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Abstract

Modifications and improvements to conventional state space differential quadrature
method are proposed for free vibration analysis of thick, soft-core sandwich panels
with arbitrary edge boundary conditions, using an exact two-dimensional elasticity
model. The modifications are based on a systematic procedure to implement all possible
combinations of edge boundary conditions including simply supported, clamped, free and
guided edges. Natural frequencies and mode shapes are obtained and compared with
exact elasticity solutions from state space method and approximate solution from finite
element simulations; demonstrating the high numerical accuracy and rapid convergence of
the modified method. Further, the proposed framework is compared to the conventional
implementation of the state space differential quadrature method for thick cantilever
sandwich panels and is shown to give results with better accuracy and faster convergence.

Keywords
Modified state space differential quadrature method, soft-core sandwich panels, exact
elasticity models, arbitrary edge boundary conditions, free vibration

Introduction

Sandwich constructions, typically including two outer face sheets separated by a
relatively thick, low density and compliant core, are crucial in the design of high
performance and cost effective aerospace, automobile and marine structures due
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to its high specific strength and bending stiffness, damage tolerance, buckling resist-
ance and energy absorption capabilities [1-3]. Advanced materials like laminated
or particulate composites, functionally graded or multi-functional materials are
used by designers to tailor, optimize or include multi-functionality to the sandwich
structure.

The conventional approximate theories used for modeling sandwich panels
include physically justifiable approximations in the stress or displacement field
when modeling the face sheet and/or the core [4-6]. The displacement-based
approximate models fall under two broad categories: the equivalent single layer
(ESL) models and the layer-wise (LW) models [7]. When using such approximate
models, there are two parameters that can significantly affect the accuracy of the
solution; namely, the relative stiffness of the face sheet with respect to the core and
the length-to-thickness ratio of the panel. It has been observed that for a high value
of the former parameter (i.e. a soft-core sandwich panel) the ESL models fail to
provide acceptable results [8].

In soft-core sandwich panels, there can be significant transverse deformations in
the core under impulsive and localized dynamic loads. A specialized approximate
model, based on the high-order sandwich panel theory (HSAPT) [9], was developed
to capture these localized effects and used for free vibration analysis [10,11].
Recently, an extended high-order sandwich panel theory (EHSAPT) was proposed
to include the effects of in-plane rigidity of the core [12]. The natural frequencies
and mode shapes of simply supported sandwich panels with compressible and
incompressible cores were obtained using the ESL, HSAPT and EHSAPT
models and compared with two-dimensional elasticity results as benchmark
[13,14]. Unlike the conventional incompressible models, the high-order models
could detect the displacement eigenmodes along the length and through the thick-
ness of the panel for higher modes. In soft-core sandwich panels, except for the
difference in the mode shapes of the third and the fifth transverse displacements
corresponding to the first wave number, the results given by EHSAPT matched
with that of the benchmark elasticity results. These models were also used for
free vibration analysis of soft-core sandwich structures with different boundary
conditions [15,16]. Although such plate theory models are suited for specific prob-
lems, they should be validated against exact clasticity models, especially for edge
boundary conditions other than the simply supported case.

Exact solutions for elasticity models are limited to cases with simply supported
edge conditions, special material symmetries and regular geometries [17-22]. For
other cases, approximate solution of exact elasticity model is needed to develop
benchmark results. However, accuracy and convergence of the solution method-
ology need to be ensured.

Commonly used analytical approaches for solving elasticity models can be clas-
sified under one of these methods: viz. Pagano’s approach, state space method
(SSM), series expansion approach and asymptotic approach [23]. Of these, SSM
is particularly suited to obtain exact solutions for small deformation linear elastic
response of multi-layered structures modelled as continuum [24-26]. Due to its
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inherent limitation in solving problems involving arbitrary edge boundary condi-
tions and geometry, semi-analytical methods based on the state space formulation
were developed in combination with existing numerical methods like the finite
difference, finite element, boundary element and differential quadrature method
(DQM) [27-30]. Compared to the conventional lower order numerical methods,
the DQM provides computationally efficient and numerically accurate solutions
with small number of grid points and is therefore well suited for structural vibra-
tion analysis [31,32].

The state space differential quadrature method (SSDQM) was developed to com-
bine the advantages of the SSM and DQM [33]. This has been used for free vibration
analysis of multi-layered beams [33] and rectangular plates [34-36]. The advantage
of SSDQM is that the thickness variation of field variables can be obtained analyt-
ically using SSM while in-plane dependence can be numerically solved using DQM
for different edge boundary conditions. But when the number of grid points are
increased, the conventional transfer matrix approach of the SSDQM [33-35] leads
to numerical instabilities, especially for higher frequencies. This is due to multipli-
cation of the local transfer matrices of different layers leading to the accumulation of
numerical errors. An effective way to avoid this is to assemble the local transfer
matrices to obtain the global transfer matrix [36]. It should be noted that, even in
this approach, instabilities can occur when a single set of grid points along the in-
plane direction, in the computational domain, is used to represent a thick layer in the
multi-layered structure. But this can easily be overcome by dividing the thick layer
into sufficient number of artificial layers along the thickness co-ordinate.

From literature, it is observed that the studies based on exact elasticity models
are mostly limited to sandwich panels with simply supported edges. For thick,
soft-core panels, the specialized models failed to capture some of the higher
mode shapes of transverse displacement. Thus, there is a need to develop exact
or accurate approximate solutions using exact elasticity models for thick panels
with arbitrary edge boundary conditions. The SSDQM is particularly suited for
this task. However, proper convergence studies are needed for each edge boundary
condition and modes of vibration. Even in the reported studies using SSDQM, the
mode shapes corresponding to different natural frequencies are not explicitly iden-
tified and convergence studies are limited to few cases. Moreover, no study using
SSDQM is found on panels with guided edge boundary condition.

The present work provides benchmark results based on two-dimensional exact
elasticity model for thick soft-core sandwich panels with arbitrary edge boundary
conditions. New results, based on exact elasticity solutions using trigonometric func-
tions, for panels with combination of simply supported and guided, are obtained. A
systematic procedure is proposed for implementing all combinations of edge bound-
ary conditions in the state space differential quadrature framework. The presented
results include comparison with the conventional SSDQM formulation (refer
Appendix A [33]), which show that the proposed modifications lead to a more gen-
eral framework in implementing all combinations of edge boundary conditions and
is also shown to give better numerical accuracy and faster convergence for thick,
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cantilevered sandwich panels. The accuracy and convergence of the modified
SSDQM procedure is demonstrated using thick, soft-core sandwich panels as test
cases, before presenting the natural frequencies and the mode shapes. All the
obtained results are compared by authors using finite element simulation.

State space differential quadrature formulation
State space formulation in plane elasticity

In the framework of two-dimensional linear elasticity, the equilibrium equations in
the absence of body forces, the strain—displacement relations and the material
constitutive law for each layer of a typical three-layered sandwich panel made of
special orthotropic layers are given below

(t.c.b)

[of .
8); 0 az X Pl (t,c,b)
0. = (M
0 9. 0 PWi
Tz
€ (t,¢,b) Uy (t,¢,b)
€2 = Wz (2)
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o, (t,¢,b) - C]] C]3 0 (t,¢,b) € (t,¢,b)
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Here, o, € correspond to the normal stress and the normal strain, 7, y to the
shear stress and the engineering shear strain, u, w to the in-plane and the transverse
displacements, C;; to elements of stiffness matrix and p to the material density. The
superscripts (¢, ¢, b) refer, respectively, to the top face sheet, the core and the
bottom face sheet layers. The symbols o, or (), 9. or (). and (), represent the
partial derivatives with respect to the variables x, z and ¢, respectively.

Equations (1) to (3) are combined and re-arranged to derive the mixed form of
elasticity equations with displacements and the transverse stresses as primary vari-
ables. These equations are written in the non-dimensional form as in equation (5)
for harmonic motion using the following relations
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In the above relation, ¢ and # are the normalized in-plane and transverse coord-
inates, u, w, o,, 7 are the non-dimensional displacements and stresses, A is the
thickness-to-length ratio of the panel, w and Q are the circular natural frequency
and non-dimensional frequency, respectively. The stresses and the frequency are
non-dimensionalized using the material properties of the bottom layer.

The state equations, represented in matrix form for each layer of the sandwich
panel, are given below

i (t,¢,b) i (t,¢,b)
oy 0 A" oy

_ = _ (5)
w B 0 w

T T

>

The in-plane stress (derived variable) is related to the state variables as shown
below

i (t,¢,b)

. ] (t.e.h) | o
e L) G !
o= [(en-B)ggn & 0 o7 ;

T

These equations are listed in detail in Appendix 1 (see equations (22) and (23))
along with sub-matrices A and B (refer equation (24)).

Discretization using DQM

In the set of state equations (refer equation (22) in Appendix 1), the derivatives
with respect to the in-plane direction (¢) can be discretized using the DQM. Thus,
the derivative of any state variable with respect to & at a particular grid point in the
computational domain is represented as a weighted sum of the state variable values
at all the grid points along & co-ordinate direction. The grid distribution used is the
Chebyshev-Gauss-Lobatto grids, a non-uniform cosine grid distribution, with clo-
sely spaced grid points towards edge boundaries, reported to give better accuracy
compared to other type of grids [32].

The state equation (5) is discretized and its values at all the grid points are
represented in matrix form as follows [33]

g | ed) AN
o, 0 E7]4D o,
_ = _ (7
w F 0 w
T T
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Similarly, the derived variables are given as

g | e
. e , (teh) | 6
Gso,c,b):[(cn_&)&)xm &1 0 o] W" ®)
T

The components in bold face represent vectors or matrices. The sub-matrices E
and F and all the equations from the above matrix are separately listed using index
notation in Appendix 1 (equations (26) to (28)) for further clarity.

Solution methodologies

The edge boundary conditions such as simply supported (shear diaphragm type)
(S), clamped (C), free (F) and guided (G) in terms of the state variables or the
derived variable at £ = 0 or 1 are given below

S:w=0,00=0 C:u=0,w=0

9
Fit=0,00=0 G:u=0,7=0 ©)

Exact solutions using SSM

Exact solutions exist for sandwich panels with both edges simply supported, guided
and combination of simply supported and guided. The state variables expanded in
trigonometric series can be assumed as solutions for these types of boundary con-
ditions as in equation (10). If instead of SG, GS is considered in equation (10), then
the sin() changes to cos() and vice versa.

) Uy, cos(mm€) | " i | e Uy, sin(mmg) )
o > | Z, sin(mn§) oy 2| Z, cos(mr§)

w - mZ:O W, sin(mm&) ’ w - m;) W, cos(mm&)

T ) R, cos(mm§) T g R, sin(mm§)

i ) U,y cos((2m — 1)Zg) } 7

oy _ i Zy sin((2m — 1)5§) (10)
w | Wysin(Cm — 1))

T Jgo Ry cos(2m —1)5&)

It can be observed that for each case, the assumed series solution in equation
(10) satisfies the respective boundary condition given in equation (9) and the state
vector equations in equation (5). By substituting each of these in equation (5),
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the state equations for respective edge boundary conditions can be obtained. These
when separated out specific to a particular wave number “m” lead to the following
matrix equation

(t,c,b) (t,¢c,b)

&

(11)

Il
—
= o
S
[

=
S

1

Un
Zn
Wi
Ry,

=

m-J.n

where A and B are given in Appendix 1 for SS, GG and SG cases.
Following the conventional transfer matrix approach [33] and implementing the
traction-free boundary conditions at the lateral edges, the following relation is

obtained.
no (v, \®
{O} :[Tm]{W } (12)
() m J(0)

The non-trivial solution for equation (12) is
det([ T, ]) = 0 (13)

The above equation is a transcendental equation in ““€2,,”, which gives infinite
solutions for each value of the wave number “m.”

It should be noted that m =0 also gives different modes of vibration for SS and
GG cases. On substituting m =0 in equation (10) and following similar procedures
from equations (11) to (13), the frequencies for m =0 can be obtained. But m = %
does not correspond to a possible solution for SG or GS cases as it, respectively,
leads to a non-zero value of u or w at £ =1 violating the edge boundary condition

for guided or simply supported case.

Approximate solutions using SSDQM

In conventional SSDQM [33], the edge boundary conditions are implemented into
the discretized governing equations (equation (27) in Appendix 1) in a trial and
error manner for different cases, without providing a general framework applicable
for all combinations of edge boundary conditions (refer Appendix A [33]). The
global transfer matrix in this conventional implementation is obtained by multi-
plication of the local transfer matrices, followed by the enforcement of the traction-
free conditions at lateral edges, leading to the frequency equation

00 (u1®
ol
0 W)
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det(T) = 0 (15)

where u and w are vectors and T is a sub-matrix of the global transfer matrix.
However, the conventional method using the multiplication of local transfer matri-
ces results in numerical instabilities and hence a different approach is used to obtain
the global transfer matrix by assembling the local transfer matrices [36]. In this
work, we propose a general procedure for implementing any combination of edge
boundary conditions.

A systematic method to implement arbitrary edge boundary conditions. The discretized
state equations should be re-formulated based on the edge boundary conditions
before implementing the transfer matrix relations as explained further.

First, as all the transfer matrix relations and interface continuity conditions have
to be expressed in terms of the state variables, any edge boundary condition spe-
cified in terms of the derived variable (o¢) is converted in terms of the state variables
using equation (28) (refer Appendix 1). Consider the example of a simply supported
or a free edge panel where oy = 0 at £ = 1 and/or N, leads to the following relation

’7)
AXXZX<l)u,+—o,,,-:0, i=1and/or N (16)

From this equation, any of the three state variables at the edges, namely, i, uy,
and o, or o,y, depending on whether the edge condition is o} = 0 (for o) or
oz = 0 (for o,y) respectively, can be written in terms of the other two. For exam-
ple, if £=1 is simply supported, ogy = 0 condition can be used to obtain the rela-
tion of o,y with u; and uy and therefore o,y need not be included in the equations
to be solved (see equation (29) in Appendix 1).

Next, as the final step in the free vibration analysis involves computing the
determinant of the sub-matrix in the frequency equation for the conventional trans-
fer matrix approach (see equation (15)) or that of an assembled matrix [ JT ] (see
equation (21)), it is necessary that enforcing of the edge boundary conditions
should lead to square matrices. But for several cases, for example the clamped-
clamped (CC) boundary condition, it can be observed that for the conventional
transfer matrix approach, the order of the sub-matrix T in equation (14) is
(2N,2(N —2)) when the primary boundary conditions (those directly given by
equations (9)) u; =0, uy =0, wy =0 and wy =0 alone are implemented.
Further in the assembled transfer matrix approach, implementing the primary
edge boundary conditions alone leads to a non-square matrix [JT] in equation
(21). These can be avoided by observing that for CC case both the displacement
variables (# and w) are zero all along the edges ((=0 and {=1) and hence their
derivatives with respect to the transverse co-ordinate ‘n’ at these edges are also
zero. Making use of these conditions in the first and third set of state equations in
equation (27) (see Appendix 1), the values of the state variables 7y, 7y and oy1, o,
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become known in terms of w; and i; respectively, i = 2,..., N — 1. Avoiding these
known state variables from the set of equations to be solved, a square sub-matrix of
order (2(N — 2),2(N — 2)) is obtained in equation (15); and also [JT] in equation
(21) becomes square. The details of equations after implementing CC boundary
condition can be referred in equation (32).

On generalizing this idea, it can be concluded that substitution of the primary
boundary conditions in the governing state equations can provide the derived sec-
ondary boundary conditions which can be used when necessary. But care should be
taken to include the derived conditions only after implementing the primary
boundary conditions. For example, in SS case, the values for o, and o,y are
obtained from the primary conditions oz =0 and ozy = 0 rather than deriving
them from w; = 0 and wy = 0 for the same (refer equation (29) in Appendix 1).

Based on these observations, changes in the procedure for implementing CF
edge boundary condition, from that of the conventional procedure (refer
Appendix A [33]), are proposed. Although the conventional method for implement-
ing CF edge condition were mathematically correct, it is found that the modified
formulation gives better numerical accuracy and faster convergence for all modes
of vibration (refer Table 5). Therefore, here, the primary boundary conditions
u;y =0, wy =0, and Ty = 0 and the derived conditions for 7, and oy, (respectively
from u; =0 and w; = 0 conditions), obtained following similar procedures as
explained earlier, along with the relation of iy obtained from ogy = 0 are used
for enforcing the boundary conditions for CF panel (refer equation (33) in
Appendix 1).

It can be seen from the above discussion that every combination of edge boundary
conditions can be enforced in a simple systematic manner if the state vector pairs u
and 7, w and o, are, respectively, of the same size with conditions (primary or sec-
ondary) specified on the same edge (or edges) for each one in a particular pair. This
can eliminate all the mentioned issues and provide better accuracy and convergence
for SSDQM. The same idea is conveyed in Table 1. Here, for each case of edge
boundary conditions, the variables whose numerical values are zero at the edges
(representing the primary boundary conditions) and those with known values
(the secondary conditions derived from the primary boundary conditions) are,
respectively, represented as “0” and “v’. It can immediately be noted from
Table 1 that, as previously mentioned, the state vector pairs u# and 7, w and o, are,
respectively, of the same size for all the cases. Also similar conditions are specified
on the same edge (or edges) for each one in a particular pair for all cases. For
example, referring to the CF case (see Table 1 and equations (33) for clarity), the
state vectors u and 7 have same size (N —2) x 1) and so do w and a,, (N — 1) x 1).
Moreover, the primary condition for w (w; = 0) and secondary condition for 6, (o,
known from w; = 0) are specified on the same edge £ = 0; this being contrary to the
procedure followed in conventional SSDQM (see Appendix A [33]).

The set of state equations after implementing the edge boundary conditions for
all possible combinations of simply supported, clamped, free and guided edges using
the proposed methodology are listed in Appendix 1 (see equations (29) to (38)).
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Table I. A schematic of the procedure followed in implementing different boundary
conditions.

u un oyl OyN w) WN T N O¢| O:N

SS v v 0 0 0 0
GG 0 0 0 0

SG 0 v 0 0 0

CC 0 0 v v 0 0 v v

CF 0 v v 0 v 0 0
FF v v 0 0 0 0
CS 0 v v 0 0 v 0
SF v v 0 0 0 0
CG 0 0 v 0 0

FG v 0 0 0 0

Developing the global transfer matrix

After implementing the edge boundary conditions, the discretized state equations
for any case can be written in the following form

(t,¢,b)

(t,¢,b)

u
—  _—(teb)
G, _ 0 E o, amn
w F O W
T T

>1

It should be noted that the size of the state vectors and the coefficient matrices in
the above equations differ with the type of edge boundary conditions of the panel.

To avoid multiplication, the local transfer matrices are assembled to obtain the
global transfer matrix [36]. This leads to the following relation

0 =T (18)
where T is the global transfer matrix.
Also assembling the interface continuity and loading conditions gives

Jo=f (19)

The details of vectors dy, d, f and matrices T, J are given in Appendix 1 (see
equations (39) and (40)).
Substituting equation (18) in equation (19) gives

JTs, = f (20)
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Figure 1. (i) and (ii) are schematic of the sandwich panel, respectively, in physical and normal-
ized coordinate systems (not drawn to scale). The letters t, c and b denote, respectively, the
top face sheet, core and the bottom face sheet. Refer Table 2 for details of material and geo-
metric parameters of this sandwich panel.

Table 2. Material and geometric parameters of the sandwich panel considered for present
study [13].

H(mm) L(mm) hf (mm) he (mm) ﬁ

48 152.4 5 38 3.1750
Er (GPa) E. (GPa) pr (kgm™) pe (kgm™) ipo e
13.6 0.032 1800 58.5 0.25

Table 3. Convergence of natural frequencies (Hz) using SSDQM for SS, GG and SG edge
boundary conditions.

N=5 N=7 N=9 N=Il N=I3 N=I5 N=17 SSM
SSIGG
a=1 62086 62256 62256 622.56(""
t=1 2277.10 2277.00 2277.00 2277.00¢"?
a=2 1527.53 1526.61 1526.56 1526.56 1526.56%"
t=2 2432.77 243239 243237 243237 2432.37%?
a=4 4632.87 462841 462846 462846 462846V
t=4 4829.13 4824.97 4825.01 4825.01 4825.01¢*?
SG
a= 283.17 283.17 283.17 283.17(:D
t=1 2280.12 2292.26 2292.25 2292.25@?
a= 1028.84 1028.80 1028.80 1028.80 1028.80%"
t=2 2312.09 2312.09 2312.09 2312.09 2312.09(2
=4 367647 367939 3679.37 3679.37 3679.37*"

t=4 3959.62 396220 3962.18 3962.18 3962.18*2
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Table 4. Convergence of natural frequencies (Hz) using SSDQM for different combinations of
edge boundary conditions.

Mode N=7 N=1l N=17 N=23 N=25 N=27 FEM
CC a=| 858.19 854.37 853.49 853.33 853.32 853.37
t=1 2369.77 236937  2369.30  2369.27  2369.27 2369.3
a=4 5566.19 556496 556481  5564.71 55654
CF a=| 333.11 330.19 329.97 329.90 329.89 329.88
t=1 227595  2276.63 227637 227630  2276.29 2276.3
a=4 369423 369447 369458  3694.66 36952
FF a=| 131596  1303.79  1303.10  1303.03 1303.03 1303.0
t=1 2246.04 224635  2246.13  2246.06  2246.05 2246.1
a=4 382721  3827.08 3827.06 3827.05  3827.1
(&N a=| 725.67 724.02 723.60 723.53 723.52 723.53
t=1 2302.06  2302.04 2302.02 2302.01  2302.01 2302.0
a=4 5085.85 5085.34 5085.28 5085.23  5085.5
SF a=| 886.65 885.63 885.55 885.54 885.54 885.54
t=1 2256.21 225746 225745 225742  2257.4| 22574
a=4 333342 333336 333335 333335 33334
CG a=| 340.39 339.82 339.69 339.67 339.67 339.68
t=1 231147 231146 231145 231145 2311.45 2311.4
a=4 4081.78  4081.35 4081.30 4081.26  4081.5
FG a=| 590.23 589.16 589.09 589.09 589.09 589.09
t=1 2256.58  2256.98 2256.8]  2256.76  2256.75 2256.8
a=4 4204.83  4204.76  4204.75 420475 42048

For free vibration analysis, f = 0, which implies equation (20) is homogeneous
and so for non-trivial solution

det(JT) = 0 Q1)

The above determinant gives a transcendental equation in €2, which when solved
numerically gives all the frequencies of all the modes for a particular combination
of edge boundary condition.

Results and discussion

In this section, ‘SSDQM’ refers to the state space differential quadrature method
including the proposed modifications. The proposed methodology has been imple-
mented in MATLAB®. The sandwich panel, under present study (see the schematic
in Figure 1), consist of three layers of isotropic materials — two face sheets and a
core; all of which are modelled using the material constitutive law for 2D elasticity
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Table 5. Convergence of natural frequencies (Hz) using conventional (CON) [33] and modi-
fied (MOD) SSDQM for sandwich panel with CF edge boundary condition.

Mode N=7 N=1l N=17 N=23 N=25 N=27 FEM

| (a)) MOD 333.1 330.2 330.0 329.9 329.9 329.9
CON 329.1 329.9 330.1 330.0 330.0

2 (a7) MOD 1098.0 1092.7 1092.3 1092.4 1092.4 1092.6
CON 1135.7 1121.6 1106.4 1099.7 1098.5

3 (a3) MOD 21525 2182.8 2180.2 2179.5 21794 21793 2179.2
CON 2201.7 2193.0 2195.0 2188.5 2187.1 2185.9

4 () MOD 2276.0 2276.6 2276.4 2276.3 2276.3 2276.3
CON 2301.2 2300.8 2299.5 2295.2 22933
5 (t) MOD 23103 2310.6 2310.7 2310.7 2310.7 2310.8

CON 2392.9 2386.0 23473 2323.9 2320.2
6 (t3) MOD 2760.2 2785.2 2784.1 2783.6 2783.5 2783.5 2783.3
CON 2840.3 2843.7 2812.7 2796.8 2794.0 2792.0

FEM: finite element method.

plane strain condition (see equation (41) in Appendix 1). Its geometric and material
properties are given in Table 2, where subscripts ‘/* and ‘c’, respectively, denote
variables corresponding to face sheets and core. Exact elasticity solutions for nat-
ural frequencies and mode shapes are obtained using SSM for SS, GG and SG
panels. These results are used to validate the numerical accuracy of SSDQM for
those cases. For cases where exact solutions are not possible, the results obtained
using SSDQM are compared with those from finite element analyses using com-
mercial software Abaqus®. In the finite element model, the face sheets and the core
are meshed with eight-noded bi-quadratic plane strain quadrilateral elements with
reduced integration.

Convergence studies

The convergence of SSDQM for SS, GG and SG panels are presented in Table 3.
Exact solutions for each of these cases, obtained using SSM, are listed along with
the SSDQM numerical results. It can be noticed that the SSM results are super-
scripted with two numbers in parentheses separated by a comma. The first digit is
the wave number and the second corresponds to the position of a particular mode
when the frequencies for a specific wave number are arranged in ascending order.
In the SSDQM results, ““a” corresponds to anti-symmetric flexural mode and “t” to
symmetric thickness mode. Therefore, a=1 and t=1 correspond to these modes
for the first wave number and similarly so forth for their higher modes. It can be
observed that for SS, GG and SG cases, rapid convergence with surprising numer-
ical accuracy is observed for SSDQM results. The nature of convergence depends
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on the wave number of the frequency in which the structure vibrates. All modes
specific to a particular wave number have the same nature of convergence.
More grid points are required to obtain converged solutions for frequencies cor-
responding to higher wave numbers.

The convergence of SSDQM for cases which have no exact solutions is studied
in Table 4. These values are compared with the results from FEM simulations.
Unlike SSM, the wave number “m’ does not appear in the SSDQM formulation
and thus the frequencies specific to a particular wave number cannot be separated
out. The positive real numbers that satisfy the frequency equation (21) are the

(a)

~Wis™ Wbs™ Wes * Yis * Ubs * Yes|

‘+WQD OWppXWep kU O ubDAucD‘

() f=1349.14 Hz " (ii)

l
1
il
l
1]
1

1
05
n
05 05
13 e e e
o 02 04 06 08 1
0
6 § -1
x10
n, o
-1 . ) ) )
0 02 04 06 08
(b) )
@ f = 6447.02 Hz *? (i)
s biebedbiedrediembierbiilh
1 1 g
3
%,
n n )
05 0.5 %
¢
&
$
il

Figure 2. The first two displacement modes of SS panel for wave number m=20. (a) First
mode (0,1): (i) the longitudinal displacement modes; (ii) through-the-thickness displacement
modes of u and w plotted, respectively, at cross-sections ¢ = | and & = 0.5. (b) Second mode
(0,2): (i) the longitudinal displacement modes; (ii) through-the-thickness displacement modes of
u and w plotted, respectively, at cross-sections £ = 0.5 and &= 1.
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natural frequencies of the panel. The mode shapes, for all the frequencies listed in
Tables 3 to 7, are plotted before classifying them as antisymmetric or symmetric
type. Similar trends in convergence (as in Table 3) can be observed in Table 4. It
can be noticed that the convergence of numerical results depend on the type of edge
boundary condition. The rate of convergence in all these cases is slower than for the
SS, GG and SG conditions, that is, more number of grid points are required for
convergence. Also, convergence in cases including clamped edges are slower than
that of the others. In practical applications, convergence up to the last integer place
is more than sufficient. Therefore, SSDQM with N=17 or N=19 can give numer-
ically accurate results for thick soft-core sandwich panels with any arbitrary edge
boundary conditions.

Comparison with conventional SSDQM for CF panels

A comparison of numerical results, between the conventional (referred as CON)
and modified (MOD) SSDQM for CF case, along with convergence studies, is
given in Table 5. Here in obtaining ‘CON’ results, the conventional procedure
followed in implementing the edge boundary condition for CF case (refer
Appendix A [33]) is used along with the assembling procedure (of local transfer
matrices) to form the global transfer matrix, so that the numerical errors due to
multiplication of local transfer matrices are avoided, and therefore its comparison
with the present results (MOD) would be on an equal footing. These are also
compared with results from finite element simulation. From the study, it can clearly
be understood that, compared to the conventional methodology, the modified
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Figure 3. The first displacement mode (0,1) of GG panel for wave number m =0: (i) the lon-
gitudinal displacement modes; (ii) through-the-thickness displacement modes of u and w
plotted, respectively, at cross-sections § = 0.5 and £=1.
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Figure 6. The first three displacement modes of SG panel for wave number m= 1. In the
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displacement modes; (i) through-the-thickness displacement modes of u and w plotted,
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Figure 7. (a) The first anti-symmetric and (b) symmetric displacement modes of CC panel. In
sub-figures (a) and (b): (i) the longitudinal displacement modes; (ii) through-the-thickness dis-
placement modes of u and w plotted at cross-section £ = 0.5.

formulation successfully predicts the natural frequencies (even for higher modes)
with excellent numerical accuracy and convergence for thick, soft-core sandwich
panels with CF condition.

Frequencies and mode shapes using modified SSDQM

Comparison of modified SSDQM with SSM. The first 10 natural frequencies for SS, GG
and SG cases after satisfying proper convergence criteria are displayed in Table 6.
An excellent match between the results of SSM and SSDQM is observed in all the
cases. Along with these results, the natural frequencies from finite element analysis
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are also presented. The results for the SS panel include frequencies (0,1),(0,2),
corresponding to the in-plane modes of the =zeroth wave number;
(1,1),(2,1),...(4,1), the flexural antisymmetric modes of wave numbers 1,2,...,4
and frequencies (1,2),(2,2),...(4,2), the transverse symmetric (thickness) modes.
There are other higher modes that include in-plane modes in which the core
alone deforms ((1,3),(2,3),(3,3)), in-plane deformation modes including both
the core and the face sheets ((1,4),(1,5)), other modes with combination of in-
plane and transverse deformations in the core ((1,4),(1,5)) all of which are not
displayed. Most of the higher modes similar to these types are not presented for the
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Figure 8. (a) The first anti-symmetric and (b) symmetric displacement modes of CF panel. In
sub-figures (a) and (b): (i) the longitudinal displacement modes; (ii) through-the-thickness dis-
placement modes of u and w plotted at cross-section &= I.
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different cases studied here. Similarly, natural frequencies are listed and classified
for GG and SG cases.

When m =0, for the SS case, the first two modes ((0,1) and (0,2)) obtained have
frequencies 1349.14 Hz and 6447.02 Hz, and for GG case, the first mode (0,1) is
2336.78 Hz. The normalized mode shapes corresponding to these frequencies
obtained using SSM and SSDQM are compared for SS and GG cases, respectively,
in Figures 2 and 3. Similarly, the first three modes corresponding to m=1
((1,1),(1,2),(1,3)) for SS, GG and SG cases obtained using SSM and SSDQM are
plotted in Figures 4 to 6.
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Figure 9. (a) The first anti-symmetric and (b) symmetric displacement modes of FF panel. In
sub-figures (a) and (b): (i) the longitudinal displacement modes; (ii) through-the-thickness dis-
placement modes of u and w plotted at cross-section &= 1.
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Referring to the first plot (i.e. plot number (i)) within each of the sub-figures in
Figures 2 to 6, the variables ws, Wys, Wes and ugs, ups, ucs correspond to the longi-
tudinal displacement modes of transverse and in-plane displacements at mid-plane
of the top face sheet, the bottom face sheet and the core obtained using SSM.
Similarly, wp, Wpp, Wep and ugp, upp, uep correspond to those obtained using
SSDQM. All these are the eigenmodes along the length of the panel and are
normalized with respect to the largest value of displacement among them — separ-
ately done for SSM and SSDQM. A zoomed image is included in plot (i) of all sub-
figures to better visualize the trends of variables with lower magnitude. In the
second plot (i.e. plot number (ii))) within each of the sub-figures,
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Figure 10. (a) The first anti-symmetric and (b) symmetric displacement modes of CS panel.
In sub-figures (a) and (b): (i) the longitudinal displacement modes; (ii) through-the-thickness
displacement modes of u and w plotted at £ = 0.5.
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us, up and ws, wp represent, respectively, the through-the-thickness modes of the
in-plane and the transverse displacements normalized with respect to the largest
value among them; separately for SSM and SSDQM. Zoomed plots of these vari-
ables are given separately so that even the minor trends in their distribution could,
immediately, be identified. It should be noted that in plot (i) and (ii) of all these
sub-figures, 7, and &, denotes, respectively, the amplitude of longitudinal modes
and through-the-thickness modes and these should not be confused with the
respective normalized coordinates # and £. The through-the-thickness modes of
transverse and in-plane displacements are plotted, respectively, at the mid-section
(8 =0.5) and edge section (¢ =1) of the panel for SS case and vice versa for GG
case, whereas for SG panel, the edge sections £ =0 and & =1 are, respectively, used
for plotting in-plane and transverse displacements.

It is interesting to note that the numerical values of SS and GG cases are
matching in all the cases (except for m=0), even when their mode shapes
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Figure I1. (a) The first anti-symmetric and (b) symmetric displacement modes of SF panel.
In sub-figures (a) and (b): (i) the longitudinal displacement modes; (ii) through-the-thickness
displacement modes of u and w plotted at cross-section &= 1.
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drastically vary (see Table 6 and Figures 4 and 5). This can easily be reasoned out
from the fact that both these cases have the same sub-matrix in the frequency
equation (13). Another interesting observation is that unlike the SS and GG
cases, the first and second symmetric modes (¢ = | and 7 = 2) for SG panel cor-
respond to m = 2 and 1, respectively (see Figure 3 (for convergence of SG) and
Figure 6 for details).

Comparison of modified SSDQM with FEM. The first 10 natural frequencies for cases
without exact solutions are displayed in Table 7 along with FEM results for com-
parison. The SSDQM results given in Table 7 are for N =23, after rounding off to
the first decimal place. The SSDQM and FEM results match very well for all cases.
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Figure 12. (a) The first anti-symmetric and (b) symmetric displacement modes of CG panel.
In sub-figures (a) and (b): (i) the longitudinal displacement modes; (ii) through-the-thickness
displacement modes of u and w plotted, respectively, at cross-sections £ = 0.5 and £{=1.
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The mode shapes of these panels obtained using SSDQM and FEM simulations are
displayed from Figures 7 to 13. In plot (i), within each sub-figures,
WD, WhD> WeD, WD, Upp, Uep and W, Wpg, Wep, Ugg, Upp, Uep  correspond, respectively,
to the SSDQM and FEM solutions. These are the longitudinal modes of in-
plane and transverse displacements normalized with respect to the largest value
among them (except for CS case where all variables are normalized with respect to
maximum value of transverse displacement at mid-cross-section) — separately for
SSDQM and FEM. In the second plot (i.e. plot number (ii)) within each of these
sub-figures, (wp,up) and (wg, ug) represent, respectively, the SSDQM and FEM
solutions for through-the-thickness modes. The in-plane and the transverse
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Figure 13. (a) The first anti-symmetric and (b) symmetric displacement modes of FG panel.
In sub-figures (a) and (b): (i) the longitudinal displacement modes; (ii) through-the-thickness
displacement modes of u and w plotted, respectively, at cross-sections £ = 0.5 and £ =0.
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displacements are normalized with respect to the largest value among them; sep-
arately for SSDQM and FEM. The mode shapes corresponding to the first anti-
symmetric mode (a=1) and the first symmetric mode (1= 1) are presented in each
case. For the CC and CS cases (see Figures 7 and 10), the mid section (¢ = 0.5) of
the panel is considered for plotting the through-the-thickness transverse and in-
plane displacement modes, whereas for CF, FF and SF edges (Figures 8, 9 and 11),
these modes at the edge section ¢ =1 are displayed. In CG case (refer Figure 12),
the mid-section is used for in-plane displacement and edge section £ =1 for trans-
verse displacement. However, in FG case (see Figure 13), the mid-section is used
for plotting the in-plane displacements and edge section ¢ =0 for transverse dis-
placements. An excellent match between each solutions of SSDQM and FEM is
observed in all the cases studied.

Conclusions

Based on the exact two-dimensional elasticity model, the natural frequencies and
the mode shapes of thick, soft-core sandwich panels with different combinations of
edge boundary conditions are presented. New exact elasticity solutions are
obtained using the SSM for sandwich panels with combination of simply supported
and guided. A systematic procedure is proposed to implement all combinations of
edge boundary conditions, including simply supported, clamped, free and guided,
in the SSDQM. The convergence and accuracy of the modified SSDQM is tested
using exact elasticity solutions from SSM and approximate solutions from FEM
simulations. The modified semi-analytical methodology is found to give numeric-
ally accurate solutions with rapid convergence for all the cases studied and for
higher modes of vibration. The proposed modifications lead to a more general
framework when compared to the conventional SSDQM formulation as it include
all combinations of edge boundary conditions. Moreover, the present methodology
is found to give results with better numerical accuracy and faster convergence
compared to the conventional approach for thick, cantilevered sandwich panels.
These results based on exact elasticity model can be referred as benchmarks for
validating results from approximate models for arbitrary edge boundary condi-
tions. As there are no approximations in the field variables, these results can also
be used to develop and test new approximate models for soft-core sandwich panels
with arbitrary edge boundary conditions.
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Appendix |

In all the following equations, C; and p vary with respect to different layers of the
sandwich panel.
The state equations for any layer are as follows

(b)
r?n_ “”f%éf
@:_anau_i_ 5120
3'7 Cs3 Cs3 1
k= —AxxAPE— £ Q% - G52
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The derived variable is given by

il C13 Ci3\ »
=A Axx=|(C 23
XX 7g 35 C 0> XX < 1= Cas C b) (23)

In Axx, XX =SS, GG, SG, CC, CF, FF, SF, CG, FG. The sub-matrices of the
coefficient matrix for the governing state equations are

& c o
a=| M| B= Ton % o (24)
—mQ —Ad —AxxA O — Q7 — G

The sub-matrices of the coefficient matrix for the governing state equations for
SS, GG and SG are as follows

_ —Amrm d—SIS) _ s amr G
Ass = Css Bss = N »
_ﬁﬂz amm AxxA (mm)’ — %92 _g—gkmn
Amm o — S A &
AGG = Css Bsg = o o
5@ Axxh (ma)’ — 552 G2 am
— C(”) (25)
Asg = ~@m DA o
L p(/r) Qz (2m - 1))\‘%
B Su2m— 1Az %
Bsg = o )
| Axxr(@m = D3 = 59— G @m— 123

The sub-matrices of the coefficient matrix for the discretized state equations in
matrix form

x0 Gy _ Gy Ay
E = Css F= C33 [&5 (26)
— 5T —aXY —AxxA X — Q1 —gax®

State equations at any grid point are separately listed below

b)
dl/l, _ Z X(l)wj d T

N

doyi 2= 1)
dn p(h) §2°W; — A ZXfI b
Jj=1
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dw; C13 X(l)— b)
- = +—G i
dy —  Cxy ; K !

C
2_ 13 X(l) 2
— = —AxxA E _(b) E i Onj (27)

The derived variable at any grid point is given by the following equation

O _AXXZXS) a,,,, i=1,2,....N (28)

Equations after implementing different edge boundary conditions:

e Simply supported-simply supported (SS)

du 1 b)
L= ZX()W]-i-iT,, i=1,2,...,N
doy —Lﬂzw —)\iX(l)r i=2 N-—-1
dn ,O(b) i ]_1 ]° - >
d\;’,‘ C13 N - C(b)
= Y i+ =56, i=2,.,N—1 29
dn Cs; ; T Oy (29)

dr; u 1) A1 1) A1 2 2
d—n[:ASS)\Z<X§1)X(1) XSN)X(NJ) Xfl)) «/_WQ
Jj=1

C? N—1
— 233 XPoy, i=12,...N

Gy =7
o Guided-Guided (GG)
_ N (b)
dii; 1) - C P
C’l—n_ —)\j;X;j)w,-—i—ﬁri, i=2,...,N—1

(30)

N—

doy L O2.7 1) P

o= —WQM—)\Z)(( 5, i=12,...,N
j=
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dw; Ci3 . A Py dsbs)
= 4 ii = 5 — 1929 aN
dn C33 1222 v Gy !
dr; 1X<z> o2 €3 - 0
———AGG)»Z (b) —C—AZ ooy, i=2,...,N—1
= P EXI
e Simply supported-Guided (SG)
_ /7)
ﬁ—b;;: —)\,ZX(I)W 55r,, i=1,2,...,N—1
Jj=
doy; 1 _
I = —ﬁg WI—AX%X()T/, 1—29 3N
j=
. c N—1 - b)
= —%A; i U+ G O i=2,...,N (31)
= 2 1) 441
d_ _Asgh Z(X“ XPX )iy - 4 22
j=1
iy T D)
—C—;;x/_zgxg, oy i=1,2,...,N—1
e Clamped-Clamped (CC)
N—1 b)
di Doy G
= —Aj%XE,-\V_i—I—C;Sr,-,1_2,...,N—1
doy - S 1) Al 1) yA1
= RGN 22 (X< X+ XX )>
Jj=
—AI\/Z er i=2,...,N—1
L=
J=2
dw; C = b} .
i — —FSAIZX( uj+cnam,l=2,...,N—1 (32)
dy; o) - 2=
d_nI: —Acck J; Xf-j u]—ﬁQ uj

e, 0\ A 1) A1) A -
—(C—g&?) Z: <X§1 X(lj +XENX(N/>”I'

_C 1Y) P
;;x;% Oyr i=2,...,N—1



34 Journal of Sandwich Structures and Materials 0(00)

e Clamped-Free (CF)
il—l/_:;: —)\,ZX(I)‘V]—i_ le i:2""’N_1
j=

o 3 Dyl
oy Qi — G2 5 (XA

Yol
G 55 j=2
N-—

1) .
AZX( 1, i=2,...,N
J=

1) 1)

_ N-1 b)
dv;, _  Ci3 1) Xy \/ s
i, = C}}A%( Xy + s )+ o

7} D)
dr __ m N . L 0257,
= A@*§:< ﬂ )%—;ﬂﬂuz

C2 ) 1 1 l)
(925 X( X - m i,
Cs3 ({ﬁ) = il 1j J
5/ =
+ Cis A sz\r) + C%z A X“m)'Xm o
1) 9 D nN
Css X(NN 3 Ac FCs X<\ N

N
&y XPoy, i=2,... N-1
J=2

Cy

o Free-Free (FF)

- 1 .
TR VLT SRS
J=
N—
doy; 5 1 j
d%;: —ﬁﬁzwi—)»ZX()‘E], i=12,...,N
j=

N—1
dw; C 1) 1) yA1) 1) yA1)
d‘_:z - (C: BiF) ]_;(Xgl <X<1] X(NN - XENX(N/)

N—1

X(l) 1)x(1) I)X(l) - C X“)_

+ iN(‘X(N/‘ 11 _X(lj N1>)“j—dik Zz i U
Jj=

(&) (s (008~

c? .
(X~ o) + =120

(33)

(34)
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du,  (Apr). 32 2) ( 1A1) A1 1) A1
(=) M()ﬁ.)ﬂ)—)ﬁ)ﬂ?)
2) (A1) yA1) 1) yA1)
+X§N<X(NjX(11 _X(I‘X(N ))“: AFF)»Z
- Ciz\ A 2) A1) 2) A1)
—L oo, (X( X4y = X0 x )
o®) (C”) il 4NN iNANT Ol
C
2) 141 2) 141 13y .
(AR XA Yo G Zv =2 -
1) (1 1) A1
P = (DX, — X))
e Clamped-simply supported (CS)
_ N— h)
‘;—l:}": —AZX(I)WJ—l— i, i=2,...,N
J=
doy - 1 1 1 . .
o= p(,,)522w, gzzkz Z (X< )X< ))w/ —XZX( )r,, i=2,...N—-1
]_
o = _%gxzy“uﬂu 50,7,, i=2...,N—1 (35)
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N
di— Acsh Z (—Xfﬁ + Aﬁ}@%&})@ — Q20
N—
2 1) (1) - 1 ;
—<(4;;2§/;>>ZA“)5 g—gxzxﬁ% =2,...,N
j=
e Simply supported-Free (SF)
iy _ NX(I) -
= = w/—l- r,, i=1,2,...,N—1
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d'7 - p(h} 1 y ] - L]
4o N—1 1 X x C(h) (36)
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= XX x40yt
— —ASF)L Z ( ) X(ABV Xﬁll) <X<Il/) - ?]\1}3\, j))"_l./

Ci (X3 xPx)
p Q2L_li+—l3)\( iN i AN oy

2 I

Ci3 NX<1) .
_7)\‘2 i Onjs l=1,2,...,N—1

i
J=2

e Clamped-Guided (CG)

dit 1) .
i —AZX< w+C>‘r,, i=2,...,N—1
doy; 2 C 1A - Nl 1)
= —ﬁﬂw,—k jf)ZX(lef.le—)»ZXE/q, i=2,...
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_ o
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e Free-Guided (FG)

N

dii; 1)y P
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j=1

dory R

b= et T =12

N N—1 XDy (b)
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n— Cx A j; ( X< + X“’ uj + sy Oni
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The vectors &y, 0, f and matrices T, J in the equations (18) and (19) are as
follows

5(0)(b)
(b) b)
50)® o(h) ft
© 50 0
0o =160 ¢, 0= , f= (39)
(h)© 0
3(0)"
5(0)(0 £0
5(h)(l)
™ o o JO 0 0 o0
I
0o 0 TO 0 0 JY o
0 o0 o0 JO
0 i 0 0 (40)
where, JO = J© = [0 0 0 } JO=[1 —I]
i
() (b)
(0 _ {f} ) _ {f}
f.] f;
2D plane strain constitutive relations for an isotropic material
1-1)E 1—p0)E
Cu = <1+(u><’1)—2u> Cy = (11(#)(’1!)72;1)
Cia = HE Cec — E (41)
B= -2 =37 20+w

where E is the Young’s modulus and w is the Poisson’s ratio.



