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One of the methods for calculating time propagators in quantum mechanics uses an expansion of

e2iĤt/\ in a sum of orthogonal polynomial. Equations involving Chebychev, Legendre, Laguerre,
and Hermite polynomials have been used so far. We propose a new formula, in which the propagator
is expressed as a sum in which each term is a Gegenbauer polynomial multiplied with a Bessel
function. The equations used in previous work can be obtained from ours by giving specific values
to a parameter. The expression allows analytic continuation from imaginary to real time,
transforming thus results obtained by evaluating thermal averages into results pertaining to the time
evolution of the system. Starting from the expression for the time propagator we derive equations
for the Green’s function and the density of states. To perform computations one needs to calculate
how the polynomial in the Hamiltonian operator acts on a wave function. The high order
polynomials can be obtained from the lower ordered ones through a three term recursion relation;
this saves storage and computer time. As a numerical test, we have computed the bound state
spectrum of the Morse oscillator and the transmission coefficient for tunneling through an Eckart
barrier. We have also studied the evolution of a Gaussian wave packet in a Morse potential well.
© 2002 American Institute of Physics. @DOI: 10.1063/1.1425824#

I. INTRODUCTION

To solve time dependent problems in quantum mechan-
ics we must find an accurate and numerically efficient repre-

sentation of the propagator Û(t)5e2iĤt/\. Here Ĥ is the
Hamiltonian of the system, t is time and \ is Planck’s con-
stant. There are many methods for achieving this goal.1–44

One approach1,2 is based on Campbell–Baker–
Hausdorff3,45,46 formula, which provides an equation for the
short-time propagator Û(t) that is easy to evaluate numeri-
cally. To obtain the wave function at the time t5nt , one
applies Û(t)n to the initial wave function.

A second method expresses the propagator in terms of
powers of the Hamiltonian, calculated by a recursion proce-
dure that obtains Ĥn from Ĥn21 and Ĥn22. This recursive
calculation is essential: it saves storage and diminishes the
computer power needed in the calculations. Examples of
such calculations are the Recursive Residue Generation
Method developed in Wyatt’s group29,30 and the method of
Park and Light.16 Both use the Lanczos procedure47 as their
main computational tool.

In a third class of methods, which is the subject of our
paper, the propagator is expressed in a ‘‘degenerate kernel’’
form,48

Û~ t !5e2iĤt/\
5 (

m50

n

Pm~Ĥ !gm~ t !. ~1!

Here Pm(Ĥ) is a polynomial of order m and gm(t) is a func-
tion of time. The number n of terms in the sum depends on
the polynomial used and on the length of time for which the
propagator is needed. This type of formula has been used by

Tal Ezer and Kosloff,7,8 DePristo, Haug, and Metiu,36 Kouri,
Hoffmann and their co-workers,17–27 Hu,42 and by Vijay
et al.43 It has several advantages. ~1! The polynomials
Pm(Ĥ) used in it are such that Pm(Ĥ) can be calculated
from Pm21(Ĥ) and Pm22(Ĥ). This saves storage and speeds
up the calculation. ~2! The representation of Û(t) is analytic
with respect to time: the propagator for real time can be
obtained from the propagator for imaginary time,7,36 if the
latter is represented in the form of Eq. ~1!. Since imaginary
time propagators can be calculated for many degrees of free-
dom, by Quantum Monte Carlo, this may provide a method
for calculating real time propagators for systems with many
degrees of freedom.36 ~3! By using Fourier transforms with
respect to time, the propagator can be connected to the
Green’s function G(E)5(E2Ĥ)21 and to the density of
states r(E)5d(E2Ĥ). When the transform can be per-
formed analytically, one obtains for G(E) and r(E) an ex-
pression of type Eq. ~1!. The methods based on Eq. ~1! can
also be used for the time dependent Hamiltonian if one uses
an extended Hilbert space in which time is treated like a
space coordinate.11,31

Past applications of Eq. ~1! have been used for Pm

Chebyshev,8 Legendre,23,36 Laguerre,42 and Hermite43 poly-
nomials. In this paper we derive a more general formula of
type Eq. ~1! for U(t), G(E), and r(E), in which Pm is a
Gegenbauer polynomial and gn(t) is proportional to a Bessel
function. The equations used in previous work can be ob-
tained from ours by giving particular values to a parameter.

In Sec. II, we derive the new equation for the evolution
operator and show how various special cases can be obtained
from it. Derivations of the equations for the density of states
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and the Green’s function are presented in Secs. III and IV,
respectively. The quantum propagator in complex time is ex-
plicitly worked out in Sec. V, using Chebyshev polynomials
as an example. A few simple applications are made in Sec.
VI. Their purpose is to illustrate the accuracy and the con-
vergence of the method. A summary can be found in Sec.
VII.

II. TIME PROPAGATION

For a time independent Hamiltonian Ĥ the wave func-
tion uc(x ,t)& at time t is obtained from the initial wave func-
tion uc(x ,0)& by using

uc~x ,t !&5e2iĤt/\uc~x ,0!& , ~2!

where e2iĤt/\ is the time evolution operator in the Schrö-
dinger representation. In what follows we are performing
formal manipulations using functions of the Hamiltonian op-
erator. All these functions are defined by the spectral decom-
position,

f ~Ĥ !uc ,0&5 (
n50

N

uEn& f ~En!^Enuc~x ,0!&. ~3!

The ketuEn& is an eigenfunction of the Hamiltonian Ĥ corre-
sponding to the eigenvalue En and uc(x ,0)& is the initial state
of the system. Equation ~3! contains only those eigenstates of
the Hamiltonian that overlap with the initial wave function.
This equation can be used for scattering wave functions if a
box normalization is employed.

Our strategy is to find a convenient representation of
e2iEnt/\ of the form,

e2iEnt/\
5 (

m50

`

gm~ t !Pm~En!. ~4!

If we use for f in Eq. ~3! f (Ĥ)5e2iĤt/\ and in the resulting
expression we replace e2iEnt/\ with Eq. ~4!, we obtain

e2iĤt/\
5 (

n50

N

uEn& (
m50

`

gm~ t !Pm~En!^Enuc~x ,0!& . ~5!

Interchanging the sums and using the definition,

Pm~Ĥ !uc ,0&5 (
n50

N

uEn&Pm~En!^Enuc~x ,0!&, ~6!

allows us to write Eq. ~5! as

e2iĤt/\uc ,0&5 (
m50

`

gm~ t !Pm~Ĥ !uc~x ,0!&. ~7!

The right-hand side of Eq. ~7! is now well defined, since
there is no ambiguity in the meaning of polynomials of the
Hamiltonian. However, since we use the spectral decompo-
sition in the derivation, we must make sure that the polyno-
mial Pm(En) is well defined. If we use Chebyshev or Leg-
endre polynomials, the argument En must take values
between 21 and 1. To ensure this, we scale the original
Hamiltonian. We have already argued that because the propa-
gator is applied to the initial state uc(x ,0)& the range of
values of En is limited. Let Emax be the largest value of En

needed in the expansion of the propagator, in a formula of
the type shown in Eq. ~3!, and Emin the smallest. Then, the
eigenvalues Ēn of the Hamiltonian Ĥsc defined by

Ĥ[DlĤsc1l̄ ~8!

take values between 21 and 1. Here Dl5(Emax2Emin)/2
and l̄5(Emax1Emin)/2.

After this preparation we can proceed now to derive Eq.
~14!, which is the key formula of this paper. We first expand
the evolution operator in a power series,

S tDl

\
D n

e6iĤt/\
5e6il̄t/\ (

n50

`
~6i !n~Ĥsc!n

n! S tDl

\
D n1n

.

~9!

The reason for multiplying by the factor (tDl/\)n, where n
is an arbitrary parameter, will be clarified later. We now sub-
stitute the following Bessel function @Jn(Z)# expansion of a
power49,50

Zm
52m(

k50

`
~m12k !G~m1k !

k!
Jm12k~Z ! ~10!

@where G(m1k) is the Gamma function# in Eq. ~9! to obtain,

S tDl

\
D n

e6iĤt/\
5e6il̄t/\ (

n50

`

(
k50

`
~6i !n~Ĥsc!n

n!

3

2n1n~n1n12k !G~n1n1k !

k!

3Jn1n12kS tDl

\
D . ~11!

In this expression we rearrange the double infinite summa-
tion in Eq. ~11! by setting n5m22k , to obtain

S tDl

\
D n

e6iĤt/\
5e6il̄t/\ (

m50

`

(
k50

m/2
~6i !m22k~Ĥsc!m22k

k!~m22k !!

32n1m22k~n1m !G~n1m2k !

3Jn1mS tDl

\
D . ~12!

Now the summation over the index k in Eq. ~12! is identified
as the coefficient of am in the expansion of (122aĤsc

1a2)2n in ascending powers of a. This is also known as
one of the definitions of Gegenbauer’s ultraspherical polyno-
mial, Cm

(n)(Ĥsc), which, in turn, is related to the symmetric
Jacobi polynomial, Pm

(a ,a)(Ĥsc), as given below,50,51

Cm
~n !~Ĥsc!5 (

k50

m/2
~21 !k2m22kG~n1m2k !~Ĥsc!m22k

~m22k !!k!G~n !

5

G~m12n !G~n11/2!

G~2n !G~m1n11/2!
Pm

~n21/2,n21/2 !~Ĥsc!.

~13!

Here n is restricted to be greater than 21/2. We see that the
introduction of the factor (tDl/\)n in Eq. ~9! helps us iden-
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tify the associated orthogonal polynomial in the expansion of
the propagator. The final expression for the time evolution
operator, expressed in terms of ultraspherical Gegenbauer
polynomials, is

e6iĤt/\
5S 2\

tDl
D n

e6il̄t/\G~n ! (
m50

`

~6i !m~m1n !

3Jm1nS tDl

\
DCm

n ~Ĥsc!. ~14!

This is the central equation of this paper.
By using Eq. ~13! we can also express the time propa-

gator in terms of symmetric Jacobi polynomials as

e6iĤt/\
5Ape6il̄t/\S \

2tDl
D a11/2

3 (
m50

`

~6i !m~2m12a11 !
G~m12a11 !

G~m1a11 !

3Jm1a11/2S tDl

h
D Pm

~a ,a !~Ĥsc!, ~15!

where a(5n21/2) is restricted to be greater than 21. Par-
enthetically, we note that Eq. ~14! may also be considered as
an expansion of planewaves in terms of spherical harmonics
in d-dimensions, where d52(n11).52

We now briefly discuss the convergence properties of
Eq. ~14!. It is well known53 that the series, SpCp

(n)(cos u)lp

is absolutely convergent if ulu<1; thus the series in Eq. ~14!
can always be made convergent by taking enough terms. As
m→` , Jm(Z) behaves54 as 1/A2pm(eZ/2m)m. Thus, (m

1n) Jm1n(tDl/\) factor in Eq. ~14! can be made exponen-
tially vanishing if (2p/n)1/nn is greater than eZ/2; that is,
the coefficient of the ultraspherical polynomials in Eq. ~14!
can be made less than unity, when tDl/\ is smaller than the
order, (m1n), of the Bessel function. We thus see that the
series Eq. ~14! eventually converges and the convergence is
determined by the factor tDl/\5t(Emax2Emin)/2\ . The
convergence is controlled by the difference between the
highest energy and the lowest energy of the energy eigen-
states contained in the initial wave function, uc(x ,0)&. In the
numerical tests we have found that the parameter n should
not be large. We will examine the choice of n for a model
system later.

We now comment on the actual implementation of Eq.
~14! or ~15!. We can absorb the Gamma functions and other
factors appearing in Eq. ~15! into the well-known three-term
recursions possessed by the Jacobi polynomials,49 m(m

12a ) Pm
(a,a) ( Ĥsc) 5 (m1a) @(2m12a21)ĤscPm21

(a,a)(Ĥsc)2 (m
1a21)Pm22

(a,a)(Ĥsc)#. We can then conveniently write the evo-
lution operator as follows:

e6iĤt/\
5e6il̄t/\S 2\

tDl
D a11/2

(
m50

`

~6i !m

3Jm1a11/2S tDl

\
DXm

~a !~Ĥsc! ~16!

with the following recursion relation for Xm
(a)(Ĥsc):

Xm
~a !~Ĥsc!5

2m12a11

m
F ĤscXm21

~a ! ~Ĥsc!

2

m12a21

2m12a23
Xm22

~a ! ~Ĥsc!G , ~17!

where X0
(a)(Ĥsc)5G(a13/2), X1

(a)(Ĥsc)52G(a15/2)
Ĥsc , and X2

(a)(Ĥsc)52G(a17/2)Ĥsc
2

2(a15/2)G(a
13/2). It is convenient to start the recursion from m53, to
avoid any artificial divergence that may occur in the second
factor of the right-hand side of Eq. ~17!.

Now, we discuss various special cases of the general
expression for the time evolution operator, as given in Eq.
~14! or Eq. ~15!. As a in Eq. ~15! is an arbitrary parameter
~except that it is constrained to be greater than 21!, Eq. ~15!
represents a family of expansions for the evolution operator.
In fact, the parameter a will also dictate the final rate of
convergence of Eq. ~15! and we will analyze this issue by
performing the numerical calculations. Furthermore, other
well-known time propagators, utilizing orthogonal polyno-
mials, can be obtained by specializing the free parameter, a
in Eq. ~15! as shown below.

Case 1: For a521/2, Eq. ~15! gives the time evolution
operator expressed in terms of the Chebyshev polynomials,
Tm(Ĥsc). Using the known relation between symmetric
Jacobi and Chebyshev polynomials,49 Pm

(21/2,21/2)(Ĥsc)
5@(2m)!/22m(m!)2# Tm(Ĥsc) and an identity involving
Gamma functions, ApG(2m)522m21G(m)G(m11/2),
turns Eq. ~15! into

e6iĤt/\
5e6il̄t/\ (

m50

`

~22dm0!~6i !mJmS tDl

\
DTm~Ĥsc!.

~18!

This was used by Tal-Ezer and Kosloff.8 One can also obtain
Eq. ~18! directly from the Jacobi–Anger expansion,
exp(iZ cos u)5Sm52`

` imJm(Z)exp(imu), which is an expan-
sion of a planewave in a series of cylindrical waves.55

Case 2: For a50, the Jacobi polynomial, Pm
(0,0)(Ĥsc) in

Eq. ~15! is equal to the Legendre polynomial, Pm(Ĥsc);49

therefore Eq. ~15! simplifies to

e6iĤt/\
5e6il̄t/\ (

m50

`

~2m11 !~6i !m jmS tDl

\
D Pm~Ĥsc!,

~19!

where jm is the spherical Bessel function of the first kind.
This expansion of the time evolution operator has been used
by DePristo, Haug, and Metiu36 and Huang et al.23 Equation
~19! is also known as the expansion of plane waves in terms
of spherical harmonics in three dimensions.52

Case 3: For a51/2, the propagator is expressed in terms
of Chebyshev polynomials of the second kind, Um(Ĥsc),
through 2G(m13/2)Um(Ĥsc)5(m11)!ApPm

(1/2,1/2)(Ĥsc).49

This relationship simplifies to
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e6iĤt/\
5S 2\

tDl
D e6il̄t/\ (

m50

`

~m11 !~6i !m

3Jm11S tDl

\
DUm~Ĥsc!. ~20!

By changing it/\ to b51/kBT , where kB is Boltzmann’s
constant and T is temperature, we obtain expansions for the
Boltzmann operator, exp(2bĤ). For example, making this
transformation in Eq. ~14! leads to

e2bĤ
5G~n !e2bl̄S 2

bDl
D n

(
m50

`

~21 !m~m1n !

3Im1n~bDl !Cm
~n !~Ĥsc!. ~21!

Similar expansions have been used by DePristo et al.36 ~who
used Legendre polynomials! and by Kosloff7 ~who used
Chebyshev polynomials!. The equations for the Boltzmann
operator, obtained from Eqs. ~14! and ~15! are new.

The fact that the expansion Eq. ~14! can be analytically
continued from imaginary time to real time can be used to
calculate real time dynamics by performing imaginary time
calculations and analytically continuing the result. Since the
imaginary time calculations can be performed for many de-
grees of freedom ~by Quantum Monte Carlo! this procedure
offers a possibility of calculating quantum dynamics for
many degrees of freedom.36

III. THE SPECTRAL DENSITY OPERATOR

Series representations of the density of states operator,
r(E)5d(E2Ĥ), in terms of Chebyshev as well as Legendre
polynomials were given by Kouri and co-workers.22–25 In the
following, we obtain a more general expression for this op-
erator from Eq. ~14!. The known results, that use Chebyshev
or Legendre polynomials, are obtained as special cases.

Before we proceed with the derivation, it is important to
realize that d(E2Ĥ), in practical terms, only refers to a
certain limiting process; there are several functions which, in
specific limits, mimic the behavior of the d function. The
typical examples are (1/2)z exp(2uE2Ĥu/z), (1/p)z/@(E

2Ĥ)2
1z2# , 1/zAp exp@2(E2Ĥ)2 /z2#, and 1/(pz)sinc(@E

2Ĥ#/z) @where sinc(x)5sin(x)/x#, in the limit z→0. Any
one of these expressions could be utilized to derive equations
for the spectral density operator.

We use the Fourier integral theorem56 to obtain an inte-
gral representation of the approximation of the spectral den-
sity operator. We choose 1/(pz)sinc(@E2Ĥ#/z) as an ap-
proximation because it gives the simplest integral
representation, that does not involve an arbitrary damping
function. Furthermore, the choice of the sinc function makes
the integration over the time variable analytical. We thus
have,

d~E2Ĥ !5 lim
z→0

1

pz
sincS E2Ĥ

z
D

5 lim
T→`

1

2p\
E

2T

T

dte iEt/\e2iĤt/\. ~22!

We can now substitute Eq. ~14! for the time evolution opera-

tor, e2iĤt/\, interchange the integration and the summation,
and carry out the integration over the time variable, t, from
2` to ` analytically. By writing Esc5(E2l̄)/Dl , we ob-
tain

d~E2Ĥ !5

22n

2pDl (
m50

`

~n1m !
G~m11 !@G~n !#2

G~m12n !

3~12Esc
2 !n21/2Cm

~n !~Esc!Cm
~n !~Ĥsc!. ~23!

To pass from Eq. ~22! to ~23!, we have utilized the following
known integrals:

~a! *0
`dxxl sin(bx)Jm(ax)5211la2(21l)b @ G( (21l1m) / 2 )

/G((m2l) / 2)] F((21l1m) / 2, ( 21l2m)/2;3/2;b2/a2),
with 0,b,a and (2Re m21),11Re l,3/2,

~b! *0
`dxxl cos(bx)Jm(ax)52la2(11l)@G ( (11l1m ) /2) /

G ( ( m2l11) / 2 ) ] F( ( 11l1m) /2 ,(11l2m)/2;1/2;b2/
a2), with 0,b,a and 2Re m,11Re l,3/2, where J, G,
and F are the Bessel, Gamma, and hypergeometric functions,
respectively, along with a known identity involving the hy-
pergeometric functions, F(a ,b;c;z)5(12z)c2a2bF(c

2a ,c2b;c;z).49 Finally, we have used the relations involv-
ing the hypergeometric function and the ultraspherical poly-
nomial:

~a! (m1n)B(m11,n)C2m
(n)(Esc)5(21)mF(2m ,m1n;1/2;

Esc
2 ) and

~b! B(m11,n)C2m11
(n) (Esc)5(21)m2EscF(2m ,m1n1

1;3/2;Esc
2 ), where B is the beta function.49

The interchange of integration and summation is justi-
fied because in practical situations, Eq. ~22! applies to a
wave packet and Eq. ~14! for the evolution operator is a
convergent expression. This point has also been clarified by
Kouri and co-workers.27 The separation of Esc and Ĥsc in
Eq. ~23! allows substantial computational savings when one
desires results at many energies. This is because the Hamil-
tonian operation on a vector can be done independently and
stored, and this can be used at later stages of analysis for all
energies.

Other well-known expressions for the spectral density
operator can be obtained by specializing the free parameter,
n, in Eq. ~23!. For example,

Case 1: With n50, the limiting relation,
limn→0(1/n)Cm

(n)(Ĥsc)5(2/m)Tm(Ĥsc), transforms Eq. ~23!
into the following expression involving Chebyshev polyno-
mials:

d~E2Ĥ !5

1

pDl (
m50

`

~22dm0!
Tm~Esc!

A12Esc
2

Tm~Ĥsc!.

~24!

Case 2: Using n51/2 and Cm
(1/2)(Ĥsc)5Pm(Ĥsc) in Eq.

~23!, we recover the Legendre polynomial expression,
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d~E2Ĥ !5

1

2Dl (
m50

`

~2m11 !Pm~Esc!Pm~Ĥsc!. ~25!

Case 3: For n51 and Cm
(1)(Ĥsc)5Um(Ĥsc) in Eq. ~23!,

the spectral density operator is expressed in terms of the
Chebyshev polynomials of second kind,

d~E2Ĥ !

5

2

pDl (
m50

`

sin@arccos~Esc!# Um~Esc! Um~Ĥsc!.

~26!

We note that Eqs. ~24! and ~25! were used by Kouri and
co-workers24 for computing bound states as well as reso-
nances. Equation ~24! has also been used as the building
block for certain implementations of spectral filter
algorithms.39–41,43,44

IV. THE GREEN’S FUNCTION

In the following, we derive a series expansion for the
general quantum mechanical Green’s function using the
framework developed in this paper. We first start with the
following representation of the causal Green’s function:

G~E1!5 lim
e→0

i

2p

1

~E1ie2Ĥ !

5 lim
e→0

1

2p\
E

0

`

dte iEt/\e2iĤt/\e2et/\. ~27!

We substitute Eq. ~14! for the propagator, e2iĤt/\, inter-
change the integration and the summation operations, and
carry out the integral over the time t analytically, to obtain

G~E1!5

i

pDl (
m50

`
~m1n !

@2~Esc1iesc!#m11 B~n ,m11 !

3FS m11

2
,

m12

2
;m1n11;

1

~Esc1iesc!2D
3Cm

~n !~Ĥsc!, ~28!

where esc5e/Dl and Esc5(E2l̄)/Dl . Here B(x ,y) and F

are the beta function49 and the hypergeometric function,49

respectively. The interchange of the integration and the sum-
mation operations is justified here, since Eq. ~14! is a con-
vergent series and the integral in Eq. ~27! is convergent. To
pass from Eq. ~27! to Eq. ~28!, we have used,49 *0

`dx exp
(2ax)Jn(bx)xm21

5(b/2)na2(m1n)@G(m1n)/G(n11)#F((m
1n)/2,(m1n11)/2;n11;2(b2/a2)), which is valid for
Re(m1n).0 and Re(a6ib).0. The expression for the anti-
causal Green’s function can be obtained by replacing i with
2i in Eq. ~28!. Thus, Eq. ~28! provides a general recursive
expression for the Green’s function. Several special represen-
tations can be obtained by taking specific values of the free
parameter, n. For example,

Case 1: With n50, the hypergeometric series in Eq. ~28!
simplifies to

G~E1!5S 1

2pDl
D (

m50

`

~22dm0!

3

@~Esc1iesc!2iA12~Esc1iesc!2#m

A12~Esc1iesc!2
Tm~Ĥsc!,

~29!

where we have used the relation,52,54 F(b ,b11/2;2b;z)
5@(11A12z)/2#122b/A12z , and the limiting relation in-
volving the ultraspherical and the Chebyshev polynomials,
limn→0(1/n)Cm

(n)(Ĥsc)5(2/m)Tm(Ĥsc).
Case 2: With n51/2 we obtain the Green’s function ex-

pressed in terms of Legendre polynomials. Using the well
known relation (2z)m11G(m13/2)Qm(z)5G(m

11)G(1/2)F((m11)/2,(m12)/2;(2m13)/2;z22), where
Qm(z) is the Legendre function of the second kind,49 Eq.
~28! is simplified as follows:

G~E1!5S i

2pDl
D (

m50

`

~2m11 !

3Qm~Esc1iesc!Pm~Ĥsc!. ~30!

Case 3: With n51, there is an interesting closed form
expression for the hypergeometric series which gives rise to
the Chebyshev polynomials of the second kind,

G~E1!5S 1

pDl
D (

m50

`

~2i !m@A11~esc2iEsc!2

2~esc2iEsc!#m11Um~Ĥsc!, ~31!

where we have used the relation,52,54 F(b21/2,b;2b;z)
5@(11A12z)/2#122b.

A comment regarding the explicit limit, e→0 in Eqs.
~28!–~31! and the numerical implementation is in order. In
fact, with the limit esc→0 in Eq. ~28!, we will have 1
<Esc

22<` , because 21<Esc<11. We note that the com-
plex hypergeometric function in Eq. ~28! is an analytical
continuation of the well known hypergeometric series. Now
the hypergeometric series, F(a ,b;c;z), converges only
within the unit circle, uzu,1, and therefore F(a ,b;c;z) for
an arbitrary z is typically evaluated by direct line integration
in the complex plane.57 The series expansion of the hyper-
geometric function for the real value of Esc in the present
situation is thus divergent. Also, the hypergeometric series
remains singular at z51. These observations, therefore, sug-
gest the use of iesc in actual numerical implementation, in-
stead of taking the explicit limit beforehand.

V. THE COMPLEX TIME PROPAGATOR

The quantum propagator in complex time is one of the
key ingredients in the implementation of flux–flux autocor-
relation function based quantum canonical rate theory, where
the imaginary part is related to the temperature.58–63 In prin-
ciple, the evolution operator, as developed in Sec. II, can
directly be used for this purpose, with the understanding that
the Bessel function now acquires an imaginary argument. If
the complex argument of the Bessel function has an arbitrary
phase, it may not be possible to utilize any simple analytic
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continuation for its evaluation. It is possible, however, to
separate a complex argument in a Bessel function into real
and imaginary parts, which is useful for practical calcula-
tions. As a specific example we here work with the Cheby-
shev expansion of the time evolution operator, Eq. ~18!, and
this, for complex time, is

e iĤt
c
*/\

5expS il̄t

h
2

l̄b

2 D (
m50

`

~22dm0!

3imJmS tDl

\
1i

bDl

2 DTm~Ĥsc!. ~32!

Here tc
* is the complex conjugate of tc5t2i\b/2 and b

51/(kBT), with kB the Boltzmann constant and T the tem-
perature. Now, we can use the relation Jm(x1iy)
5S

2`
` im2sJs(x)Im2s(y), where Jm(x) and Im(y) are the

Bessel and the modified Bessel functions respectively,50 in
Eq. ~29! to obtain,

e iĤt
c
*/\

5expS il̄t

\
2

l̄b

2
D (

m50

`

~22dm0!imTm~Ĥsc!

3H (
s50

` S 12

ds0

2 D im2sJsS tDl

\
D F I um2suS bDl

2 D
1Im1sS bDl

2 D G J . ~33!

A similar expression for e2iĤtc /\ can also be obtained.
The theory developed above is general and may be use-

ful for many problems in quantum dynamics. The algorithm
involves a three-term recursion for the Hamiltonian matrix
operation on a vector and is suitable for large scale parallel
computations using standard spectral and pseudospectral
methods.

VI. RESULTS AND DISCUSSION

In order to determine the preformance of the time propa-
gator given by Eq. ~14!, we have studied the evolution of a
Gaussian wave packet in a Morse potential well. We have
also utilized the spectral density operator @Eq. ~23!# to com-
pute the bound state spectrum of the Morse oscillator. As a
further test we calculate the transmission coefficient for tun-
neling through an Eckart barrier. We have chosen these sys-
tems because we know the exact results. We have performed
all the calculations using fast Fourier transforms to evaluate
the powers of the Hamiltonian operator acting on the initial
wave packet.

The parameters describing the Morse potential are given
in Table I. The system supports 224 bound states.

To determine the optimum spatial grid for the calcula-
tions we calculated the matrix of the Hamiltonian in coordi-
nate representation and diagonalized it. The matrix element
of the kinetic energy operator was obtained by using discrete
Fourier transforms. We increase the number of grid points
until all eigenvalues converge within 1027% in absolute er-
ror. We thus find that 2048 grid points to be sufficient to
obtain all bound states of this system.

We first discuss the preformance of the time propagator.
We have already seen that the series expansion of the time
evolution operator @Eq. ~15!# in terms of Jacobi polynomials
contains a parameter, a, which is constrained to be greater
than 21, but is otherwise arbitrary. The value of this param-
eter affects the rate of convergence of this series. We would
like to know the range of a, for which the series converges
with the smallest number of terms. We first choose a
520.5, which is the Chebyshev expansion, as a reference
point and find out the total number, N, of terms in the series
~15! ~which has to be greater than tDl/\!, required for a
fixed accuracy ~error less than 10212! in the norm of
uc(x ,t)&. The initial wave function is a complex Gaussian.
In the present study, the value of N was found to be 280,
1200, and 2760 for 1 femtosecond ~fs!, 5 fs, and 12 fs propa-
gation of the wave packet, respectively. Next, we fix these
values of N and compute ^c(R ,t)uc(R ,t)& , for various
choices of a. The results are shown in Fig. 1. It is clear from
Fig. 1 that the error in the norm of the wave packet increases

TABLE I. Numerical parameters used for Morse oscillator, V(R)
5De@e22a(R2Re)

22e2a(R2Re)# .

Parameter Valuea Description

a 1.423 4 Morse parameter
Re 2.074 38 Morse equilibrium
De 4.0 Morse dissociation energy
Rmin ,Rmax 0.0, 16.0 Spatial range for the R coordinate
M 12 766.362 5 Mass
Vmax 5.0 Potential energy cutoff
N grid 2 048 Number of grid points
Dl 7.633 318 795 Hamiltonian scaling parameter

l̄ 3.651 114 885 Hamiltonian scaling parameter

aAll values are given in atomic units.

FIG. 1. Error in the norm of the propagated wave packet as a function of a.
Full, broken, and dotted lines correspond to 1, 5, and 12 fs propagation, with
280, 1200, and 2760 terms in Eq. ~10!, respectively.
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with a almost monotonically, even though there are some
‘‘local fluctuations.’’ We have also examined the stability of
Eq. ~15! for a long time propagation, with different choices
of a. For this purpose, we have propagated the initial Gauss-
ian wave packet for 200 fs, by recursively applying the
propagator 200 times with a time step of 1 fs, with the fixed
number of terms (N5280) in Eq. ~15! for each time step. We
find that the error in the norm grows linearly with time, for
different choices of a. In fact, the error growth with time can
be represented as At and we find A to be 10.0, 1.0, 2.3, 1.4,
and 6.0 in units of 10214 for a equal to 21, 20.5, 0.0, 0.5,
1.0, respectively. This shows Eq. ~15! to be stable for a long
time propagation, for different choices of a. From the numer-
ous tests carried out in the present study we find that 21
,a,11 leads to the best performance. We also note that
the three-term recursion with the Jacobi polynomial remains
stable even for very large N.

We next examine the performance of the series expan-
sion of the density of states operator as a function of n5a
11/2. For this, we have computed the bound state spectrum
of the Morse oscillator, using Eq. ~23!, as follows. In fact, an
arbitrary state, uc(x ,0)& can be written in terms of the energy
eigenstates, ux(x ,em)&, as Smr(em)ux(x ,em)& , where r(em)
is an expansion coefficient independent of x or time. We can
compute ur(em)u2 from

ur~em!u2
5

1

2p
È2`

dte iemt^c~x ,0!uc~x ,t !&

5^c~x ,0!ud~em2Ĥ !uc~x ,0!&. ~34!

Using Eq. ~23!, Eq. ~34! can easily be written as follows:

ur~em!u2
5

1

pDl
~12Esc

2 !n21/2 (
m50

`

Y m
n ~Esc!

3^c~x ,0!uY m
n ~Ĥ !uc~x ,0!&, ~35!

where Esc5em /Dl , and Y m
n (x) satisfies the following three-

term recursion relation:

Y m
n ~x !5S m1n

m12n21 D 1/2F2S m1n21

m
D 1/2

xY m21
n ~x !

2S ~m21 !~m12n22 !

m~m1n22 !
D 1/2

Y m22
n ~x !G , ~36!

where Y m
n (x) 5 @ApG(n1 1)/G(n 1 1/2)#1/2,

A2(n11)xY 0
n(x), and A(n12)/(2n11)@A2(n11)xY 1

n(x)
2Y 0

n(x)# , for m50, 1, and 2, respectively. A finite summa-
tion in Eq. ~35! would give a sequence of sinclike functions,
with an eigenvalue at the maximum of each sinc function.

Using Eq. ~35! we have computed the spectral intensity
for various energy windows of the Morse Hamiltonian. For
the present test, we have constructed the initial state,
uc(x ,0)&, by explicitly using the eigenvectors of the Hamil-
tonian matrix, to ensure that it has finite overlap with all
eigenstates. We note that the initial state can, in fact, be
chosen arbitrarily. We show results for 22.15 a.u. to 21.65
a.u. energy window in Fig. 2. We first choose n50, which is
the Chebyshev expansion, as a reference point, and then find
out the total number of terms, N, required in Eq. ~35! to
faithfully recover the spectrum. For the energy window se-
lected here, N is found to be 1450. We now fix N51450 and
compute the spectrum using Eq. ~35! for various choices of
n. It is clear from Fig. 2 that the spectrum gets distorted as
we increase the parameter n, while keeping the number of
terms, N, in Eq. ~35! fixed. From the numerical tests carried
out in the present study, we find a prefered choice of n to be
in the range of 20.5 and 0.5.

We now examine the performance of the series expan-
sion of the propagator to study the transmission of a quantum
particle through Eckart’s barrier. We list the numerical pa-
rameters in Table II. The transmission probability is

P~k in!5

uA1u2

uA2u2 . ~37!

A1 is the amplitude of the transmitted wave and A2 is that
of the incident one. A2 can easily be obtained from

FIG. 2. The spectral intensity as a function of the pa-
rameter, n. Curves ~a!, ~b!, ~c!, and ~d! correspond to
n520.4, 0.0, 0.5, and 1.0 for 1450 terms in Eq. ~32!,
respectively. The energy is given in atomic units and the
intensity is plotted in arbitrary units. Dotted lines show
the exact location of the eigenvalues.
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A2
5

1

A2p
E

2`

`

dxe ikxc~x ,t50 !, ~38!

where c(x ,t50) is the initial incoming wave packet, which
was chosen to be a complex Gaussian function. The integral
in Eq. ~38! can be done analytically. In principle, A1 can be
obtained at the end of the time propagation, by the space-
momentum Fourier transform of the transmitted part of the
wavepacket. As explained in Appendix A, A1 can also be
obtained by the time-energy Fourier transform of the propa-
gated wave packet as follows:

A1
5

1

2p
A2E

m
e ~2i/\ !A2mExpE

2`

`

dte i~E2Ĥ !t/\

3c~x ,t50 !ux5xp
, ~39!

where E5\2k2/2m , m is the mass of the particle, and x

5xp , is the projection point situated at the right-hand side of
the barrier. Using the series representation of the time propa-
gator, the time integral in Eq. ~39! can also be done analyti-
cally as we have discussed earlier. We have computed the
transmission probabilities for a range of energies, by varying
the number of terms N in the series expansion of the propa-
gator and the parameter a. In Table III, we present the results
for a specific energy at 0.806 648 eV. It is clear from Table
III that the total number of terms in the series for time propa-
gator is larger for large value of a and a prefered choice of a
is in the range 21.0 and 1.0. The results at other energies
also show a similar behavior.

VII. CONCLUDING REMARKS

In this work, we have obtained a general orthogonal
polynomial based scheme to evaluate the evolution operator,
the Boltzmann operator, the spectral density operator and the
Green’s function, which has the convergence property of the
Bessel function. The general expression derived here carries
a parameter, a, and the special choices of this parameter
allow us to recover previously known schemes based on
Chebyshev and Legendre polynomials. Numerical tests on
Morse oscillator for the time evolution operator and the spec-
tral density operator, suggest an optimal choice of a to be in
the range of 21.0 and 1.0, and this range includes the ex-
pansion in terms of Chebyshev (a520.5) and Legendre
(a50.0) polynomials. In this study we have not examined
the convergence property of the Green’s function and left it
for future investigation.
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APPENDIX: DERIVATION OF EQUATION „39…

We first note that the transmitted part of the wave packet,
which is used to compute the outgoing flux, represents a free
particle and can be represented as follows:

c~x ,t !5(
k

Ak
1e ikxe2i~\2k2/2m !t/\. ~A1!

In order to compute Ak0

1 , we multiply on both sides of Eq.

~A1! with exp(iEt/\) (E5\2k0
2/2m) and integrate with respect

to time from 2` to `. We thus obtain,

1

2p
E

2`

`

dte iEt/\c~x ,t !5(
k

Ak
1e ikxd~E2\2k2/2m !

5A m

2E (
k

Ak
1e ikx@d~k2k0!

1d~k1k0!# . ~A2!

TABLE II. Numerical parameters used for Eckart’s barrier, V(x)
5V0 /cosh2(ax).

Parameter Value Description

a 2.0 Å Barrier width
V0 1.036 44 eV Barrier height
M 1 amu Mass
Rmin ,Rmax 20.0 Å, 220.0 Å Spatial range for the x coordinate
N grid 512 Number of grid points

TABLE III. Transmission probability (3103)a for Eckart’s barrier at 0.806 648 eV, as a function of the parameter a and number of terms ~N! in the series
expansion of the propagator.

N

a

21.0 20.5 0.0 0.5 1.0 2.0 5.0

500 1.840 1.457 0.961 0.529 0.308 0.648 0.961
525 0.994 1.289 1.444 1.392 1.150 0.528 1.606
550 0.865 0.996 1.089 1.094 0.994 0.659 1.370
575 0.903 0.917 0.901 0.857 0.804 0.799 0.781
600 0.862 0.855 0.850 0.853 0.865 0.891 0.880
625 0.862 0.863 0.863 0.862 0.859 0.854 0.837
650 0.862 0.862 0.862 0.862 0.862 0.862 0.884
675 0.861 0.861 0.861 0.861 0.861 0.862 0.855
700 0.862 0.862 0.862 0.862 0.862 0.862 0.862

aThe exact value is 0.86231023.
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The two delta functions in Eq. ~A2! pick up outgoing and
incoming waves, respectively. As the transmitted wave
packet carries only outgoing wave ~that is, positive
k-component!, we obtain,

1

2p
E

2`

`

dte iEt/\c~x ,t !5A m

2E
Ak0

1 e ik0x ~A3!

which is the same as Eq. ~39!. The position variable x in Eq.
~A3!, which is an arbitrary projection point, is chosen to be
on the right-hand side of the barrier to make sure that we
account only for outgoing waves in actual calculations. To
reduce the computational efforts, the variable x should be
chosen just outside the potential barrier as the dynamical
process is complete after the transmitted part of the wave
packet has crossed the point x.
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Akad. Wiss. Leipzig, Math. Naturwiss. Kl. 58, 19 ~1906!.

46 L. Mandel and E. Wolf, Quantum Coherence and Quantum Optics ~Cam-
bridge University Press, New York, 1995!, pp. 519.

47 C. Lanczos, J. Res. Natl. Bur. Stand. 45, 255 ~1951!.
48 R. Courant and D. Hilbert, Methods of Mathematical Physics ~Inter-

science, New York, 1953!, Vol. I, pp. 114.
49 I. S. Gradshtyn and I. M. Ryzhik, Table of Integrals, Series, and Products

~Academic, New York, 1994!.
50 G. N. Watson, A Treatise on the Theory of Bessel Functions ~Cambridge

University Press, New York, 1995!.
51 G. Szego, Orthogonal Polynomials, Vol. 23 in American Mathematical

Society Colloquium Publications, 4th ed. ~AMS, Providence, RI, 1975!.
52 H. Hochstadt, The Functions of Mathematical Physics ~Dover, New York,

1986!, p. 222.
53 A. Gray and G. B. Mathews, A Treatise on Bessel Functions and Their

Applications to Physics ~Dover, New York, 1966!.
54 M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions

~Dover, New York, 1970!.
55 G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists ~Aca-

demic, New York, 1995!.
56 C. Lanczos, Discourse on Fourier Series ~Oliver & Boyd, London, 1966!.
57 W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Nu-

merical Recipes in Fortran: The Art of Scientific Computing, 2nd ed.
~Cambridge University Press, Cambridge, UK, 1992!, pp. 201–204, 263–
265.

58 W. H. Miller, S. D. Schwartz, and J. W. Tromp, J. Chem. Phys. 79, 4889
~1983!.

59 W. H. Miller, J. Phys. Chem. 102, 793 ~1998!, and references therein.
60 R. E. Wyatt, Chem. Phys. Lett. 121, 302 ~1985!.
61 G. Wahnström and H. Metiu, J. Phys. Chem. 92, 3240 ~1988!, and refer-

ences therein.
62 T. J. Park and J. C. Light, J. Chem. Phys. 88, 4897 ~1988!.
63 W. H. Miller, J. Chem. Soc., Faraday Trans. 93, 685 ~1997!.

68 J. Chem. Phys., Vol. 116, No. 1, 1 January 2002 A. Vijay and H. Metiu

Downloaded 20 Sep 2013 to 128.123.35.41. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions


