyhedral faces and

hence the algorithm will get stuck. The points, edges and

faces from the polyhedron P, which block the visibility of a

point lying inside the trap region, with the polyhedral faces

of P are referred to as blocking points, blocking edges and

blocking faces respectively. A minimal set of blocking

points is the set of of minimum number of points, upon re-

moving which, at least one face of Pn−1 is completely visible

from q.

Observation 6.1. For any finite set of points, S ⊆ R
3 and

| S |=n, the only hindrance for polyhedronization of S us-

ing RAA MINVP is the presence of trap regions containing

points from S \Pi−1 at some iteration i of RAA MINVP.

Local rearrangement A local rearrangement is a way of

resolving trap regions containing input points. The process,

first detaches the minimal set of blocking points from the

polyhedron and then attaches the trapped point to the re-

sultant polyhedron, followed by attaching each point of the

minimal set of blocking points. An illustration of local rear-

rangement for a point q lying in the trap region of a polyhe-

dron is shown in Figure 8. Minimal blocking set, B = {b,c}
is also shown in Figure 8. To effectively convey the idea

and to avoid any clutter in the image, we have used different

views of the polyhedron (Figure 8(i)-(iii)). Figures 8(iv)-(v)

illustrate the the sequence depicting the final polyhedroniza-

tion of S. Figure 8(iv) represents the polyhedronization of

the remaining points, Pr (excluding B and q). Then q is at-

tached to Pr followed by b and c, always keeping the volume

constraint as invariant, to obtain the final polyhedronization

as illustrated in Figure 8(v) and Figure 8(vi) respectively.

Since the primary goal of this work is polyhedroniza-

tion of point sets, it is extremely important to establish that

RAA MINVP is capable of generating a polyhedronization

for any three dimensional point set S. Lemma 6.2 establish

the claim through a delicate construction of final polyhedron

through local rearrangements when a point gets trapped in

a trap region. Observation 6.1 indicates that the removal of

trap regions containing points from S\P is inevitable in poly-

hedronizing a point set. We try to show that there exists at

least one sequence which is free of trap regions in Lemma

6.2.



Lemma 6.2. For any finite set of points, S⊆R
3 and | S |=n,

there exists an ordering of points, πv which when used by

RAA MINVP algorithm generates a polyhedronization of S.

Proof. The proof is by induction on | S |=n. We try to show

at least one valid sequence, πv for each of the cases. For

n=4, it is trivial to find that πv=any permutation of points in

S and for n=5, πv consists of points on the convex hull of S

followed by the interior point.

We hypothesise that claim is true for all sets of size < n.

Consider the case where a point q ∈ S lies in T (Pn−1) where

Pn−1 is a polyhedron of n− 1 points of S and | S |= n. For

instance, q lies somewhere in the triangular prismatic trap re-

gion of Figure 7(b). Let Pn−1 be decomposed into 2 sub sets

of points, {Sr,B} where B = {b1,b2, ...bm}, is the minimal

set of blocking points and Sr = Pn−1 \B. Using local rear-

rangements, the construction proceeds by first polyhedroniz-

ing Sr to get Pr. Hypothesize ensures that points in Sr where

| Sr |< n, has a valid ordering which leads to polyhedroniza-

tion. Then, q is attached to Pr followed by attaching points

in B keeping the volume constraint as invariant. Hence, for

such a configuration, πv consists of ordering which leads

to the polyhedronization of Sr, followed by q, followed by

b1,b2, ...bm. During the construction if trap regions arise

again due to any point from B, a similar local rearrangement

can be done. Since, the local rearrangements are possible as

illustrated in Figure 8, we conclude that there exists at least

one valid sequence (πv) for any point set.

Moreover, polyhedronizations generated for larger point sets

(refer Figure 5) reassures Lemma 6.2.

Corollary 6.3. For any finite set of points, S ⊆ R
3 and

| S |=n, there exists an ordering of points, πv which when

used by RAA MAXVP algorithm generates a polyhedroniza-

tion of S.

A similar line of arguments used in Lemma 6.2 hold good

for corollary 6.3.

6.2 Analysis on Optimal Solutions

Both RAA MINVP and RAA MAXVP generate poly-

hedra which are topologically equivalent to a sphere, oth-

erwise it can not enclose a volume (This property is being

referred to as homeomorphic property). The tetrahedraliza-

tion of octahedral point sets results in four tetrahedra (Refer

Figure 9(a)). It should be observed that the optimal solution

in the case of octahedral point sets contains three tetrahedra

(devoid of any one tetrahedron. Let it be ABFD). Removal

of a second tetrahedron from the resultant tetrahedralization

will lead to either disconnected vertex (in the case of ABDE

or BDCF) or violates the homeomorphic property (BCDE).

Figure 9(b) shows the tetrahedralization of cube point

sets with one tetrahedron removed (ABDH). Further removal

of any of the remaining five tetrahedra will lead to either dis-

connected vertices or violation of homeomorphic property.

For example, removing tetrahedra BDCH and BAHE will

disconnect the vertices D and A respectively. Removal of any

of the remaining three tetrahedra (HCGB, HGFB or FBEH)

Fig. 9. Optimal minimal volume polyhedronizations of various point

sets. (a) Octahedral, (b) Cube, (c) Square pyramid, (d) Triangular

prismatic point sets.

will disturb the polyhedron property. So the optimal minmal

volume polyhedron of cube point set consist of five tetrahe-

dra (we follow the tetrahedralization of convex polyhedra).

A similar argument holds good for the optimal solution of

the square prismatic point set as well.

Tetrahedralization of triangular prism contains three

tetrahedra (please refer Figure 9(d)). Removal of any of the

tetrahedra will result in either disconnected vertices or vio-

lation of homeomorphic property. Here, removal of ACDF

or ABCE will lead to the disconnected vertices D and B re-

spectively. The removal of tetrahedron ACEF will violate

the homeomorphic property. So the minimal volume polyhe-

dronization of triangular prismatic point set is the triangular

prism.

Tetrahedralization of square pyramid point set consist of

two tetrahedra. Removal of any of these tetrahedra will make

some points disconnected. In Figure 9(c), removal of tetra-

hedron ABCE will make vertex B disconnected, whereas re-

moval of ACDE will make D disconnected. So the optimal

minimal volume polyhedronization of square pyramid point

set is the square pyramid itself.

This argument is applicable to any pyramid point set.

The number of tetrahedra in an n-pyramid point set tetrahe-

dralization is Θ(n−2). A result that can be directly extended

from the number of triangulations of a convex polygon (base

polygon of the pyramid is always convex). Each triangle in

the triangulation of the base polygon (n-gon) gives rise to a

tetrahedron in the tetrahedralization of n-pyramid. Removal

of any of these tetrahedra will either disconnect a vertex or

violate the homeomorphic (to sphere) property of the resul-

tant polyhedron.

A case by case analysis on the optimal solutions of large

sized and/or non-convex point sets is not feasible. Given the

randomness in the construction and the complex nature of

the problem, it’s extremely difficult to theoretically establish



that there exists a πo for any given point set. So we conducted

experiments on well defined smaller point sets and analyzed

the optimal solutions of some well-defined point sets (Fig-

ure 9). From the results obtained so far, we can conjecture

that RAA MINVP/RAA MAXVP has the potential to gener-

ate optimal solution for a general point set (Conjecture 6.4).

However, confirming this statement would require compar-

ing this with brute force algorithm for those sets, yet another

infeasible task, as brute force approach takes longer time to

run even for five points.

Conjecture 6.4. For any finite set of points, S ⊆ R
3 and

| S |=n, there exists an optimal ordering of points (πo), upon

which RAA MAXVP (correspondingly RAA MINVP) gener-

ates an optimal maximum (correspondingly minimum) vol-

ume polyhedronization.

7 Potential Applications

In this section, we discuss potential applications of

MINVP in 4D printing and MAXVP in surface lofting.

4D Printing: In 4D printing, 3D objects are printed using

a combination of smart materials and standard printing ma-

terial and then, the printed material is self-assembled into a

pre-programmed object having different shape or size. The

whole concept is possible with the advent of composite mate-

rial that can use shape memory to transform an item printed

in 3D by allowing it to then change into a new a different

shape or size. 4D printing has potentially huge benefits,

from airplane wings that change form in flight to furniture

or buildings that self-assemble and reassemble for different

functions [16]. Manufacturers are particularly interested in

how 4D printing can reduce their manufacturing and ship-

ping costs. Adaptive products that can be manufactured in

a relatively small space and shipped to the consumer, where

they will change into their final forms, will save manufactur-

ers money, space, time and shipping expenses.

(a) Tesseract (b) Unfolded1 (c) Unfolded2

Fig. 10. Illustration of how minvp can reduce the physical space in

4D printing. Assuming a volume of V to each cube, unfolded tesser-

act in Figure 10(b) occupies a volume of 8V whereas the one in

Figure 10(c) occupies a volume of 6.6V .

Apart from manufacturing 3D unfolded object in a rela-

tively small space, keeping minimum volumes for each 3D

sub part will further reduce the space by a large amount.

For instance, consider a tesseract that consists of 8 cubes

shown in Figure 10(a). Let the volume of each cube be V .

The unfolded tesseract in Figure 10(b) occupies a volume of

8V . On the contrary, if the minimum volume polyhedron

of cube point set has been used, the unfolded tesseract (Fig-

ure 10(c)) occupies only a physical space of approximately

6.6V (A cube can be decomposed into 5 tetrahedra as shown

in Section 6.2 and therefore, each decomposed tetrahedron

occupies approximately V
5

, leading to an approximate vol-

ume of 4V
5

for a MINVP). This is a significant space re-

duction while manufacturing complex and large objects hav-

ing huge volumes. Further, such a volume reduction could

help space agencies to reduce overall costs for sending large

printed parts to outer space and let the parts assemble them-

selves into desired object and shape. It is to be noted that

the fourth dimension in 4D printing is the ability of the 3D

printed object to change. However, we purposefully consid-

ered a 4D object (tesseract) to point out the enormous poten-

tials of minimum volume polyhedronization in 4D printing

technology.

Surface Lofting: Surface lofting from a series of planar

contours arises in many fields such as medical imaging, dig-

itization of objects and geographical information systems.

Data obtained by medical imaging equipments, range sen-

sors or elevation contours are interpolated to visualize and

reconstruct human organs, CAD models and terrain surfaces

[10]. We conceptualize a simple surface lofting technique

using maximum volume polyhedronization of points sam-

pled from adjacent contours. The technique consists of two

stages: a user-assisted pre-processing and surface lofting. In

the pre-processing step, the user can suitably group contours

belonging to different segments of the 3D model such that

two attached segments have one or more common contours

(Figure 11(b)). Each segment, Ri is then provided with a

direction to process the member contours. Using a random

sampling algorithm, each contour is converted to the corre-

sponding point set, denoted by Ci.

During the surface lofting step, each pair of adjacent

point sets, Ci and Ci+1 is interpolated first through maximum

volume polyhedronization, Mi. Then, the union of all Mi

will be taken to get the required surface. The pseud-code of

the surface lofting stage is presented in Algorithm 1. Figure

11 shows that surface lofting using MAXVP has the ability

to reconstruct shapes with genus such as teapot. If the in-

put consists of only convex contours, the proposed technique

guarantees a piece-wise linear surface reconstruction. This

guarantee stems from the fact that adjacent convex contours

generates only convex point sets and RAA MAXVP assures

to generate optimal MAXVP for convex point sets (due to

Lemma 4.3).



Algorithm 1: Surface loft(I)

Input: A set I of n convex, planar and closed

contours grouped into m segments, each with

a processing direction

Output: Surface SURF lofted from I.

1 Randomly sample each contour to get the associated

point set, denoted by Ci;

2 for each segment Ri do

3 for each adjacent pair (Ci,Ci+1) taken in the

processing direction do

4 Mi = RAA MAXVP(Ci ∪Ci+1);
5 end

6 end

7 SURF =
⋃n−1

i=1 Mi;

8 Return SURF;

(a) (b)

(c) (d)

Fig. 11. Illustration of surface lofting from point set sampled from

contours of teapot. (a). Point set, (b). Points with additional segmen-

tation (indicated by green colored polygons) and processing direction

(shown in red lines with black arrow head) information, (c). Result

after lofting few segments and (d). Union of all lofted segments rep-

resenting the teapot model.

8 Concluding Remarks

We have presented randomized approximation algo-

rithms for constructing tetrahedralizable minimal (corre-

spondingly maximal) volume polyhedron enclosing a given

point set in 3D. The problem of MINVP and MAXVP con-

structions are NP-hard problems and hence no exact algo-

rithms of sub-exponential running times are known for these

problems. To the best of our knowledge, this is the first prac-

tically implementable algorithm for MINVP and MAXVP

of a given set of points in 3-space. Our experimental re-

sults show that both RAA MINVP and RAA MAXVP can

be used for polyhedronization of three dimensional point

sets of appreciable sizes. We list three basic properties

of RAND MINVPs (and RAND MAXVPs) without formal

proof here.

1. Non-uniqueness of RAND MINVP-For a given point

set S in R
3 the RAND MINVP may not be necessarily

unique. This observation is made on the basis of our

experiments on cube (and octahedron) point sets. How-

ever, generated RAND MINVPs of cube point set were

found to be automorphic to each other.

2. Boundary is composed of triangular Faces- Concep-

tually, RAA MINVP proceeds by adding or deleting

tetrahedra. At programming level, this is essentially

implemented by adding three new triangular faces at

the expense of an existing triangular face of the cur-

rent polyhedron and hence the final polyhedron gener-

ated consists of only triangular faces.

3. Maximum vertex degree-Given a set S of n points, n−
1 of them are coplanar and a point p in space. MINVP

can be constructed as follows. Let Q be the triangulated

minimal area polygon of n−1 points. Connect vertex of

Q to the point p in space which makes the vertex degree

of p to be n− 1.

It is perhaps worth noting that, for a related problem on

computing the exact arbitrarily-oriented minimum-volume

bounding box of a set of n points in R3, initially O’Rourke

presented an algorithm [17] that runs in O(n3) time (subse-

quently, improvement in complexity has been attained [18]).

Also, for general point sets, as constant factor approximation

has proven to be difficult even for a 2D version (minimal area

polygon) [7], it is likely that the problems MINVP/MAXVP

could end up in similar fate. Two potential applications (4D

printing and surface lofting) of volume constrained polyhe-

dronizations have been discussed. It remains to be proved

or disproved the conjecture on optimal sequences. Further

work is being carried out on improving the time complexity

of the algorithms.
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