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A modified state space
differential quadrature
method for free vibration
analysis of soft-core
sandwich panels

Balavishnu Udayakumar and KV Nagendra Gopal

Abstract

Modifications and improvements to conventional state space differential quadrature

method are proposed for free vibration analysis of thick, soft-core sandwich panels
with arbitrary edge boundary conditions, using an exact two-dimensional elasticity

model. The modifications are based on a systematic procedure to implement all possible

combinations of edge boundary conditions including simply supported, clamped, free and

guided edges. Natural frequencies and mode shapes are obtained and compared with

exact elasticity solutions from state space method and approximate solution from finite

element simulations; demonstrating the high numerical accuracy and rapid convergence of

the modified method. Further, the proposed framework is compared to the conventional

implementation of the state space differential quadrature method for thick cantilever
sandwich panels and is shown to give results with better accuracy and faster convergence.
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Introduction

Sandwich constructions, typically including two outer face sheets separated by a

relatively thick, low density and compliant core, are crucial in the design of high

performance and cost effective aerospace, automobile and marine structures due
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to its high specific strength and bending stiffness, damage tolerance, buckling resist-

ance and energy absorption capabilities [1–3]. Advanced materials like laminated

or particulate composites, functionally graded or multi-functional materials are

used by designers to tailor, optimize or include multi-functionality to the sandwich

structure.

The conventional approximate theories used for modeling sandwich panels

include physically justifiable approximations in the stress or displacement field

when modeling the face sheet and/or the core [4–6]. The displacement-based

approximate models fall under two broad categories: the equivalent single layer

(ESL) models and the layer-wise (LW) models [7]. When using such approximate

models, there are two parameters that can significantly affect the accuracy of the

solution; namely, the relative stiffness of the face sheet with respect to the core and

the length-to-thickness ratio of the panel. It has been observed that for a high value

of the former parameter (i.e. a soft-core sandwich panel) the ESL models fail to

provide acceptable results [8].

In soft-core sandwich panels, there can be significant transverse deformations in

the core under impulsive and localized dynamic loads. A specialized approximate

model, based on the high-order sandwich panel theory (HSAPT) [9], was developed

to capture these localized effects and used for free vibration analysis [10,11].

Recently, an extended high-order sandwich panel theory (EHSAPT) was proposed

to include the effects of in-plane rigidity of the core [12]. The natural frequencies

and mode shapes of simply supported sandwich panels with compressible and

incompressible cores were obtained using the ESL, HSAPT and EHSAPT

models and compared with two-dimensional elasticity results as benchmark

[13,14]. Unlike the conventional incompressible models, the high-order models

could detect the displacement eigenmodes along the length and through the thick-

ness of the panel for higher modes. In soft-core sandwich panels, except for the

difference in the mode shapes of the third and the fifth transverse displacements

corresponding to the first wave number, the results given by EHSAPT matched

with that of the benchmark elasticity results. These models were also used for

free vibration analysis of soft-core sandwich structures with different boundary

conditions [15,16]. Although such plate theory models are suited for specific prob-

lems, they should be validated against exact elasticity models, especially for edge

boundary conditions other than the simply supported case.

Exact solutions for elasticity models are limited to cases with simply supported

edge conditions, special material symmetries and regular geometries [17–22]. For

other cases, approximate solution of exact elasticity model is needed to develop

benchmark results. However, accuracy and convergence of the solution method-

ology need to be ensured.

Commonly used analytical approaches for solving elasticity models can be clas-

sified under one of these methods: viz. Pagano’s approach, state space method

(SSM), series expansion approach and asymptotic approach [23]. Of these, SSM

is particularly suited to obtain exact solutions for small deformation linear elastic

response of multi-layered structures modelled as continuum [24–26]. Due to its
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inherent limitation in solving problems involving arbitrary edge boundary condi-

tions and geometry, semi-analytical methods based on the state space formulation

were developed in combination with existing numerical methods like the finite

difference, finite element, boundary element and differential quadrature method

(DQM) [27–30]. Compared to the conventional lower order numerical methods,

the DQM provides computationally efficient and numerically accurate solutions

with small number of grid points and is therefore well suited for structural vibra-

tion analysis [31,32].

The state space differential quadrature method (SSDQM) was developed to com-

bine the advantages of the SSM andDQM [33]. This has been used for free vibration

analysis of multi-layered beams [33] and rectangular plates [34–36]. The advantage

of SSDQM is that the thickness variation of field variables can be obtained analyt-

ically using SSM while in-plane dependence can be numerically solved using DQM

for different edge boundary conditions. But when the number of grid points are

increased, the conventional transfer matrix approach of the SSDQM [33–35] leads

to numerical instabilities, especially for higher frequencies. This is due to multipli-

cation of the local transfer matrices of different layers leading to the accumulation of

numerical errors. An effective way to avoid this is to assemble the local transfer

matrices to obtain the global transfer matrix [36]. It should be noted that, even in

this approach, instabilities can occur when a single set of grid points along the in-

plane direction, in the computational domain, is used to represent a thick layer in the

multi-layered structure. But this can easily be overcome by dividing the thick layer

into sufficient number of artificial layers along the thickness co-ordinate.

From literature, it is observed that the studies based on exact elasticity models

are mostly limited to sandwich panels with simply supported edges. For thick,

soft-core panels, the specialized models failed to capture some of the higher

mode shapes of transverse displacement. Thus, there is a need to develop exact

or accurate approximate solutions using exact elasticity models for thick panels

with arbitrary edge boundary conditions. The SSDQM is particularly suited for

this task. However, proper convergence studies are needed for each edge boundary

condition and modes of vibration. Even in the reported studies using SSDQM, the

mode shapes corresponding to different natural frequencies are not explicitly iden-

tified and convergence studies are limited to few cases. Moreover, no study using

SSDQM is found on panels with guided edge boundary condition.

The present work provides benchmark results based on two-dimensional exact

elasticity model for thick soft-core sandwich panels with arbitrary edge boundary

conditions. New results, based on exact elasticity solutions using trigonometric func-

tions, for panels with combination of simply supported and guided, are obtained. A

systematic procedure is proposed for implementing all combinations of edge bound-

ary conditions in the state space differential quadrature framework. The presented

results include comparison with the conventional SSDQM formulation (refer

Appendix A [33]), which show that the proposed modifications lead to a more gen-

eral framework in implementing all combinations of edge boundary conditions and

is also shown to give better numerical accuracy and faster convergence for thick,
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cantilevered sandwich panels. The accuracy and convergence of the modified

SSDQM procedure is demonstrated using thick, soft-core sandwich panels as test

cases, before presenting the natural frequencies and the mode shapes. All the

obtained results are compared by authors using finite element simulation.

State space differential quadrature formulation

State space formulation in plane elasticity

In the framework of two-dimensional linear elasticity, the equilibrium equations in

the absence of body forces, the strain–displacement relations and the material

constitutive law for each layer of a typical three-layered sandwich panel made of

special orthotropic layers are given below
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Here, �, e correspond to the normal stress and the normal strain, s, � to the

shear stress and the engineering shear strain, u, w to the in-plane and the transverse

displacements, Cij to elements of stiffness matrix and q to the material density. The

superscripts (t, c, b) refer, respectively, to the top face sheet, the core and the

bottom face sheet layers. The symbols @x or ðÞ,x, @z or ðÞ,z and ðÞ,t represent the

partial derivatives with respect to the variables x, z and t, respectively.

Equations (1) to (3) are combined and re-arranged to derive the mixed form of

elasticity equations with displacements and the transverse stresses as primary vari-

ables. These equations are written in the non-dimensional form as in equation (5)

for harmonic motion using the following relations
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In the above relation, n and g are the normalized in-plane and transverse coord-

inates, �u, �w, ��, s are the non-dimensional displacements and stresses, 	 is the

thickness-to-length ratio of the panel, ! and � are the circular natural frequency

and non-dimensional frequency, respectively. The stresses and the frequency are

non-dimensionalized using the material properties of the bottom layer.

The state equations, represented in matrix form for each layer of the sandwich

panel, are given below
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The in-plane stress (derived variable) is related to the state variables as shown

below
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These equations are listed in detail in Appendix 1 (see equations (22) and (23))

along with sub-matrices A and B (refer equation (24)).

Discretization using DQM

In the set of state equations (refer equation (22) in Appendix 1), the derivatives

with respect to the in-plane direction (n) can be discretized using the DQM. Thus,

the derivative of any state variable with respect to n at a particular grid point in the

computational domain is represented as a weighted sum of the state variable values

at all the grid points along n co-ordinate direction. The grid distribution used is the

Chebyshev-Gauss-Lobatto grids, a non-uniform cosine grid distribution, with clo-

sely spaced grid points towards edge boundaries, reported to give better accuracy

compared to other type of grids [32].

The state equation (5) is discretized and its values at all the grid points are

represented in matrix form as follows [33]
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Similarly, the derived variables are given as
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The components in bold face represent vectors or matrices. The sub-matrices E

and F and all the equations from the above matrix are separately listed using index

notation in Appendix 1 (equations (26) to (28)) for further clarity.

Solution methodologies

The edge boundary conditions such as simply supported (shear diaphragm type)

(S), clamped (C), free (F) and guided (G) in terms of the state variables or the

derived variable at � ¼ 0 or 1 are given below

S : �w ¼ 0, �� ¼ 0 C : �u ¼ 0, �w ¼ 0

F : � ¼ 0, �� ¼ 0 G : �u ¼ 0, � ¼ 0
ð9Þ

Exact solutions using SSM

Exact solutions exist for sandwich panels with both edges simply supported, guided

and combination of simply supported and guided. The state variables expanded in

trigonometric series can be assumed as solutions for these types of boundary con-

ditions as in equation (10). If instead of SG, GS is considered in equation (10), then

the sinðÞ changes to cosðÞ and vice versa.
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It can be observed that for each case, the assumed series solution in equation

(10) satisfies the respective boundary condition given in equation (9) and the state

vector equations in equation (5). By substituting each of these in equation (5),
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the state equations for respective edge boundary conditions can be obtained. These

when separated out specific to a particular wave number ‘‘m’’ lead to the following

matrix equation
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where A and B are given in Appendix 1 for SS, GG and SG cases.

Following the conventional transfer matrix approach [33] and implementing the

traction-free boundary conditions at the lateral edges, the following relation is

obtained.
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The non-trivial solution for equation (12) is

det Tm
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The above equation is a transcendental equation in ‘‘�m’’, which gives infinite

solutions for each value of the wave number ‘‘m.’’

It should be noted that m¼ 0 also gives different modes of vibration for SS and

GG cases. On substituting m¼ 0 in equation (10) and following similar procedures

from equations (11) to (13), the frequencies for m¼ 0 can be obtained. But m ¼ 1
2

does not correspond to a possible solution for SG or GS cases as it, respectively,

leads to a non-zero value of �u or �w at n¼ 1 violating the edge boundary condition

for guided or simply supported case.

Approximate solutions using SSDQM

In conventional SSDQM [33], the edge boundary conditions are implemented into

the discretized governing equations (equation (27) in Appendix 1) in a trial and

error manner for different cases, without providing a general framework applicable

for all combinations of edge boundary conditions (refer Appendix A [33]). The

global transfer matrix in this conventional implementation is obtained by multi-

plication of the local transfer matrices, followed by the enforcement of the traction-

free conditions at lateral edges, leading to the frequency equation

0

0

� �ðtÞ

ðhÞ

¼ T
u

w

� �ðbÞ

ð0Þ

ð14Þ

Udayakumar and Nagendra Gopal 7



det T
� �

¼ 0 ð15Þ

where u and w are vectors and T is a sub-matrix of the global transfer matrix.

However, the conventional method using the multiplication of local transfer matri-

ces results in numerical instabilities and hence a different approach is used to obtain

the global transfer matrix by assembling the local transfer matrices [36]. In this

work, we propose a general procedure for implementing any combination of edge

boundary conditions.

A systematic method to implement arbitrary edge boundary conditions. The discretized

state equations should be re-formulated based on the edge boundary conditions

before implementing the transfer matrix relations as explained further.

First, as all the transfer matrix relations and interface continuity conditions have

to be expressed in terms of the state variables, any edge boundary condition spe-

cified in terms of the derived variable (��) is converted in terms of the state variables

using equation (28) (refer Appendix 1). Consider the example of a simply supported

or a free edge panel where �� ¼ 0 at � ¼ 1 and=or N, leads to the following relation

AXX

X

N

j¼1

X
ð1Þ
ij �uj þ

C
ðbÞ
13

C33

��i ¼ 0, i ¼ 1 and=or N ð16Þ

From this equation, any of the three state variables at the edges, namely, �u1, �uN,

and ��1 or ��N, depending on whether the edge condition is ��1 ¼ 0 (for ��1) or

��N ¼ 0 (for ��N) respectively, can be written in terms of the other two. For exam-

ple, if n¼ 1 is simply supported, ��N ¼ 0 condition can be used to obtain the rela-

tion of ��N with �u1 and �uN and therefore ��N need not be included in the equations

to be solved (see equation (29) in Appendix 1).

Next, as the final step in the free vibration analysis involves computing the

determinant of the sub-matrix in the frequency equation for the conventional trans-

fer matrix approach (see equation (15)) or that of an assembled matrix JT
	 


(see

equation (21)), it is necessary that enforcing of the edge boundary conditions

should lead to square matrices. But for several cases, for example the clamped-

clamped (CC) boundary condition, it can be observed that for the conventional

transfer matrix approach, the order of the sub-matrix T in equation (14) is

2N, 2ðN� 2Þð Þ when the primary boundary conditions (those directly given by

equations (9)) �u1 ¼ 0, �uN ¼ 0, �w1 ¼ 0 and �wN ¼ 0 alone are implemented.

Further in the assembled transfer matrix approach, implementing the primary

edge boundary conditions alone leads to a non-square matrix JT
	 


in equation

(21). These can be avoided by observing that for CC case both the displacement

variables (u and w) are zero all along the edges (n¼ 0 and n¼ 1) and hence their

derivatives with respect to the transverse co-ordinate ‘�’ at these edges are also

zero. Making use of these conditions in the first and third set of state equations in

equation (27) (see Appendix 1), the values of the state variables s1, sN and ��1, ��N
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become known in terms of �wi and �ui respectively, i ¼ 2, : : : ,N� 1. Avoiding these

known state variables from the set of equations to be solved, a square sub-matrix of

order 2ðN� 2Þ, 2ðN� 2Þð Þ is obtained in equation (15); and also JT
	 


in equation

(21) becomes square. The details of equations after implementing CC boundary

condition can be referred in equation (32).

On generalizing this idea, it can be concluded that substitution of the primary

boundary conditions in the governing state equations can provide the derived sec-

ondary boundary conditions which can be used when necessary. But care should be

taken to include the derived conditions only after implementing the primary

boundary conditions. For example, in SS case, the values for ��1 and ��N are

obtained from the primary conditions ��1 ¼ 0 and ��N ¼ 0 rather than deriving

them from �w1 ¼ 0 and �wN ¼ 0 for the same (refer equation (29) in Appendix 1).

Based on these observations, changes in the procedure for implementing CF

edge boundary condition, from that of the conventional procedure (refer

Appendix A [33]), are proposed. Although the conventional method for implement-

ing CF edge condition were mathematically correct, it is found that the modified

formulation gives better numerical accuracy and faster convergence for all modes

of vibration (refer Table 5). Therefore, here, the primary boundary conditions

�u1 ¼ 0, �w1 ¼ 0, and �N ¼ 0 and the derived conditions for s1 and ��1 (respectively

from �u1 ¼ 0 and �w1 ¼ 0 conditions), obtained following similar procedures as

explained earlier, along with the relation of �uN obtained from ��N ¼ 0 are used

for enforcing the boundary conditions for CF panel (refer equation (33) in

Appendix 1).

It can be seen from the above discussion that every combination of edge boundary

conditions can be enforced in a simple systematic manner if the state vector pairs �u

and s, �w and �� are, respectively, of the same size with conditions (primary or sec-

ondary) specified on the same edge (or edges) for each one in a particular pair. This

can eliminate all the mentioned issues and provide better accuracy and convergence

for SSDQM. The same idea is conveyed in Table 1. Here, for each case of edge

boundary conditions, the variables whose numerical values are zero at the edges

(representing the primary boundary conditions) and those with known values

(the secondary conditions derived from the primary boundary conditions) are,

respectively, represented as ‘‘0’’ and ‘‘3’’. It can immediately be noted from

Table 1 that, as previously mentioned, the state vector pairs �u and s, �w and �� are,

respectively, of the same size for all the cases. Also similar conditions are specified

on the same edge (or edges) for each one in a particular pair for all cases. For

example, referring to the CF case (see Table 1 and equations (33) for clarity), the

state vectors u and s have same size (ðN� 2Þ � 1) and so do w and r� (ðN� 1Þ� 1).

Moreover, the primary condition for w (w1 ¼ 0) and secondary condition for r� (��1
known from w1 ¼ 0) are specified on the same edge n¼ 0; this being contrary to the

procedure followed in conventional SSDQM (see Appendix A [33]).

The set of state equations after implementing the edge boundary conditions for

all possible combinations of simply supported, clamped, free and guided edges using

the proposed methodology are listed in Appendix 1 (see equations (29) to (38)).
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Developing the global transfer matrix

After implementing the edge boundary conditions, the discretized state equations

for any case can be written in the following form
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It should be noted that the size of the state vectors and the coefficient matrices in

the above equations differ with the type of edge boundary conditions of the panel.

To avoid multiplication, the local transfer matrices are assembled to obtain the

global transfer matrix [36]. This leads to the following relation

d ¼ Td0 ð18Þ

where T is the global transfer matrix.

Also assembling the interface continuity and loading conditions gives

Jd ¼ f ð19Þ

The details of vectors d0, d, f and matrices T, J are given in Appendix 1 (see

equations (39) and (40)).

Substituting equation (18) in equation (19) gives

JTd0 ¼ f ð20Þ

Table 1. A schematic of the procedure followed in implementing different boundary

conditions.

u1 uN ��1 ��N w1 wN s1 sN ��1 ��N

SS 3 3 0 0 0 0

GG 0 0 0 0

SG 0 3 0 0 0

CC 0 0 3 3 0 0 3 3

CF 0 3 3 0 3 0 0

FF 3 3 0 0 0 0

CS 0 3 3 0 0 3 0

SF 3 3 0 0 0 0

CG 0 0 3 0 3 0

FG 3 0 0 0 0
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Table 3. Convergence of natural frequencies (Hz) using SSDQM for SS, GG and SG edge

boundary conditions.

N¼ 5 N¼ 7 N¼ 9 N¼ 11 N¼ 13 N¼ 15 N¼ 17 SSM

SS/GG

a¼ 1 620.86 622.56 622.56 622.56(1,1)

t¼ 1 2277.10 2277.00 2277.00 2277.00(1,2)

a¼ 2 1527.53 1526.61 1526.56 1526.56 1526.56(2,1)

t¼ 2 2432.77 2432.39 2432.37 2432.37 2432.37(2,2)

a¼ 4 4632.87 4628.41 4628.46 4628.46 4628.46(4,1)

t¼ 4 4829.13 4824.97 4825.01 4825.01 4825.01(4,2)

SG

a¼ 1 283.17 283.17 283.17 283.17(1,1)

t¼ 1 2280.12 2292.26 2292.25 2292.25(2,2)

a¼ 2 1028.84 1028.80 1028.80 1028.80 1028.80(2,1)

t¼ 2 2312.09 2312.09 2312.09 2312.09 2312.09(1,2)

a¼ 4 3676.47 3679.39 3679.37 3679.37 3679.37(4,1)

t¼ 4 3959.62 3962.20 3962.18 3962.18 3962.18(4,2)

Figure 1. (i) and (ii) are schematic of the sandwich panel, respectively, in physical and normal-

ized coordinate systems (not drawn to scale). The letters t, c and b denote, respectively, the

top face sheet, core and the bottom face sheet. Refer Table 2 for details of material and geo-

metric parameters of this sandwich panel.

Table 2. Material and geometric parameters of the sandwich panel considered for present

study [13].

HðmmÞ LðmmÞ hf (mm) hc (mm) L
H

48 152.4 5 38 3.1750

Ef (GPa) Ec (GPa) qf ðkgm
�3Þ qc ðkgm

�3Þ �f ,�c

13.6 0.032 1800 58.5 0.25
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For free vibration analysis, f ¼ 0, which implies equation (20) is homogeneous

and so for non-trivial solution

det JTð Þ ¼ 0 ð21Þ

The above determinant gives a transcendental equation in �, which when solved

numerically gives all the frequencies of all the modes for a particular combination

of edge boundary condition.

Results and discussion

In this section, ‘SSDQM’ refers to the state space differential quadrature method

including the proposed modifications. The proposed methodology has been imple-

mented in MATLAB�. The sandwich panel, under present study (see the schematic

in Figure 1), consist of three layers of isotropic materials – two face sheets and a

core; all of which are modelled using the material constitutive law for 2D elasticity

Table 4. Convergence of natural frequencies (Hz) using SSDQM for different combinations of

edge boundary conditions.

Mode N¼ 7 N¼ 11 N¼ 17 N¼ 23 N¼ 25 N¼ 27 FEM

CC a¼ 1 858.19 854.37 853.49 853.33 853.32 853.37

t¼ 1 2369.77 2369.37 2369.30 2369.27 2369.27 2369.3

a¼ 4 5566.19 5564.96 5564.81 5564.71 5565.4

CF a¼ 1 333.11 330.19 329.97 329.90 329.89 329.88

t¼ 1 2275.95 2276.63 2276.37 2276.30 2276.29 2276.3

a¼ 4 3694.23 3694.47 3694.58 3694.66 3695.2

FF a¼ 1 1315.96 1303.79 1303.10 1303.03 1303.03 1303.0

t¼ 1 2246.04 2246.35 2246.13 2246.06 2246.05 2246.1

a¼ 4 3827.21 3827.08 3827.06 3827.05 3827.1

CS a¼ 1 725.67 724.02 723.60 723.53 723.52 723.53

t¼ 1 2302.06 2302.04 2302.02 2302.01 2302.01 2302.0

a¼ 4 5085.85 5085.34 5085.28 5085.23 5085.5

SF a¼ 1 886.65 885.63 885.55 885.54 885.54 885.54

t¼ 1 2256.21 2257.46 2257.45 2257.42 2257.41 2257.4

a¼ 4 3333.42 3333.36 3333.35 3333.35 3333.4

CG a¼ 1 340.39 339.82 339.69 339.67 339.67 339.68

t¼ 1 2311.47 2311.46 2311.45 2311.45 2311.45 2311.4

a¼ 4 4081.78 4081.35 4081.30 4081.26 4081.5

FG a¼ 1 590.23 589.16 589.09 589.09 589.09 589.09

t¼ 1 2256.58 2256.98 2256.81 2256.76 2256.75 2256.8

a¼ 4 4204.83 4204.76 4204.75 4204.75 4204.8
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plane strain condition (see equation (41) in Appendix 1). Its geometric and material

properties are given in Table 2, where subscripts ‘f’ and ‘c’, respectively, denote

variables corresponding to face sheets and core. Exact elasticity solutions for nat-

ural frequencies and mode shapes are obtained using SSM for SS, GG and SG

panels. These results are used to validate the numerical accuracy of SSDQM for

those cases. For cases where exact solutions are not possible, the results obtained

using SSDQM are compared with those from finite element analyses using com-

mercial software Abaqus�. In the finite element model, the face sheets and the core

are meshed with eight-noded bi-quadratic plane strain quadrilateral elements with

reduced integration.

Convergence studies

The convergence of SSDQM for SS, GG and SG panels are presented in Table 3.

Exact solutions for each of these cases, obtained using SSM, are listed along with

the SSDQM numerical results. It can be noticed that the SSM results are super-

scripted with two numbers in parentheses separated by a comma. The first digit is

the wave number and the second corresponds to the position of a particular mode

when the frequencies for a specific wave number are arranged in ascending order.

In the SSDQM results, ‘‘a’’ corresponds to anti-symmetric flexural mode and ‘‘t’’ to

symmetric thickness mode. Therefore, a¼ 1 and t¼ 1 correspond to these modes

for the first wave number and similarly so forth for their higher modes. It can be

observed that for SS, GG and SG cases, rapid convergence with surprising numer-

ical accuracy is observed for SSDQM results. The nature of convergence depends

Table 5. Convergence of natural frequencies (Hz) using conventional (CON) [33] and modi-

fied (MOD) SSDQM for sandwich panel with CF edge boundary condition.

Mode N¼ 7 N¼ 11 N¼ 17 N¼ 23 N¼ 25 N¼ 27 FEM

1 (a1) MOD 333.1 330.2 330.0 329.9 329.9 329.9

CON 329.1 329.9 330.1 330.0 330.0

2 (a2) MOD 1098.0 1092.7 1092.3 1092.4 1092.4 1092.6

CON 1135.7 1121.6 1106.4 1099.7 1098.5

3 (a3) MOD 2152.5 2182.8 2180.2 2179.5 2179.4 2179.3 2179.2

CON 2201.7 2193.0 2195.0 2188.5 2187.1 2185.9

4 (t1) MOD 2276.0 2276.6 2276.4 2276.3 2276.3 2276.3

CON 2301.2 2300.8 2299.5 2295.2 2293.3

5 (t2) MOD 2310.3 2310.6 2310.7 2310.7 2310.7 2310.8

CON 2392.9 2386.0 2347.3 2323.9 2320.2

6 (t3) MOD 2760.2 2785.2 2784.1 2783.6 2783.5 2783.5 2783.3

CON 2840.3 2843.7 2812.7 2796.8 2794.0 2792.0

FEM: finite element method.
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on the wave number of the frequency in which the structure vibrates. All modes

specific to a particular wave number have the same nature of convergence.

More grid points are required to obtain converged solutions for frequencies cor-

responding to higher wave numbers.

The convergence of SSDQM for cases which have no exact solutions is studied

in Table 4. These values are compared with the results from FEM simulations.

Unlike SSM, the wave number ‘‘m’’ does not appear in the SSDQM formulation

and thus the frequencies specific to a particular wave number cannot be separated

out. The positive real numbers that satisfy the frequency equation (21) are the

(a)

(b)

Figure 2. The first two displacement modes of SS panel for wave number m¼ 0. (a) First

mode (0,1): (i) the longitudinal displacement modes; (ii) through-the-thickness displacement

modes of u and w plotted, respectively, at cross-sections n¼ 1 and � ¼ 0:5. (b) Second mode

(0,2): (i) the longitudinal displacement modes; (ii) through-the-thickness displacement modes of

u and w plotted, respectively, at cross-sections � ¼ 0:5 and n¼ 1.
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natural frequencies of the panel. The mode shapes, for all the frequencies listed in

Tables 3 to 7, are plotted before classifying them as antisymmetric or symmetric

type. Similar trends in convergence (as in Table 3) can be observed in Table 4. It

can be noticed that the convergence of numerical results depend on the type of edge

boundary condition. The rate of convergence in all these cases is slower than for the

SS, GG and SG conditions, that is, more number of grid points are required for

convergence. Also, convergence in cases including clamped edges are slower than

that of the others. In practical applications, convergence up to the last integer place

is more than sufficient. Therefore, SSDQM with N¼ 17 or N¼ 19 can give numer-

ically accurate results for thick soft-core sandwich panels with any arbitrary edge

boundary conditions.

Comparison with conventional SSDQM for CF panels

A comparison of numerical results, between the conventional (referred as CON)

and modified (MOD) SSDQM for CF case, along with convergence studies, is

given in Table 5. Here in obtaining ‘CON’ results, the conventional procedure

followed in implementing the edge boundary condition for CF case (refer

Appendix A [33]) is used along with the assembling procedure (of local transfer

matrices) to form the global transfer matrix, so that the numerical errors due to

multiplication of local transfer matrices are avoided, and therefore its comparison

with the present results (MOD) would be on an equal footing. These are also

compared with results from finite element simulation. From the study, it can clearly

be understood that, compared to the conventional methodology, the modified

Figure 3. The first displacement mode (0,1) of GG panel for wave number m¼ 0: (i) the lon-

gitudinal displacement modes; (ii) through-the-thickness displacement modes of u and w

plotted, respectively, at cross-sections � ¼ 0:5 and n¼ 1.
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(a)

(b)

(c)

Figure 4. The first three displacement modes of SS panel for wave number m¼ 1. In the first

(1,1), second (1,2) and third modes (1,3) ((a), (b) and (c) respectively): (i) the longitudinal dis-

placement modes; (ii) through-the-thickness modes of u and w plotted, respectively, at cross-

sections n¼ 1 and � ¼ 0:5.
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Figure 5. The first three displacement modes of GG panel for wave number m¼ 1. In the

first (1,1), second (1,2) and third modes (1,3) ((a), (b) and (c) respectively): (i) the longitudinal

displacement modes; (ii) through-the-thickness displacement modes of u and w plotted,

respectively, at cross-sections � ¼ 0:5 and n¼ 1.

Udayakumar and Nagendra Gopal 19



(a)

(b)

(c)

Figure 6. The first three displacement modes of SG panel for wave number m¼ 1. In the

first (1,1), second (1,2) and third modes (1,3) ((a), (b) and (c) respectively): (i) the longitudinal

displacement modes; (ii) through-the-thickness displacement modes of u and w plotted,

respectively, at cross-sections n¼ 0 and n¼ 1.
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formulation successfully predicts the natural frequencies (even for higher modes)

with excellent numerical accuracy and convergence for thick, soft-core sandwich

panels with CF condition.

Frequencies and mode shapes using modified SSDQM

Comparison of modified SSDQM with SSM. The first 10 natural frequencies for SS, GG

and SG cases after satisfying proper convergence criteria are displayed in Table 6.

An excellent match between the results of SSM and SSDQM is observed in all the

cases. Along with these results, the natural frequencies from finite element analysis

(a)

(b)

Figure 7. (a) The first anti-symmetric and (b) symmetric displacement modes of CC panel. In

sub-figures (a) and (b): (i) the longitudinal displacement modes; (ii) through-the-thickness dis-

placement modes of u and w plotted at cross-section � ¼ 0:5.
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are also presented. The results for the SS panel include frequencies (0,1),(0,2),

corresponding to the in-plane modes of the zeroth wave number;

(1,1),(2,1),. . .(4,1), the flexural antisymmetric modes of wave numbers 1,2,. . .,4

and frequencies (1,2),(2,2),. . .(4,2), the transverse symmetric (thickness) modes.

There are other higher modes that include in-plane modes in which the core

alone deforms ð1, 3Þ, ð2, 3Þ, ð3, 3Þð Þ, in-plane deformation modes including both

the core and the face sheets ð1, 4Þ, ð1, 5Þð Þ, other modes with combination of in-

plane and transverse deformations in the core ð1, 4Þ, ð1, 5Þð Þ all of which are not

displayed. Most of the higher modes similar to these types are not presented for the

(a)

(b)

Figure 8. (a) The first anti-symmetric and (b) symmetric displacement modes of CF panel. In

sub-figures (a) and (b): (i) the longitudinal displacement modes; (ii) through-the-thickness dis-

placement modes of u and w plotted at cross-section n¼ 1.
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different cases studied here. Similarly, natural frequencies are listed and classified

for GG and SG cases.

When m¼ 0, for the SS case, the first two modes ((0,1) and (0,2)) obtained have

frequencies 1349.14Hz and 6447.02Hz, and for GG case, the first mode (0,1) is

2336.78Hz. The normalized mode shapes corresponding to these frequencies

obtained using SSM and SSDQM are compared for SS and GG cases, respectively,

in Figures 2 and 3. Similarly, the first three modes corresponding to m¼ 1

((1,1),(1,2),(1,3)) for SS, GG and SG cases obtained using SSM and SSDQM are

plotted in Figures 4 to 6.

(a)

(b)

Figure 9. (a) The first anti-symmetric and (b) symmetric displacement modes of FF panel. In

sub-figures (a) and (b): (i) the longitudinal displacement modes; (ii) through-the-thickness dis-

placement modes of u and w plotted at cross-section n¼ 1.
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Referring to the first plot (i.e. plot number (i)) within each of the sub-figures in

Figures 2 to 6, the variables wtS,wbS,wcS and utS, ubS, ucS correspond to the longi-

tudinal displacement modes of transverse and in-plane displacements at mid-plane

of the top face sheet, the bottom face sheet and the core obtained using SSM.

Similarly, wtD,wbD,wcD and utD, ubD, ucD correspond to those obtained using

SSDQM. All these are the eigenmodes along the length of the panel and are

normalized with respect to the largest value of displacement among them – separ-

ately done for SSM and SSDQM. A zoomed image is included in plot (i) of all sub-

figures to better visualize the trends of variables with lower magnitude. In the

second plot (i.e. plot number (ii)) within each of the sub-figures,

(a)

(b)

Figure 10. (a) The first anti-symmetric and (b) symmetric displacement modes of CS panel.

In sub-figures (a) and (b): (i) the longitudinal displacement modes; (ii) through-the-thickness

displacement modes of u and w plotted at � ¼ 0:5.

24 Journal of Sandwich Structures and Materials 0(00)



uS, uD and wS,wD represent, respectively, the through-the-thickness modes of the

in-plane and the transverse displacements normalized with respect to the largest

value among them; separately for SSM and SSDQM. Zoomed plots of these vari-

ables are given separately so that even the minor trends in their distribution could,

immediately, be identified. It should be noted that in plot (i) and (ii) of all these

sub-figures, ga and na denotes, respectively, the amplitude of longitudinal modes

and through-the-thickness modes and these should not be confused with the

respective normalized coordinates g and n. The through-the-thickness modes of

transverse and in-plane displacements are plotted, respectively, at the mid-section

(� ¼ 0:5) and edge section (n¼ 1) of the panel for SS case and vice versa for GG

case, whereas for SG panel, the edge sections n¼ 0 and n¼ 1 are, respectively, used

for plotting in-plane and transverse displacements.

It is interesting to note that the numerical values of SS and GG cases are

matching in all the cases (except for m¼ 0), even when their mode shapes

(a)

(b)

Figure 11. (a) The first anti-symmetric and (b) symmetric displacement modes of SF panel.

In sub-figures (a) and (b): (i) the longitudinal displacement modes; (ii) through-the-thickness

displacement modes of u and w plotted at cross-section n¼ 1.
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drastically vary (see Table 6 and Figures 4 and 5). This can easily be reasoned out

from the fact that both these cases have the same sub-matrix in the frequency

equation (13). Another interesting observation is that unlike the SS and GG

cases, the first and second symmetric modes ðt ¼ 1 and t ¼ 2Þ for SG panel cor-

respond to m ¼ 2 and 1, respectively (see Figure 3 (for convergence of SG) and

Figure 6 for details).

Comparison of modified SSDQM with FEM. The first 10 natural frequencies for cases

without exact solutions are displayed in Table 7 along with FEM results for com-

parison. The SSDQM results given in Table 7 are for N¼ 23, after rounding off to

the first decimal place. The SSDQM and FEM results match very well for all cases.

(a)

(b)

Figure 12. (a) The first anti-symmetric and (b) symmetric displacement modes of CG panel.

In sub-figures (a) and (b): (i) the longitudinal displacement modes; (ii) through-the-thickness

displacement modes of u and w plotted, respectively, at cross-sections � ¼ 0:5 and n¼ 1.

26 Journal of Sandwich Structures and Materials 0(00)



The mode shapes of these panels obtained using SSDQM and FEM simulations are

displayed from Figures 7 to 13. In plot (i), within each sub-figures,

wtD,wbD,wcD, utD, ubD, ucD and wtF,wbF,wcF, utF, ubF, ucF correspond, respectively,

to the SSDQM and FEM solutions. These are the longitudinal modes of in-

plane and transverse displacements normalized with respect to the largest value

among them (except for CS case where all variables are normalized with respect to

maximum value of transverse displacement at mid-cross-section) – separately for

SSDQM and FEM. In the second plot (i.e. plot number (ii)) within each of these

sub-figures, ðwD, uDÞ and ðwF, uFÞ represent, respectively, the SSDQM and FEM

solutions for through-the-thickness modes. The in-plane and the transverse

(a)

(b)

Figure 13. (a) The first anti-symmetric and (b) symmetric displacement modes of FG panel.

In sub-figures (a) and (b): (i) the longitudinal displacement modes; (ii) through-the-thickness

displacement modes of u and w plotted, respectively, at cross-sections � ¼ 0:5 and n¼ 0.
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displacements are normalized with respect to the largest value among them; sep-

arately for SSDQM and FEM. The mode shapes corresponding to the first anti-

symmetric mode (a¼ 1) and the first symmetric mode (t¼ 1) are presented in each

case. For the CC and CS cases (see Figures 7 and 10), the mid section (� ¼ 0:5) of

the panel is considered for plotting the through-the-thickness transverse and in-

plane displacement modes, whereas for CF, FF and SF edges (Figures 8, 9 and 11),

these modes at the edge section n¼ 1 are displayed. In CG case (refer Figure 12),

the mid-section is used for in-plane displacement and edge section n¼ 1 for trans-

verse displacement. However, in FG case (see Figure 13), the mid-section is used

for plotting the in-plane displacements and edge section n¼ 0 for transverse dis-

placements. An excellent match between each solutions of SSDQM and FEM is

observed in all the cases studied.

Conclusions

Based on the exact two-dimensional elasticity model, the natural frequencies and

the mode shapes of thick, soft-core sandwich panels with different combinations of

edge boundary conditions are presented. New exact elasticity solutions are

obtained using the SSM for sandwich panels with combination of simply supported

and guided. A systematic procedure is proposed to implement all combinations of

edge boundary conditions, including simply supported, clamped, free and guided,

in the SSDQM. The convergence and accuracy of the modified SSDQM is tested

using exact elasticity solutions from SSM and approximate solutions from FEM

simulations. The modified semi-analytical methodology is found to give numeric-

ally accurate solutions with rapid convergence for all the cases studied and for

higher modes of vibration. The proposed modifications lead to a more general

framework when compared to the conventional SSDQM formulation as it include

all combinations of edge boundary conditions. Moreover, the present methodology

is found to give results with better numerical accuracy and faster convergence

compared to the conventional approach for thick, cantilevered sandwich panels.

These results based on exact elasticity model can be referred as benchmarks for

validating results from approximate models for arbitrary edge boundary condi-

tions. As there are no approximations in the field variables, these results can also

be used to develop and test new approximate models for soft-core sandwich panels

with arbitrary edge boundary conditions.
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Appendix 1

In all the following equations, Cij and q vary with respect to different layers of the

sandwich panel.

The state equations for any layer are as follows
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The derived variable is given by

�� ¼ AXX

@ �u

@�
þ
C13

C33

��, AXX ¼ C11 �
C2

13

C33

 �

	

C
ðbÞ
55

ð23Þ

In AXX, XX¼ SS, GG, SG, CC, CF, FF, SF, CG, FG. The sub-matrices of the

coefficient matrix for the governing state equations are

A ¼
�	@�

C
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The sub-matrices of the coefficient matrix for the governing state equations for

SS, GG and SG are as follows
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The sub-matrices of the coefficient matrix for the discretized state equations in

matrix form
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State equations at any grid point are separately listed below
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The derived variable at any grid point is given by the following equation
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Equations after implementing different edge boundary conditions:

. Simply supported-simply supported (SS)
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. Guided-Guided (GG)
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. Simply supported-Guided (SG)

d �ui
d�

¼ �	
P

N

j¼2

X
ð1Þ
ij �wj þ

C
ðbÞ

55

C55
�i, i ¼ 1, 2, . . . ,N� 1

d��i
d�

¼ � �

�ðbÞ
�

2 �wi � 	
P

N�1

j¼1

X
ð1Þ
ij �j, i ¼ 2, . . . ,N

d �wi

d�
¼ � C13

C33
	
P

N�1

j¼1

X
ð1Þ
ij �uj þ

C
ðbÞ

55

C33
��i, i ¼ 2, . . . ,N

d�i
d�

¼ �ASG	
P

N�1

j¼1

X
ð2Þ
ij þ X

ð1Þ
i1 X

ð1Þ
1j

� �

�uj �
�

�ðbÞ
�

2
�ui

� C13

C33
	
P

N

j¼2

X
ð1Þ
ij ��j, i ¼ 1, 2, . . . ,N� 1

ð31Þ

. Clamped-Clamped (CC)
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. Clamped-Free (CF)

d �ui
d�

¼ �	
P

N

j¼2

X
ð1Þ
ij �wj þ

C
ðbÞ

55

C55
�i, i ¼ 2, . . . ,N� 1

d��i
d�

¼ � �

�ðbÞ
�

2 �wi �
C55

C
ðbÞ

55

	2
P

N

j¼2

X
ð1Þ
i1 X

ð1Þ
1j

� �

�wj

�	
P

N�1

j¼2

X
ð1Þ
ij �j, i ¼ 2, . . . ,N

d �wi

d�
¼ C13

C33
	
P

N�1

j¼2

�X
ð1Þ
ij þ

X
ð1Þ

iN
X

ð1Þ

Nj

X
ð1Þ

NN

 �

�uj þ
C

ðbÞ

55

C33
��i

þ C13

C33

� �2
	

ACF

X
ð1Þ

iN

X
ð1Þ

NN

 �

��N, i ¼ 2, . . . ,N

d�i
d�

¼ ACF	
P

N�1

j¼2

�X
ð2Þ
ij þ

X
ð2Þ

iN
X

ð1Þ

Nj

X
ð1Þ

NN

 �

�uj �
�

�ðbÞ
�

2
�ui

�
C2

13

C33

	2

C
ðbÞ

55

 �

P

N�1

j¼2

X
ð1Þ
i1 X

ð1Þ
1j �

X
ð1Þ

1N
X

ð1Þ

Nj

X
ð1Þ

NN

 �

�uj

þ C13

C33
	

X
ð2Þ

iN

X
ð1Þ

NN

þ
C2

13

C33

	

ACFC
ðbÞ

55

 �

X
ð1Þ

1N
X

ð1Þ

i1

X
ð1Þ

NN

 �

��N

� C13

C33
	
P

N

j¼2

X
ð1Þ
ij ��j, i ¼ 2, . . . ,N� 1

ð33Þ

. Free-Free (FF)
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d�i
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. Simply supported-Free (SF)
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The vectors d0, d, f and matrices T, J in the equations (18) and (19) are as

follows

d0 ¼

dð0ÞðbÞ

dð0ÞðcÞ

dð0ÞðtÞ

8

>

<

>

:

9

>

=

>

;

, d ¼

dð0ÞðbÞ
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dðhÞðcÞ
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8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

, f ¼

fðbÞ

0

0

fðtÞ

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

ð39Þ

T ¼

TðbÞ 0 0

0 TðcÞ 0

0 0 TðtÞ

2

6

4

3

7

5
, J ¼

JðbÞ 0 0 0

0 JðIÞ 0 0

0 0 JðIÞ 0

0 0 0 JðtÞ

2

6

6

6

4

3

7

7

7

5

where, JðtÞ ¼ JðbÞ ¼
0 i 0 0

0 0 0 i

� �

, JðIÞ ¼ I �I
	 


fðtÞ ¼
f�

f�

� �ðtÞ

, fðbÞ ¼
f�

f�

� �ðbÞ

ð40Þ

2D plane strain constitutive relations for an isotropic material

C11 ¼
ð1��ÞE

ð1þ�Þð1�2�Þ

C13 ¼
�E

ð1þ�Þð1�2�Þ

C33 ¼
ð1��ÞE

ð1þ�Þð1�2�Þ

C55 ¼
E

2ð1þ�Þ

ð41Þ

where E is the Young’s modulus and � is the Poisson’s ratio.
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