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A one-dimensional search method with stable
1-norm solution for linear prediction
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Abstract: In this paper a simple iterative algorithm that is guaranteed
to produce a stable all-pole filter when minimizing the 1-norm of the
linear prediction error signal is proposed. The approach works for both
the autocorrelation and covariance frameworks, involves only a one-
dimensional search at each step, and obviates the need for linear
programming based methods. Based on simulation studies, it was
observed that the performance of the algorithm is nearly optimal, i.e.,
very close to the estimates obtained using interior point methods.
Moreover, this method also has the ability to constrain the bandwidth
of any peak. The proposed method has been applied for vocal tract esti-
mation and, using spectral distortion as the metric, results are presented
using synthetic as well as natural speech.
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1. Introduction

In speech processing, the all-pole filter is the most widely used model for the vocal
tract. The filter coefficients and gain are computed using the linear prediction (LP)
framework.1,2 The problem being linear in the filter coefficients and the effectiveness of
this model have made this framework the workhorse for vocal tract modeling.

Let x[n] be the given segment of speech that we wish to model. Let x ¼ ðx½n1�;
x½n1 þ 1�;…; x½n2�ÞT ; a ¼ ða1; a2;…; apÞT , and X be a Toeplitz matrix with ðx½n1

� 1�; x½n1 � 2�;…; x½n1 � p�Þ and ðx½n1 � 1�; x½n1�;…; x½n2 � 1�ÞT as the first row and
first column. Minimizing the prediction error kek2

2 ¼ kXa� xk2
2 leads to

a ¼ ðXT XÞ�1XT x. Variants such as “autocorrelation method” and “covariance meth-
od” arise depending on the assumptions about the data outside the observation
window.2

Alternatively, one can minimize the ‘1-norm of e. This, however, does not
admit a closed-form solution. Fortunately, the function is convex, can be cast in a lin-
ear programming framework, and solved using the interior point methods.3,4 But the
drawback is that the solution is not guaranteed to produce an all-pole filter that is sta-
ble.5 Nevertheless, finding the ‘1-norm solution is important because the all-pole filter
so obtained has some desirable properties, e.g., (i) the ‘1-norm solution is virtually
pitch independent5 (unlike the pitch locking tendency of the ‘2-norm solution6), and
(ii) speech synthesized using filters based on this norm have a better Mean Opinion
Score.5 Iterative approaches have been proposed to calculate the “true envelope”7–10

but have not been adopted in practice. In general, the problem of estimating the for-
mants and their bandwidths is a challenging one.11

Recently, two algorithms guaranteeing stability for this ‘1-norm problem were
proposed:5 the first one works only for the autocorrelation method, whereas, as will be
pointed out later in Sec. 3, only the covariance method can give the exact filter if the
voiced speech data are truly from an all-pole model. The second algorithm constrains
kak1 < 1, which is sufficient but not a necessary condition for ensuring stability.5 In
Sec. 3 we point out, using a stable synthetic filter with kak1 > 1, that the filter estimate
obtained by constraining kak1 < 1 results in unacceptable values of spectral distortion
(SD) and kSDk1.

In this paper we present a simple iterative algorithm for finding the ‘1-norm
solution that, by its very formulation, (i) guarantees stability and (ii) works for both
autocorrelation and covariance methods. Our algorithm is based on Line Spectral
Pairs or LSPs (also called as Line Spectral Frequencies or LSFs)12 and takes advantage
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of their well-known properties.13,14 LSPs are widely used in speech coding.15,16 In the
context of vocal tract modeling, their localization property has found use in formant
modification.17 B€ackstr€om and Alku18 used LSPs for all-pole modeling and proposed a
method that enhances the level difference between a formant peak and the following
spectral valley. This improved the quality of the decoded speech, although it results in
an increase in the average residual energy when compared with conventional LPC
analysis.

Our comparison metrics are the log SD and its peak. SD (in dB) between two
sampled power spectra S1[k] and S2[k] is defined as19

1
K

XK�1

k¼0

10 log10 S1 k½ �ð Þ � 10 log10 S2 k½ �ð Þ
� �2 !1=2

:

kSDk1 is the peak absolute difference between the dB log magnitude power spectra.
In our experiments we have used voiced speech frames taken from 1 h of the

TIMIT database,20 after downsampling it to 8 kHz. Based on SD and kSDk1 we
report in Sec. 3 the results of our method and those obtained by using the interior
point method of the Convex Optimization Toolbox21 (denoted by CVX estimate
henceforth). Our approach also has the ability to constrain the peakiness of a formant
in those cases where the physics of the problem prohibits too sharp a peak (despite its
optimality).

2. The proposed algorithm

A given segment of length N is to be modeled as the output of a pth order all-pole fil-
ter. The inverse filter’s residual signal e[n] is of length Nþ p. We seek that AðzÞ
¼ 1þ a1 z�1 þ � � � þ ap z�p that minimizes kek1 ¼

P
nje½n�j. Including or excluding the

transients at the two ends leads to the ‘1-norm counterparts of the autocorrelation and
covariance methods. Since no closed-form solution exists for this problem, we propose
an iterative algorithm that involves only a one-dimensional (1D) search at each step.

We always start off with a stable initial guess for 1/A(z). From this A(z) we
form the corresponding LSF polynomials P(z) and Q(z).13,14 We then take advantage
of their well-known properties, viz., (a) the roots of P(z) and Q(z) lie on the unit circle
and are interlaced (forming a pair), (b) close LSF pairs correspond to narrow peaks,
(c) adjusting an LSF pair alters the filter’s frequency response only locally, i.e., only
the corresponding peak’s center frequency and bandwidth are changed, leaving others
far less affected,22 and (d) even after adjustment, as long as (a) is satisfied, the corre-
sponding 1/A(z) continues to be stable. One can also adjust the roots of P(z) and Q(z)
individually.

Our proposed algorithm to find the ‘1-norm optimal filter consists of adjusting
the LSF roots. A root is adjusted only if moving it results in lowering the residual’s ‘1-
norm. Any adjustment in the LSF domain is done by always maintaining the interleav-
ing property of the roots of P(z) and Q(z). This will ensure that the final all-pole filter
will always be stable. Moreover, the roots at z¼61 are left untouched because they
are the constrained ones, also widely known as trivial roots.13 By its very formulation,
the search is 1D.

Adjusting individual LSF roots: A particular LSF root is moved by d either clockwise
or anticlockwise. This is repeated until any further movement causes the norm to only
increase. We do the same for the next LSF root, and so on. The entire process is
repeated afresh until there is no more reduction in the norm.
Adjusting LSF pairs: A particular LSF root is moved by d either clockwise or anticlock-
wise. This is repeated until any further movement causes the norm to only increase. We
do the same for the next LSF root, and so on. The entire process is repeated afresh until
there is no more reduction in the norm.

The initial filter has LSF roots that are equi-spaced around the unit circle, which
by its very formulation ensures stability. Our simulation results show that this is slightly
superior to initializing using either the standard LP autocorrelation or covariance methods
(an unstable covariance method solution is stabilized by reflecting the outside-unit-circle
roots). In this paper, LP1 and LP2 refer to LP based on the ‘1 and ‘2 norms, respectively.

The step-size d is a crucial part of the procedure. If it is too large, changing
an LSF root or pair by d will not reduce the norm; if it is too small, a needlessly large
number of iterations will be needed. Moreover, for a given step size, it is easy to see
that we will reach a point where any change will only cause an increase in the residual
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norm. At this point, the step size is halved as many times as needed to help us jump
down from the plateau. The whole procedure is repeated until the next saturation
point. Such a procedure will end when the change in the error norm falls below the
desired threshold.

The starting step size is randomly chosen, i.e., d 2 [0, p]. The halving proce-
dure will ensure that large, unhelpful step sizes will quickly give way to ones that start
contributing to lowering the residual norm. In fact, more than one starting step size
can be chosen: if L different starting step sizes are chosen, leading to L different esti-
mates, the one that results in the lowest norm can be taken as the optimal filter.

In the algorithm given below, p denotes the assumed LP model order, L
denotes the number of random starting step sizes, and tol is the threshold for the
change in the residual error norm (after LSF root adjustment). The error norm is
defined as kek1 ¼ kXa� xk1. The computational steps involved for a given analysis
frame at every iteration are: (i) conversion of the LSF roots to A(z), (ii) filtering the
frame using A(z), and (iii) computing kek1 (range of summation depends on whether it
is autocorrelation or covariance method).

Algorithm Stable LP1 Solution.

Initialization: p, L, tol, equi-spaced LSF roots AðzÞ
for i¼ 1! L do

Choose d 2 [0, p] randomly
while reduction in norm >tol do

for each single root and root pair do � Roots at z¼61 are untouched
Adjust single root by d � Clockwise, anticlockwise
Adjust root pair’s central angle by d � Clockwise, anticlockwise
Adjust root pair’s angular difference by d � Clockwise, anticlockwise
Error norm reduced? Retain Adjustment: Discard � Maintain interleaving property

while in plateau region do � See Fig. 2(a)
d d=2

Choose A(z) with least error norm.

There is no guarantee that the above procedure will converge to the global
minimum because only a 1D search is carried out at each step. However, simulation
results on natural speech segments given in Sec. 3 lead us to conjecture that the subop-
timal solution involving only 1D searches is nearly optimal.

If the estimated all-pole filter has roots very close to the unit circle, it is well-
known that the corresponding LSF roots lie close to each other.14 However, since the
actual vocal tract cannot have formants that are too narrow,23 ‘1-norm estimates with
poles very close to the unit circle are in dissonance with the physics of the problem
despite being optimal in the given sense. To avoid this we merely place the constraint
that the LSF roots cannot get closer to each other beyond a certain limit, thereby pre-
venting estimates with sharp peaks. Simulation results indicate that placing such a con-
straint can lead to better estimates.

Using LSFs for ‘1-norm minimization has been considered for vocal tract esti-
mation by D�ıaz24 but in a different manner: (i) the LSFs and a are related by a first-
order Taylor series approximation and the resulting minimization is solved using inte-
rior point methods, and (ii) constraints on the closeness of the LSF pairs are passed on
as an input to this routine. Moreover, for a given frame, this algorithm requires multi-
ple calls to an interior point method for achieving convergence.

In the weighted sum of LSP polynomials method18 the authors consider a sum
of the form k PðzÞ þ ð1� kÞQðzÞ with k 2 (0, 1) and minimize over the single parame-
ter k. They too employ the ‘1-norm. However, the minimization of the absolute error
is between the (normalized) autocorrelations of the given signal and that implied by
the estimated filter, whereas in our case the residual error’s ‘1-norm is minimized.

3. Results and discussion

Consider an eighth order all-pole filter with poles at 0:9902 e6j0:1p; 0:9910 e6j0:18p;
0:9783e6j0:34p, and 0:9782 e6j0:5p, which is a stable filter with kak1 ¼ 79:15 (illustrating
that kak1 < 1 is sufficient but not necessary). To simulate the high pitch case we
excited it with an impulse train having f0 of 370.37 Hz (period¼ 27 samples with
Fs¼ 10 kHz). The parameters were chosen to ensure that the formants are located in
between the pitch harmonics. For analysis, we considered a 25 ms window. In this and
all other experiments the input frame was normalized to have unit energy, i.e.,
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k � k2 ¼ 1; the filter gain was also set to unity and this true gain used in subsequent
processing. In this work we do not consider the problem of estimating the gain.

The log magnitude frequency response of the true filter, the covariance ‘1-
norm solutions obtained using the CVX toolbox and our method are shown in Fig.
1(a) for an assumed model order of p¼ 12. Both CVX and our method give the exact
solution. However, the CVX autocorrelation framework with Hamming window does
not, resulting in SD¼ 0.17 and kSDk1 ¼ 11:29 with respect to the true filter (rectangu-
lar windowed data results are poorer). The proposed method’s autocorrelation estimate
is close to its CVX counterpart, with the distortion between them being
SD¼ 1.7� 10�4 and kSDk1 ¼ 0:25. Also shown is the estimate obtained using LP2
covariance, which is poor and along expected lines. For this example, constraining
kak1 < 1 resulted in an estimate with SD¼ 23.4 and kSDk1 ¼ 45:0, which is clearly
unacceptable.

In our simulations, for the synthetic unvoiced case, we found that covariance
is better than autocorrelation, with not much difference between the ‘1- and ‘2-norm
solutions.25 Considering both voiced and unvoiced cases, the covariance ‘1-norm
framework is the best overall, and the remaining experiments are based on it.

For an impulse train excitation, the estimate is independent of the starting
step size. However, in the case of synthetic unvoiced sounds and natural speech exam-
ples, it influences the final estimate, albeit only slightly. Figure 1(b) shows the estimates
obtained using CVX and the proposed method when analyzing a single frame of natu-
ral voiced speech. For our method, 1000 random initial step sizes were chosen in the
range [0, p]. As can be seen from the figure, the variation in the final estimate is small.
The CVX residual error was 3.5866, whereas its range in our method is 3.5866–3.5905.
The average values of SD and kSDk1 are 0.1375 and 0.5893, respectively. This exam-
ple illustrates the fact that the suboptimal solution is nearly optimal, a point that we
will return to later.

Some insight into convergence in these cases can be obtained from Fig. 2(a).
Here, for a different voiced segment of natural speech, the residual signal’s ‘1-norm
has been plotted as a function of iteration number. The curves correspond to updating
single roots, root pairs, and both. Also shown is the error norm for the CVX solution.
The presence of local minima is illustrated with a different natural voiced speech exam-
ple. For this frame, Fig. 2(b) shows the LSF roots at convergence, along with those
obtained using CVX. The circled pair corresponds to the roots with the largest differ-
ence between our method and CVX. The error norm in our method was 3.9111,
whereas for CVX it was 3.9108. If the roots that are farthest away from the CVX solu-
tion are made to coincide with the latter, the error norm increases to 3.9180, which

Fig. 1. (Color online) (a) Log magnitude frequency response of true filter and estimates using CVX and the pro-
posed method (autocorrelation and covariance) for an impulse train excitation. The LP2 covariance estimate
tends to lock on to the pitch harmonics. (b) For a single frame of natural voiced speech, the estimates for 1000
random starting step sizes using the proposed method lie in the shaded region. The CVX estimate’s magnitude
response is shown for comparison.

Fig. 2. (Color online) (a) Reduction in residual norm for a single frame of natural voiced speech as a function of
iteration number. The step size is halved as many times as needed to help us jump down from a plateau. (b)
LSF roots of the estimate from the proposed method and that from CVX. The pair with the largest difference is
circled. Making them coincide increases the error norm, pointing to the presence of a local minimum.
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shows that a multidimensional search is needed to reach the minimum obtained by
CVX.

We now present results for 144 000 frames of natural voiced speech taken
from TIMIT (8 kHz downsampled version). The analysis frame size was 25 ms and a
tenth order all-pole model was fitted using both the CVX Toolbox and the proposed
method. The natural speech segments were pre-emphasized by filtering them using 1 �
z�1. The frames were chosen such that no unstable filter was obtained when using
CVX. For our method, the convergence tolerance was tol¼ 10�7. For each frame,
L¼ 10 random step sizes were chosen. In Table 1 we give the values of SD and
kSDk1 between our method and CVX (averaged over 144 000 frames). Also shown
are the average differences in the time-domain norm. The convergence depends on the
update strategy, with the best solution obtained by combining single-root and pair-
updating strategies. The corresponding histograms of SD and kSDk1 are given in Fig.
3 for all three update strategies. For all the natural speech frames that were considered
we observed that both CVX and our method gave stable filter estimates with kak1 > 1.
Using CVX, constraining kak1 < 1 (as proposed by Giacobello et al.5), resulted in
much larger average values of SD (¼4.28) and kSDk1 (¼10.0), where the reference
spectrum corresponds to the CVX filter with no constraint.

Additional results not reported here due to lack of space but detailed else-
where25 are: (i) initialization using estimates from the LP2 autocorrelation and covari-
ance methods gave a slightly higher SD compared to initializing with a filter whose
LSF roots distribution is equi-spaced; (ii) SD increases with model order; hence, at
higher sampling frequencies, the distortion will be more because of the higher model
order needed; (iii) as p was increased, the computational time also increases roughly
linearly, whereas for CVX it increases much more slowly; (iv) as L was increased, both
SD and kSDk1 decreased, as one would expect (for this database L¼ 10 was found to
be a good compromise between getting closer to the CVX estimate versus computa-
tional burden).

Finally, a set of experiments using synthetic unvoiced speech frames illustrates
the benefits of constrained minimization. The synthetic all-pole filter given earlier was
excited with Gaussian noise and 10 000 frames of length 25 ms were used for analysis
with sampling frequency 10 kHz, L¼ 10, p¼ 12, and equi-spaced LSF roots initializa-
tion. For the true filter’s LSF roots, the smallest angular separation was 0.032. We
employed the constraint that no two roots can get closer than 0.02. (For natural
speech, the narrowest formant bandwidth is 30 Hz,23 which can be used for determin-
ing the corresponding constraint.)

Table 2 gives the results for SD and kSDk1. With the constraint in place, the
proposed method performs better than CVX for both the stable and unstable cases. It
was observed that CVX gave unstable estimates in 12.4% of the frames that were ana-
lyzed, whereas for the LP2 covariance method this number was 1.9%. For both stable
and unstable estimates, SD is lower for the covariance estimate compared to the

Table 1. Average values of SD, kSDk1, number of steps (tol¼ 10�7), and residual error difference for 144 000
frames of natural voiced speech.

Update strategy SD kSDk1 Avg. steps Avg. Err. diff.

Single root 0.126 0.400 7.55� 103 7.17� 10�4

Root pair 0.189 0.569 7.75� 103 1.90� 10�3

Combined 0.112 0.354 9.06� 103 5.39� 10�4

Fig. 3. (Color online) Natural speech results: (a) Histograms of SD with ten different random starting step sizes
and choosing the best solution. (b) Corresponding histograms for kSDk1. Combined adjustment gives the best
results.
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proposed one, whereas based on the kSDk1 measure, the proposed method is superior.
These results are similar to those reported24 using CVX, where the constraints are
passed on as a condition to the optimization toolbox.

For p> 6 it was observed that CVX was faster than the proposed method.
For example, the average computation time for a single frame of natural speech for
p¼ 10 and L¼ 1 was 0.42 s compared to CVX’s 0.23 s [running on Intel’s Xeon CPU
X3470 2.93 GHz, averaged over 1000 frames; MATLAB version 7.14.0.739 (R2012a)].
For large model orders, the proposed method is limited by the numerical problems
that arise in converting LSFs to A(z). Since our focus is on vocal tract analysis, the
order p will be dictated by the number of formants to be modeled (typically not more
than five23). For natural speech segments, despite the presence of local minima (and
hence the inability to match the CVX solution exactly) the average SD is small, which
will not give rise to any perceptual difference26 in the reconstructed speech.

4. Conclusion

In this paper, we have presented a method that does not use linear programming to
solve the ‘1-norm LP equations. It involves a 1D search algorithm that guarantees a
stable solution, and is based on adjusting the LSF roots. The method works for both
autocorrelation and covariance frameworks, with the latter producing the exact solu-
tion if the voiced speech segment were truly from an all-pole model. When applied to
vocal tract estimation, simulation results using synthetic and natural speech indicate
that this method produces estimates that are very close to the ones given by using inte-
rior point methods. We presented different update strategies for adjusting the LSF
roots. Our method can incorporate naturally the ability to control the peakiness of any
formant; when analyzing synthetic unvoiced examples we found that placing con-
straints on the bandwidth leads to better estimates compared with the unconstrained
problem. Because the method requires only a 1D search at each step, it can easily be
implemented on a DSP processor.
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