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Abstract. In this work, we consider the Vehicle Routing Problem with Simultaneous Delivery and Pickup,

and constrained by time windows, to improve the performance and responsiveness of the supply chain by

transporting goods from one location to another location in an efficient manner. In this class of problem, each

customer demands a quantity to be delivered as a part of the forward supply service and another quantity to be

picked up as a part of the reverse recycling service, and the complete service has to be done simultaneously in a

single visit of a vehicle, and the objective is to minimize the total cost, which includes the traveling cost and

dispatching cost for operating vehicles. We propose a Mixed Integer Linear Programming (MILP) model for

solving this class of problem. In order to evaluate the performance of the proposed MILP model, a comparison

study is made between the proposed MILP model and an existing MILP model available in the literature, with

the consideration of heterogeneous vehicles. Our study indicates that the proposed MILP model gives tighter

lower bound and also performs better in terms of the execution time to solve each of the randomly generated

problem instances, in comparison with the existing MILP model. In addition, we also compare the proposed

MILP model (assuming homogeneous vehicles) with the existing MILP model that also considers homogeneous

vehicles. The results of the computational evaluation indicate that the proposed MILP model gives much tighter

lower bound, and it is competitive to the existing MILP model in terms of the execution time to solve each of the

randomly generated problem instances.

Keywords. Supply chain; transportation; vehicle routing problem; simultaneous delivery and pickup; time

windows; integer programming model.

1. Introduction

Logistics plays an important role in supply chain, and the

three main drivers of logistics that contribute to supply

chain profitability/surplus are facilities, inventory and

transportation; among these drivers, transportation focuses

on moving the inventory from one facility to another

facility in the supply chain [1]. In this work, we study the

Vehicle Routing Problem (VRP) with the consideration of

simultaneous delivery and pickup for each customer, and

the service to the customer is further constrained by time

windows. We consider this class of problem to identify the

cost-effective routes to improve the performance of the

supply chain. In the basic VRP, the objective of the prob-

lem is to find the set of routes with minimum cost for the

given vehicles with finite capacity, so that each customer is

served with the respective demand. We refer Toth and Vigo

[2] for review of the basic problem and its variants.

The study focuses on the Vehicle Routing Problem with

Simultaneous Delivery and Pickup, and constrained by time

windows (VRPSDPTW), and the VRPSDPTW is a special

case of the VRP that comes under the class of Vehicle

Routing Problems with Backhauls (VRPB). The VRPB can

be further classified into four types (based on the customer

requirements as regards delivery and pickup). In VRPB,

shipment/goods to be delivered to linehaul customers are

loaded at the depot, and goods to be picked up from

backhaul customers are transported to the depot.

The first subclass deals with the problem where a vehicle

has to serve the group of linehaul/delivery customers before

any backhaul/pickup customer, and the problem is referred

to as the Vehicle Routing Problem with Clustered Back-

hauls (VRPCB). The second subclass deals with the prob-

lem where a vehicle can serve customers in a mixed order,

and the problem is referred to as the Vehicle Routing

Problem with Mixed Backhauls (VRPMB). In both VRPCB

and VRPMB, customers are of either pickup or delivery

customers, and cannot be of both categories. In the next two
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subclasses, each customer requires both the services (de-

livery and pickup). The third subclass deals with the

problem where each customer is associated with both

pickup quantity and delivery quantity, and the vehicle can

visit each customer more than once, and the problem is

referred to as the Vehicle Routing Problem with Divisible

Delivery and Pickup (VRPDDP). The fourth subclass deals

with the problem where each customer is associated with

both pickup quantity and delivery quantity, and every

customer has to be visited only once, and the problem is

referred to as the Vehicle Routing Problem with Simulta-

neous Delivery and Pickup (VRPSDP). For a detailed sur-

vey of VRPB and its variants, we refer to the survey article

by Parragh et al [3].

We develop a Mixed Integer Linear Programming

(MILP) model that is computationally more efficient (in

relation to existing MILP models) for solving the

VRPSDPTW; in order to save space in the paper, we

specifically present an overview of the literature pertaining

to MILP models for addressing the VRPSDPTW, even

though many attempts have concentrated on the develop-

ment of heuristic approaches in view of the problem being

NP-hard [4].

Min [5] first studied the possibility of having simulta-

neous delivery and pickup at the same customer node,

developed an MILP model and a solution procedure to

handle the VRPSDP, and validated the model and its per-

formance through a case study dealing with public library

distribution system. Dethloff [6] studied the VRPSDP

problem in which a fleet of identical vehicles in terms of the

capacity were assumed to be available at the depot, and

proposed an MILP model for solving the same. Ganesh and

Narendran [7] studied the Travelling Salesman Problem

(TSP) with the consideration of simultaneous delivery and

pickup at each customer node, and discussed the various

applications of this class of problem. They proposed an

MILP model for solving this problem, discussed the com-

plexity of the problem and classified this problem as NP-

complete.

Ai and Kachitvichyanukul [8] studied the VRPSDP and

proposed an MILP model as an extension to the basic VRP,

and they claimed that this model is a generalized version of

the models proposed previously in the literature for the

VRPSDP. Subsequently, Wang and Chen [4] suggested that

the model proposed by Ai and Kachitvichyanukul [8] could

be simplified by reducing the redundant constraints and

variables, and they proposed an MILP model and a genetic

algorithm for solving the VRPSDPTW.

Liu et al [9] studied a specific problem in health care

domain where drugs and medical devices were considered

for delivery service, and biological samples, medical wastes

and unused drugs were considered for pickup service, and

they proposed MILP models for solving this specific

problem. Wang et al [10] considered the MILP model for

the VRPSDPTW in the case of identical vehicles, and the

model was derived from Dethloff [6] and Kallehauge et al

[11], and they also proposed an algorithm based on simu-

lated annealing for solving the same.

Polat et al [12] proposed an MILP model and a variable

neighbourhood search heuristic for solving the VRPSDP

with Time Limit (VRPSDPTL) in which each customer can

be visited at any point in time (but only once), and the

vehicles need to be returned to the depot within the time

limit. They extended this problem to additionally consider

the service time with respect to each and every customer. In

their work they assumed that a fleet of homogeneous

vehicles is available at the depot.

In this work, we propose an MILP model for the

VRPSDPTW and compare the efficiency of the model in

terms of the CPU time to find the optimal solution, and

also in terms of the lower bound that we obtain through

Linear Programming (LP) relaxation. For this purpose, we

choose the most appropriate models in terms of relevance

and recency; we first carry out a computational experi-

ment between our MILP model and the MILP model by

Wang and Chen [4] by considering the heterogeneous

vehicles in terms of capacity and cost of vehicles, and

then we carry out a computational experiment between

our MILP model and the MILP model by Polat et al [12]

by considering the homogeneous vehicles. The results

confirm that our model is able to perform better with

respect to CPU time to find the optimal solution and also

in terms of the lower bound that we obtain through LP

relaxation, based on the problem instances considered in

the comparison study.

2. Findings from the literature

The VRPSDPTW has been studied in the past by various

researchers; the generalized MILP models were stud-

ied/modelled for solving the VRPSDPTW with the con-

sideration of heterogeneous vehicles [4, 8], and the MILP

models focusing on homogeneous vehicles were also

studied [6, 10, 12]; a few attempts have also been made on

the MILP models for solving the specific domain/problem

[9]; as the problem is NP-hard, many attempts have been

focusing on efficient heuristic and meta-heuristic algo-

rithms for solving this class of problem.

The study on the generalized MILP model for the

VRPSDPTW with the consideration of heterogeneous

vehicles (in terms of capacity/cost), with the focus on

more efficient MILP models in terms of execution time

and lower bound (through LP relaxation), is very less in

the literature. These additional aspects with respect to

heterogeneous vehicles, simultaneous delivery and pickup,

and time windows with respect to depot and each cus-

tomer, make the problem difficult to mathematically

model to be computationally more efficient in terms of

CPU time and also to be better in terms of the lower

bound through LP relaxation.

39 Page 2 of 14 Sådhanå (2019) 44:39



3. Contributions of the study

The contributions of this work are four-fold.

• The work proposes an efficient MILP model for

solving the VRPSDPTW.

We propose an MILP model for the VRPSDPTW and

compare the efficiency of the model in terms of the CPU

time to find an optimal solution, and the model uses node-

specific variables to model the capacity and time window

constraints, without using vehicle index on the decision

variable that tracks the use/existence of a particular arc (in

the transportation network) in the final solution; this

approach helps in reducing the number of binary variables,

as against the model by Wang and Chen [4] for solving the

VRPSDPTW, and also against the model by Polat et al [12]

for solving the VRPSDPTL.

• The work reports better performance of the proposed

MILP model against the models available in the

literature, in terms of the CPU time, to find the optimal

solution.

In order to evaluate the performance of the proposed

MILP model, a comparison study is made between the

proposed MILP model and the MILP model available in

literature for the VRPSDPTW [4] with the consideration of

heterogeneous vehicles. Our study indicates that the pro-

posed MILP model performs better in terms of the execu-

tion time to solve each of the randomly generated problem

instances, compared with the MILP model developed by

Wang and Chen [4]; the respective results are presented in

tables 7 and 8 (in section 7.1).

We also carry out a comparison study between the pro-

posed MILP model and the MILP model available in lit-

erature for the VRPSDPTL [12] with the consideration of

homogeneous vehicles. Our study indicates that the pro-

posed MILP model is competitive in terms of the execution

time to solve each of the randomly generated problem

instances, compared with the MILP model developed by

Polat et al [12]; the respective results are presented in

table 9 (in section 7.2).

• The work reports the superior performance of the

proposed MILP model against the models available in

the literature, in terms of the lower bound that the

models generate through LP relaxation.

Our study indicates that the proposed MILP model (with

the consideration of heterogeneous vehicles) gives superior

lower bound (through LP relaxation, when we relax the

binary constraints on the respective models) compared with

the MILP model developed by Wang and Chen [4]; the

respective results are presented in tables 7 and 8 (in sec-

tion 7.1). The study also indicates that the proposed MILP

model (with the consideration of homogeneous vehicles)

reports tighter lower bound (through LP relaxation, when

we relax the binary constraints on the respective models),

compared with the MILP model developed by Polat et al

[12]; the respective results are presented in table 9 (in

section 7.2).

• The work also discusses a specific scenario with

respect to the feasibility of existing MILP model by

Wang and Chen [4], and proposes a modification to

resolve the feasibility issue.

4. Problem description and assumptions

The VRPSDPTW is a routing problem with additional

constraints in which a customer requires a simultaneous

service of delivery and pickup, the complete service has to

be done on a single visit by a vehicle and also the service

has to be offered in the time window preferred by the

respective customer. This additional aspect of considering

the specific time window for each customer enables the

customer to accept/receive the service at a preferred/con-

venient time window.

The objective of the problem is to find optimal routes in

terms of routing cost such that the cumulative load of the

vehicle is maintained below its capacity for every customer

and also at the depot; the objective is also to route/schedule

the vehicle such that the service is offered at the preferred

time window specified by each customer.

The VRPSDPTW is generally defined as follows: cus-

tomers are given, and each customer requires a given

shipment to be delivered as a part of the forward supply

service and another load to be picked up as a part of the

reverse recycling service, on the same visit to the customer

within a defined time period. A set of vehicles (with

capacity restrictions) is ready to provide the service to the

customers at the distribution centre (DC); each vehicle can

be assigned at most to a single route as assumed in VRP

class of problems [2]; each vehicle begins the trip from DC,

provides service to the customers in the route and com-

pletes the trip at collection centre (CC). The objective of

the problem is to minimize the number of vehicles and total

travelling costs in order to satisfy both pickup service and

delivery service such that the total load of the vehicle is

below the vehicle capacity at each and every point in the

route.

The VRPSDPTW is illustrated in figure 1. In this

example, two vehicles are available at the depot with dif-

ferent capacities; the pickup/delivery service has to be

offered to 7 customers, and each customer has a preferred

time period/window in which the service has to be offered;

in this example, vehicle 1 starts from the depot, provides

the service to customer 5, then proceeds to customer 2,

subsequently visits customer 6, finally provides the service

to customer 1 and returns to the depot; vehicle 2 starts from

the depot, provides the service to customer 7, subsequently
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provides the service to customer 4, finally offers service to

customer 3 and returns to the depot.

In section 5, we propose an MILP model for the

VRPSDPTW; in section 6, we discuss the salient features

of the proposed MILP model and the advantages of the

proposed MILP model against the models available in the

literature; subsequently, in section 7, we present a com-

parison study of our MILP model with the models available

in the literature for the VRPSDPTW and VRPSDPTL.

5. Proposed MILP model for the VRPSDPTW

5.1 Notations

N total number of customers; DC/CC is represented by

node 0

V total number of available vehicles

ci;j travel distance (i.e., routing cost) between node i and

j

ti;j travelling time between node i and j

a0 earliest start time of any vehicle from DC

ai earliest start time of service at customer i

b0 latest arrival time of any vehicle to CC

bi latest start time of service at customer i

Ck capacity of vehicle k (i.e., heterogeneous vehicles are

assumed)

si service time of customer i

pi pickup quantity of customer i

di delivery quantity of customer i

fixedk dispatching cost of vehicle k, a fixed/overhead cost

a a constant representing the trade-off between

dispatching cost and routing cost

node N?k a fictitious start node with respect to vehicle k, acting

corresponding to DC as the start of the route; we

have cNþk;j ¼ c0;j, 8j; k and tNþk;j ¼ t0;j, 8j; k
node

N?V?k

a fictitious end node with respect to vehicle k, acting

corresponding to CC as the end of the route; we

have ci;NþVþk ¼ ci;0, 8i; k and ti;NþVþk ¼ ti;0; 8i; k

M1 a large value, and its value is defined as follows:

ð max
0� i�N;0� j� n

ci;jÞ � N þ 2ð Þ

M2 a large value, and its value is defined as follows:

max
0� i�N;0� j� n

ti;j

� �
� N þ 2ð Þ þ

PN
i¼1

si

M3 a large value, and its value is defined as follows:

2� ð max
1� k�V

ckÞ

5.2 Decision variables

xi;j assigned with the value 1 when the arc between

customer i and customer j is selected as a part of the

routing plan, 0 otherwise

xNþk;j assigned with the value 1 when the arc between node

N?k and customer j is selected as a part of the

routing plan, 0 otherwise

xi;NþVþk assigned with the value 1 when the arc between

customer i and node N?V?k is selected as a part of

the routing plan, 0 otherwise

deli;k assigned with the value 1 when customer i is assigned to

vehicle k, 0 otherwise

delvk assigned with the value 1 when vehicle k is used in the

solution, 0 otherwise

load0k load of vehicle k when it starts from DC

start0k starting time of vehicle k when it starts from DC

ldi load on vehicle after completing the service at customer

i

disti total distance travelled up to customer i

sti starting time of the service at customer i

The proposed MILP model uses node-specific variables

to model the load of the vehicle and time window con-

straints, and uses three sets of two-dimensional binary

variables to track the routes and their associated vehicles.

Figure 1. Illustrative example for the VRPSDPTW.
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The proposed MILP model also uses fictitious node for

each vehicle with respect to DC and CC in order to model

the start of the trip from DC and end of the trip to DC. The

objective of the problem is to find the optimal routing plan

with respect to the total cost, which includes the routing

cost and the fixed cost for the vehicles, as given in Eq. (1)

(the same as that given in Wang and Chen [4]).

Minimize

Z ¼a�
XN
i¼1

XN
j¼1

ðxi;j � ci;jÞ þ a�
XN
j¼1

XV
k¼1

xNþk;j � c0;j
� �

þ a�
XN
i¼1

XV
k¼1

xi;NþVþk � ci;0
� �

þ 1� að Þ �
XV
k¼1

delvk � fixedkð Þ

ð1Þ

subject to the following constraints.

Constraint (2) restricts that each customer should be

allocated to only a single vehicle:

XV
k¼1

deli;k ¼ 1; : i ¼ 1; 2; ::. . .;N ð2Þ

Constraints (3) and (4) are introduced with respect to the

fictitious nodes (specific for each vehicle), in order to

allocate them to the corresponding vehicle:

delNþk;k ¼ 1; k ¼ 1; 2; ::. . .;V ð3Þ

delNþVþk;k ¼ 1; k ¼ 1; 2; ::. . .;V ð4Þ

Constraint (5) represents that a customer can be allocated

to a vehicle only when the corresponding vehicle is used in

the final solution:

deli;k � delvk; i ¼ 1; 2; ::. . .;N and k ¼ 1; 2; ::. . .;V ð5Þ

Constraints (6)–(9) ensure that the customers belonging

to the same route are allocated to the same vehicle;

specifically, Constraints (6)–(8) ensure that when the route

is directly between two nodes in the transportation network,

then they should be allocated to the same vehicle (for

example, deli;k ¼ delj;k). If nodes i and j are not allocated to

the same vehicle k, then xi;j ¼ 0; however, if they are

allocated to the same vehicle k, then xi;j can be 0 or 1, based

on the routing plan.

deli;k � delj;k � 1� xi;j
� �

; i; j ¼ 1; 2; . . .;N; i 6¼ j and k

¼ 1; 2; . . .;V

ð6Þ

delNþk;k � deli;k � 1� xNþk;i

� �
; i ¼ 1; 2; . . .;N and k

¼ 1; 2; . . .;V

ð7Þ

delNþVþk;k � deli;k � 1� xi;NþVþk

� �
; i ¼ 1; 2; . . .;N and k

¼ 1; 2; . . .;V

ð8Þ

deli;k � 1� xNþk;NþVþk; i ¼ 1; 2; . . .;N and k ¼ 1; 2; . . .;V

ð9Þ

Constraints (10) and (11) ensure that either each vehicle

starts from a depot to serve a particular customer, or it is

not being utilized, and thereby the vehicle directly makes a

visit between fictitious nodes:

XN
j¼1

xNþk;j þ xNþk;NþVþk ¼ 1; k ¼ 1; 2; . . .;V ð10Þ

XN
i¼1

xi;NþVþk þ xNþk;NþVþk ¼ 1; k ¼ 1; 2; . . .;V ð11Þ

Constraints (12) and (13) indicate that the total

number of arcs selected in the final solution, before and

after visiting a customer/fictitious node, should be equal

to 1:

XN
j¼1

xi;j þ
XV
k¼1

xi;NþVþk ¼ 1; i ¼ 1; 2; . . .;N ð12Þ

XN
i¼1

xi;j þ
XV
k¼1

xNþk;j ¼ 1; j ¼ 1; 2; . . .;N ð13Þ

Constraint (14) ensures that either the vehicle is being

utilized for providing service to the customer or the vehicle

directly makes a visit between fictitious nodes:

XN
i¼1

deli;k þ xNþk;NþVþk � 1; k ¼ 1; 2; . . .;V ð14Þ

The approach of having a separate set of fictitious nodes,

specific to each vehicle for DC and CC, helps modelling

Constraints (15) and (16). These constraints make sure that

when a customer is visited as first/last customer in the

route, then the respective customer is also allocated to the

same vehicle.

xNþk;i � deli;k; i ¼ 1; 2; . . .;N and k ¼ 1; 2; . . .;V ð15Þ

xi;NþVþk � deli;k; i ¼ 1; 2; . . .;N and k ¼ 1; 2; . . .;V ð16Þ

Constraints (17)–(21) are introduced to restrict the sub-

tours in the route sequence in addition to the distance-re-

lated constraints (Constraints (22)–(24)), which further

governs the sub-tour elimination:

xi;i ¼ 0; i ¼ 1; 2; . . .;N ð17Þ

xi;j þ xj;i � 1; i ¼ 1; 2; . . .;N � 1 and j

¼ iþ 1; iþ 2; . . .;N ð18Þ
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xNþVþk;j ¼ 0; j ¼ 1; 2; . . .;N and k ¼ 1; 2; . . .;V ð19Þ

xi;Nþk ¼ 0; i ¼ 1; 2; . . .;N and k ¼ 1; 2; . . .;V ð20Þ

xNþVþk;Nþk ¼ 0; k ¼ 1; 2; . . .;V ð21Þ

Constraints (22)–(24) represent that if the arc between

two nodes is selected/available as a part of the travel plan,

then the distance travelled to reach the second node from

the first node is equal to the travel distance between them:

disti � c0;i �M1� 1� xNþk;i

� �
; i ¼ 1; 2; . . .;N and k

¼ 1; 2; . . .;V

ð22Þ

distj � disti þ ci;j �M1� 1� xi;j
� �

; i; j
¼ 1; 2; . . .;N and i 6¼ j ð23Þ

distNþVþk � disti þ ci;0 �M1� 1� xi;NþVþk

� �
; i

¼ 1; 2; . . .;N and k ¼ 1; 2; . . .;V ð24Þ

Constraints (25)–(27) denote that if the arc between

customers i and j is selected as a part of the routing plan,

then the time to provide service at customer j should be

later than the time to provide service at customer i, and

should be more than the time to travel from customer i to

customer j:

sti � start0k þ t0;i �M2� 1� xNþk;i

� �
; i

¼ 1; 2; . . .;N and k ¼ 1; 2; . . .;V ð25Þ

stj � sti þ si þ ti;j �M2� 1� xi;j
� �

; i; j
¼ 1; 2; . . .;N and i 6¼ j ð26Þ

sti þ si þ ti;0 � xi;NþVþk � b0; i ¼ 1; 2; . . .;N and k

¼ 1; 2; . . .;V ð27Þ

Constraint (28) ensures that the load of a vehicle at any

point in route should be less than the capacity of the

vehicle:

ldi �
XV
k¼1

deli;k � Ck; i ¼ 1; 2; . . .;N ð28Þ

Constraint (29) limits the initial load of the vehicle when

it starts from the DC:

load0k ¼
XN
i¼1

deli;k � di; k ¼ 1; 2; . . .;V ð29Þ

Constraints (30) and (31) represent the cumulative load

of a vehicle after visiting a particular customer:

ldi � load0k � di þ pi �M3� 1� xNþk;i

� �
; i

¼ 1; 2; . . .;N and k ¼ 1; 2; . . .;V ð30Þ

ldj � ldi � dj þ pj �M3� 1� xi;j
� �

; i; j
¼ 1; 2; . . .;N and i 6¼ j ð31Þ

Constraints (32)–(36) represent the bounds for the

respective decision variables:

a0 � start0k � b0; k ¼ 1; 2; . . .;V ð32Þ

ai � sti � bi; i ¼ 1; 2; . . .;N ð33Þ

0� load0k �Ck; k ¼ 1; 2; . . .;V ð34Þ

0� ldi � max
1� k�V

Ck; i ¼ 1; 2; . . .;N ð35Þ

0� disti �M1; i ¼ 1; 2; . . .;N ð36Þ

5.3 Additional observations

In the proposed MILP model, Constraints (25) and (26)

are used to define the starting time of the service for each

customer, and these constraints define only the lower

limit for starting the service at the respective customer

(as assumed/modelled by Wang and Chen [4]), and the

same is observed and discussed in section 6.4; if the

objective of the problem is also to get the exact schedule

for providing the service for each customer, without

inserting any waiting/idle time during the travel, then we

have to define Constraints (37) and (38) to obtain the

exact schedule for providing the service at the respective

customer:

sti � start0k þ t0;i þM2� 1� xNþk;i

� �
; i

¼ 1; 2; . . .;N and k ¼ 1; 2; . . .;V ð37Þ

stj � sti þ si þ ti;j þM2� 1� xi;j
� �

; i; j
¼ 1; 2; . . .;N and i 6¼ j ð38Þ

6. Discussion on the proposed MILP model

In section 6.1, we discuss the salient features of the pro-

posed MILP model, and in section 6.2, we discuss the

advantages of the proposed MILP model over the MILP

models by Wang and Chen [4] and Polat et al [12]. In

section 6.3, we present a numerical example for the

VRSDPTW; in section 6.4, we discuss the possible infea-

sibility with respect to the implementation of an existing

MILP model by Wang and Chen [4] for a particular sce-

nario, and propose a constraint to their model to address the

feasibility issue.

6.1 Salient features of the proposed MILP model

We have modelled the VRPSDPTW using three sets of

two-dimensional binary variables, and the purpose/usage of

these variables is described in this section.
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• In the proposed MILP model, the first set of binary

variables (namely xi;j; ; xNþk;j and xi;NþVþkÞ is used to

track the immediate precedence between customers in

the final route.

• The second set of binary variables (deli;k) is used to

model the allocation of customers to specific vehicle,

and its related constraints.

• The third set of binary variables (delvkÞ is used to make

a decision about the usage of a particular vehicle in the

final solution.

These variables are linked through binding constraints

(5) and (6)–(9), and these constraints also act as a set of

tight constraints to produce a tighter lower bound (when we

relax the binary variables through LP relaxation). Con-

straint (5) links the binary variables deli;k and delvk to make

sure that a customer can be allocated to vehicle only when

the corresponding vehicle is selected in the final solution.

Constraints (6)–(9) link the binary variables xi;j and deli;k to

make sure that whenever the arc between two customer is

selected in the route, then the respective customers are also

allocated to the same vehicle.

6.2 Advantages of the proposed MILP model

Following are the advantages of the proposed MILP model

(for having three sets of two-dimensional binary variables)

in comparison with the MILP model by Wang and Chen [4]

and Polat et al [12]:

• In the proposed MILP model there are V þ ðN þ V �
2Þ2 þ N þ V � 2ð Þ � V in total, out of which V binary

variables (delvkÞ are used to track usage of vehicle in

the final solution, ðN þ V � 2Þ2 binary variables (xi;jÞ
are used to track the direct precedence between two

customers in the route and N þ V � 2ð Þ � V binary

variables (deli;k) are used to model the allocation-

related constraints.

• In the MILP models by Wang and Chen [4] and Polat

et al [12], there are ðN þ 1Þ2 � V binary variables,

which is mainly due to the fact that the same set of

binary variables (xi;j;k) has been used to track the direct

precedence as well as to track the allocation of

customers to vehicle.

• In the proposed MILP model, we use three different set

of binary variables (delvk; deli;k and xi;j) and link them

through the binding constrains (Constraints (5)–(9)),

and this helps to reduce the number of binary variables

significantly to V þ ðN þ V � 2Þ2 þ N þ V � 2ð Þ � V

from ðN þ 1Þ2 � V .

• In the proposed MILP model, the active number of

binary variables with respect to fictitious nodes is

further reduced using Constraints (19)–(21).

• The separate set of binary variables specific to vehicle

usage (delvkÞ in the proposed MILP model helps to

obtain a tighter lower bound (through LP relaxation

by relaxing the binary variables), in comparison with

the lower bound that we obtain from the MILP

models by Wang and Chen [4] and Polat et al [12];

this is because in the proposed MILP model, the

entire set of variables (xi;j; xNþk;j and xi;NþVþk) in the

final route is indirectly used to derive/determine the

vehicle usage (delvkÞ, whereas only a single variable

per route x0;j;k
� �

that tracks the direct precedence

between DC and customer node is used to track the

vehicle usage in the model by Wang and Chen [4].

This improvement in the lower bound also helps the

solver to execute the proposed MILP model relatively

faster, in comparison with the MILP model by Wang

and Chen [4].

6.3 A numerical example for the VRPSDPTW:

proposed MILP model

For the purpose of numerical illustration, we have taken a

specific problem instance; details related to the co-ordinates

of the nodes (in (X,Y) plane) are given in table 1, and the

travel time/distance for any pair of nodes is calculated as

the straight line distance between these nodes. The details

specific to pickup and delivery quantities and time window

and service time with respect to each customer are also

presented in table 1. The details related to vehicle-specific

parameters are presented in table 2. The cost of travel (ci;j)

between customer i and customer j is expressed in terms of

time (ti;jÞ in this problem instance.

When we execute the proposed MILP model for this

example, two routes are formed; the corresponding values

of the decision variables are presented in table 3; the Z

value for the solution is 198.10 and we have assigned 0.5 as

the value for the trade-off parameter a with respect to cost

functions as assumed by Wang and Chen [4].

• Route for Vehicle 1 with respect to customer sequence

is (9,10); the vehicle starts from depot, serves (simul-

taneous service of delivery and pickup) the set of

customers {9,10}, in this sequence, and returns to

depot.

• Route for Vehicle 2 with respect to customer sequence

is (2,6,7,8,5,3,1,4); the vehicle starts from depot,

serves (simultaneous service of delivery and pickup)

the set of customers {2,6,7,8,5,3,1,4}, in this sequence,

and returns to depot.

6.4 Discussion of the existing MILP model

by Wang and Chen [4], and our proposed

modification

We observe that the MILP model proposed by Wang and

Chen [4] results in an infeasible solution in the scenario
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where the dispatching cost of a particular vehicle is less

compared with other vehicles and the capacity of that

particular vehicle is large enough to accommodate more

customers. In this scenario, the model tries to optimize the

objective function by assigning the same vehicle for mul-

tiple routes because the objective function concentrates on

minimizing the number of vehicles used in the final solu-

tion in addition to minimizing the total travel distance. All

these are explained with the help of the following example.

In addition, the model yields an infeasible solution that is

evident from the simultaneous visit of two customers dur-

ing the same time window, in spite of these two customers

being in different routes.

In the example presented in tables 4–6, dispatching

centre (DC) is the same as collection centre (CC), which is

node 0, and there are two customers who require service

from DC/CC. Two vehicles are available at the DC to

provide service to the customers. We have assigned 0.5 as

the value for the trade-off parameter a with respect to cost

functions. The problem instance details with respect to the

vehicles are given in table 4, and the problem instance

details for customers and the travel distance/time with

respect to transportation network are given in tables 5 and

6, respectively. The cost of travel (ci;j) between customer i

and customer j is expressed in terms of time (ti;jÞ in this

problem instance.

When we execute the model by Wang and Chen [4] for

this problem instance, two routes are formed for vehicle 1,

and the routes are as follows:

• vehicle 1 starts from DC, serves customer 1 and then

returns to CC, and the starting time of service at

customer 1 is 70;

• vehicle 1 starts from DC, serves customer 2 and then

returns to CC, and the starting time of service at

customer 2 is 70.

Table 5. Problem instance details – customers.

Customer

number i

Pickup

quantity

Delivery

quantity

Earliest

departure

time

Latest

arrival

time

Service

time

1 180 120 0 70 10

2 80 150 0 70 10

Table 1. Problem instance details – customers.

Node X Y Delivery quantity Pickup quantity Earliest start time Latest arrival time Service time

0 40 31 0 0 0 240 0

1 25 85 20 10 67 191 10

2 22 75 30 32 32 97 10

3 22 85 10 12 101 146 10

4 20 80 40 35 71 193 10

5 20 85 20 29 40 113 10

6 18 75 20 11 55 164 10

7 15 75 20 28 69 118 10

8 15 80 10 14 56 155 10

9 10 35 20 15 51 160 10

10 10 40 30 40 90 177 10

Table 2. Problem instance details – vehicles.

Vehicle Dispatching cost Capacity

1 94 200

2 104 200

Table 3. Values of the decision variables: proposed MILP

model.

Decision variable Value Decision variable Value

x2;6 1 del1;2 1

x6;7 1 del2;2 1

x7;8 1 del3;2 1

x8;5 1 del4;2 1

x5;3 1 del5;2 1

x3;1 1 del6;2 1

x1;4 1 del7;2 1

x12;2 1 del8;2 1

x4;14 1 del9;1 1

x11;9 1 del10;1 1

x9;10 1 Z 198.10

x10;13

Table 4. Problem instance details – vehicles.

Vehicle

number

kÞ

Dispatching

cost per

vehicle

Earliest

departure

time

Latest

arrival

time Capacity

1 90 0 400 400

2 100 0 400 400
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The Z value for this solution is 180. This solution is

infeasible in the problem instance because the same vehicle

(vehicle 1) is utilized for two routes (i.e., DC – customer 1

– CC and DC – customer 2 – CC), and also the decision

variables with respect to the starting time of service at

customers 1 and 2 are 70 and 70, respectively. The former

aspect contradicts the fact that the same vehicle is utilized

for two different routes. The second aspect of the overlap of

start and finish times of service at customers 1 and 2 by the

same vehicle indicates infeasibility with respect to time.

To address this infeasibility, we include the following

constraint to the MILP model by Wang and Chen [4]. In

their model binary variable, x0;j;k indicates whether the

vehicle k travels directly from DC (node 0) to customer

node j. We now add the following:

Xn
j¼1

x0;j;k � 1; k ¼ 1; 2; . . .;V ð39Þ

This constraint states that for a given vehicle, the total

number of arcs selected directly from the DC to the cus-

tomer nodes should be less than or equal to 1. This con-

straint helps the model to assign a maximum of only one

route to the vehicle. We include Constraint (39) to the

model by Wang and Chen [4]; then when we execute the

model, only one route is formed for each vehicle and the

solution is presented here:

• vehicle 2 starts from DC, serves customer 1 and then

returns to CC, and the starting time of service at

customer 1 is 70;

• vehicle 1 starts from DC, serves customer 2 and then

returns to CC, and the starting time of service at

customer 2 is 70.

The Z value for this solution is 185 and the solution is

feasible with respect to start and finish times of service at

customers 1 and 2, without any overlap of start/finish times

of service by the same vehicle. The same solution is

obtained (Z value is 185) when we solve this example using

our proposed MILP model; as discussed in section 5.3, the

starting time of service at both customers 1 and 2 is 70; this

is mainly because we define the lower limit only with

respect to the starting time of service, which is 50 for

customer 1, and 40 for customer 2.

7. Computational evaluation of our MILP model
and existing MILP models

In this section, we describe the procedure to generate a test

problem instance for the VRPSDPTW and VRPSDPTL. In

section 7.1, we present a comparative computational study

of the proposed MILP model for the VRPSDPTW and the

MILP model available in the literature for the VRPSDPTW

(by Wang and Chen [4]). In section 7.2, we present a

comparative computational study of the proposed MILP

model and the MILP model available in the literature for

the VRPSDPTL (by Polat et al [12]).

In order to evaluate/compare our model with the MILP

model by Wang and Chen [4], we generate 24 random

problem instances, varying from 10 customer nodes to 30

customer nodes, by modifying the basic VRPTW instances

given by Solomon [13]; later, to evaluate the proposed

MILP models with the MILP model by Polat et al [12], we

generate 13 random problem instances, varying from 10

customer nodes to 20 customer nodes, by modifying the

basic VRPTW instances given by Solomon [13].

Each VRPTW instance by Solomon [13] belongs to one

of the following six types:

• type C1 refers to clusters of customers (based on their

locations), with shorter time windows and small

vehicle capacity;

• type C2 refers to clusters of customers (based on their

locations), with longer time windows and large vehicle

capacity;

• type R1 refers to the set of customers whose locations

are randomly generated, with shorter time windows

and small vehicle capacity;

• type R2 refers to the set of customers whose locations

are randomly generated, with longer time windows and

large vehicle capacity;

• type RC1 refers to the set of customers whose locations

are combination of both clustered and randomly placed

locations, with shorter time windows and small vehicle

capacity;

• type RC2 refers to the set of customers whose locations

are combination of both clustered and randomly placed

locations, with longer time windows and large vehicle

capacity.

For generating a random problem instance specific to

VRPSDPTW, first a specific VRPTW problem instance is

selected and then the transportation network structure,

time windows, capacity of the vehicles and the delivery

quantity demanded by each customer are taken from the

selected VRPTW instance, and the pickup quantities are

randomly generated in the range of 50%–150% of

respective delivery quantities. We split the VRPSDPTW

problem instances into two categories and for the first

category (12 problem instances), the dispatching cost of

vehicle (fixedkÞ is assumed to be the same for all vehicles;

it is directly proportional to the average distance

Table 6. Problem instance details – transportation network.

Nodes 0 1 2

0 – 50 40

1 50 – 80

2 40 80 –
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(AVG_DISTANCE) between any two nodes in the trans-

portation network. The dispatching cost of a vehicle is set

as follows:

fixedk ¼ N � 0:25� AVG DISTANCE ð40Þ

For the second category of problem instances, the dis-

patching cost of vehicle (i.e., fixedk) is assumed to be dif-

ferent for each vehicle, and it is randomly generated in the

range of 50%–150% of the (N � 0:25� AVG DISTANCE),

and the remaining parameters are the same as those of the

respective instance from the first category.

For generating a random problem instance specific to

VRPSDPTL, first a specific VRPTW problem instance is

selected; later the transportation network structure, time win-

dow specific to depot and the delivery quantity demanded by

each customer are taken from the selected VRPTW instance,

and the pickup quantities are randomly generated in the range

of 50%–150% of respective delivery quantities. The vehicles

are assumed to be homogeneous in this case, and hence the

capacity of the vehicles is set as the maximum capacity of the

available vehicles in the selected VRPTW instance.

The computational experiments have been carried out

using an Intel Core i7 processor, 2.80 GHz with 8 GB of

RAM, and we have used ILOG CPLEX v12.7 (Academic

Version) for solving the MILP models. Note that we have

assigned 0.5 as the value for the trade-off parameter að Þ
with respect to cost functions for the VRPSDPTW instan-

ces, and we have assigned 1.0 as the value for the trade-off

parameter að Þ with respect to cost functions for the

VRPSDPTL instances because the objective function of the

VRPSDPTL focuses only on the routing cost. The cost of

travel (ci;j) between customer i and customer j is expressed

in terms of time (ðti;jÞ in these problem instances.

7.1 A comparative computational study of our

MILP model and the existing MILP model

for the VRPSDPTW

To evaluate the performance of the proposed MILP

models with the MILP model in the literature, we use the

MILP model proposed by Wang and Chen [4] for the first

set/category of instances. For the second set of instances,

we include the proposed Constraint (39) to the model by

Wang and Chen [4], because the problem instances in the

second category require the proposed constraint (dis-

cussed earlier in section 6.4) to bring in feasibility with

respect to solution generated. The problem instances

specific to first category of the VRPSDPTW are provided

in the link

https://www.dropbox.com/sh/05c67kv6qqwdc4q/AABS

rxW8r-YgkqkoSsTJCrwSa?dl=0, the problem instances

specific to second category of the VRPSDPTW are pro-

vided in the link

https://www.dropbox.com/sh/hggzv1ceas4d0di/AACt6K

BChxF2Y1g-jTQApoURa?dl=0 and a sample set of prob-

lem instances are also provided in Appendix A.

The results of the comparison evaluation with respect to

first set of instances and second set of instances are pre-

sented in tables 7 and 8, respectively. The results clearly

indicate that the proposed MILP model performs better than

the model proposed by Wang and Chen [4] in terms of the

execution time to find an optimal solution, on the whole. In

addition, our MILP model also performs well with the

lower bound obtained through LP relaxation (i.e., relaxing

the original problem by relaxing the restrictions on the

binary variables as 0� xi;j � 1, 0� delvk � 1; and

0� deli;k � 1 in our model and relaxing the restrictions on

Table 7. Computational experience with the proposed MILP model and an existing MILP model for the VRPSDPTW: first category of

instances.

Instance

Id

Number of

customers

Number of

vehicles

Optimal

solution Z

Our Model: CPU

time (s)

LB-Our

Model

Existing MILP model:

CPU time (s)

LB-Existing

MILP model

1 10 2 286.70 5.42 161.63 2.81 73.60

2 10 2 240.10 2.66 119.99 6.69 22.45

3 10 2 190.83 9.45 119.99 2.78 24.92

4 20 4 191.91 1794.53 85.91 1693.23 44.18

5 20 4 231.95 7.13 85.91 13.06 44.12

6 20 4 252.59 6.55 208.02 130.13 115.58

7 20 4 166.79 5.64 137.78 12.28 63.35

8 20 4 564.28 5.88 208.02 11.08 114.87

9 20 4 420.94 459.08 154.51 # 42.74

10 30 6 257.00 76.44 103.92 # 43.19

11 30 6 263.78 110.88 103.92 126.84 43.19

12 30 6 810.18 16.86 243.30 218.47 150.20

Note:

LB-Our Model indicates the lower bound that we get from our MILP model through LP relaxation (0� xi;j � 1; ; 0� delvk � 1 and 0� deli;k � 1).

LB-Existing MILP model indicates the lower bound that we get from the MILP model by Wang and Chen [4] through LP relaxation (0� xi;j;k � 1).

# For problem instances 9 and 10, when we have executed/implemented the model of Wang and Chen for 2 h, the solver is not able to find the optimum

within 2 h.
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the binary variable xi;j;k as 0� xi;j;k � 1 in the model by

Wang and Chen [4]).

We also observe that the lower bound obtained from the

MILP model by Wang and Chen [4] is the same for both

sets/categories 1 and 2, and this indicates that the solver

assigns the value zero for the variables x0;j;k
� �

, which tracks

the direct precedence between depot node and customer

node while obtaining the lower bound, as they directly

contribute to the objective function/lower bound. As dis-

cussed in section 6.2, the proposed MILP model uses a

separate set of binary variables (delvkÞ to track the vehicle

usage, which helps in obtaining a tighter lower bound, and

this is mainly due to the fact that routing variables (xi;j) in

the travel plan (in our proposed model) are indirectly used

to derive/determine the vehicle usage (delvkÞ, through

binding constraints (Constraints (5)–(9)). We have also

used the same and appropriate M value in the model by

Wang and Chen [4], assuming the same value M2 with

respect to the time window constraints as used in our model

and the same value M3 with respect to the capacity con-

straints as used in our model, to have/make the evaluation

of lower bounds generated from the models comparable.

7.2 A comparative computational study of our

MILP model and the existing MILP model

for the VRPSDPTL

In the VRPSDPTL, each customer can be visited at any

point in time (but only once), and the vehicles need to return

to the depot within the specified time limit with respect to

the depot (see Polat et al [12]). In order to evaluate the

performance of the proposed MILP models with the MILP

model available in the literature for the VRPSDPTL, we

consider Constraints (41)–(43) in the proposed MILP model

instead of Constraints (28), and (33)–(35) for defining the

bounds of the decision variables with respect to starting

time of vehicle k, starting time of the service at customer i

and load of the vehicle at customer i:

0� start0k � b0; k ¼ 1; 2; . . .;V ð41Þ

0� sti � b0; i ¼ 1; 2; . . .;N ð42Þ

0� ldi �C0; i ¼ 1; 2; . . .;N ð43Þ

The problem instances specific to the VRSDPTL are

provided in the link

https://www.dropbox.com/sh/ki31s9uqz1xzk41/AABap

Mk52aUgROH3X-t02usLa?dl=0 and a sample set of

problem instances are also provided in Appendix A.

The results of the comparison evaluation are presented in

table 9. The results indicate that the proposed MILP model

is competitive to the model proposed by Polat et al [12] in

terms of the execution time to find an optimal solution, on

the whole. However, the proposed MILP model performs

much better than the model proposed by Polat et al [12] in

terms of the lower bound that the models generate for each

problem instance using the LP relaxation (i.e., relaxing the

binary variables such as 0� xi;j � 1, 0� delvk � 1 and

0� deli;k � 1 in the proposed model, and relaxing the bin-

ary variable xki;j as 0� xki;j � 1 in the model by Polat et al

[12]).

Table 8. Computational experience with the proposed MILP model and the existing MILP model for the VRPSDPTW: second category

of instances.

Instance

Id

Number of

customers

Number of

vehicles

Optimal

solution Z

Our Model: CPU

time (s)

LB-Our

Model

Existing MILP model:

CPU time (s)

LB-Existing

MILP model

1 10 2 236.70 4.59 133.63 2.09 73.60

2 10 2 198.10 1.44 96.94 5.26 22.45

3 10 2 167.33 10.95 96.49 3.53 24.92

4 20 4 157.91 478.08 68.69 # 44.18

5 20 4 186.45 7.55 68.69 12.08 44.12

6 20 4 216.09 6.63 171.52 126.48 115.58

7 20 4 139.79 5.11 110.78 11.27 63.35

8 20 4 462.78 7.91 173.49 8.81 114.87

9 20 4 325.94 435.22 119.81 # 42.74

10 30 6 198.50 61.97 83.96 # 43.19

11 30 6 205.28 104.36 83.96 94.01 43.19

12 30 6 672.68 13.34 207.52 336.05 150.20

Note:

LB-Our Model indicates the lower bound that we get from our MILP model through LP relaxation (0� xi;j � 1; ; 0� delvk � 1 and 0� deli;k � 1).

LB-Existing MILP model indicates the lower bound that we get from the MILP model by Wang and Chen [4] through LP relaxation (0� xi;j;k � 1).

# For problem instances 4, 9 and 10, when we have executed/implemented Wang and Chen’s model for 2 h, the solver is not able to find the optimum

within 2 h.
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8. Practical implications

In supply chain, logistics plays an essential role and its role

and contributions continue to grow and evolve even in the

firms that follow electronic-commerce type of business

model [14]. This study mainly focuses on transportation to

improve the performance and the responsiveness of the

supply chain. and the study specifically concentrates on the

pickup and delivery problems that commonly arise in the

VRP. The study proposes an efficient MILP model (in

terms of the CPU time) for the routing problem with the

consideration of simultaneous delivery and pickup, and

practitioners can make use of this model and its relaxed

version to evaluate the solution quality of the exiting

methods applied in the industry for the real-life problem

instances (i.e., large-sized problem instances).

9. Conclusions

In supply chain, transportation refers to the movement of

goods from one facility to another facility; in this work, we

studied the Vehicle Routing Problem with Simultaneous

Delivery and Pickup, and constrained by time windows

(VRPSDPTW) in order to find the cost-effective routes to

improve the performance and responsiveness of the supply

chain. As a part of this study, we have proposed an MILP

model for the VRPSDPTW. The proposed MILP model

performs quite well, compared with existing models

available in the literature for the VRPSDPTW (with the

consideration of heterogeneous vehicles) and the

VRPSDPTL (with the consideration of homogeneous

vehicles), in terms of the execution time to solve each of

the randomly generated problem instances. In addition, the

corresponding LP relaxation of the proposed MILP model

gives a tighter lower bound compared with the MILP

models available in literature for VRPSDPTW and

VRPSDPTL, and this lower bound may be useful for

evaluating heuristics in the case of large-sized problem

instances. The superior performance of our proposed MILP

model is primarily attributed to the use of two-dimensional

binary variable (with respect to precedence relationship

between two given customers), instead of the use of three-

dimensional binary variable (with respect to precedence

relationship between two given customers) in existing

MILP models.
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Appendix A

A sample set of problem instances for VRPSDPTW

Problem instance 1 for the VRPSDPTW

Table 9. Computational experience with the proposed MILP model and the existing MILP model for the VRPSDPTL with homo-

geneous vehicles: third category of instances.

Instance

Id

Number of

customers

Number of

vehicles

Optimal

solution Z

Our Model: CPU

time (s)

LB-Our

Model

Existing MILP model:

CPU time (s)

LB-Existing

MILP model

1 10 2 45.61 0.67 44.48 1.58 21.04

2 10 2 189.18 2.91 157.26 2.59 41.83

3 10 2 195.85 5.36 98.97 0.98 107.63

4 10 2 131.66 1.53 118.00 6.05 8.51

5 10 2 160.48 0.75 157.26 0.86 8.37

6 10 2 151.23 8.94 98.97 2.72 21.53

7 15 3 113.99 4.45 71.25 9.44 53.37

8 15 3 264.11 13.67 212.92 81.91 58.55

9 15 3 217.51 13.13 120.63 8.98 141.64

10 15 3 165.81 5.55 139.66 30.34 17.80

11 15 3 215.86 1.36 212.92 1.13 11.71

12 20 4 178.04 15.34 150.22 134.67 28.25

13 20 4 253.63 3.05 248.05 8.08 16.69

Note:

LB-Our Model indicates the lower bound that we get from our MILP model through LP relaxation (0� xi;j � 1; ; 0� delvk � 1 and 0� deli;k � 1).

LB-Existing MILP model indicates the lower bound that we get from the MILP model by Polat et al [12] through LP relaxation (0� xki;j � 1).
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A sample set of problem instances for VRPSDPTL

Problem instance 1 for the VRPSDPTL

Table A1. Problem instance details – customers.

Node X Y Delivery quantity Pickup quantity Earliest start time Latest arrival time Service time

0 40 55 0 0 0 1236 0

1 45 68 10 5 85 1127 90

2 45 70 30 32 0 1125 90

3 42 66 10 12 0 1129 90

4 42 68 10 8 727 782 90

5 42 65 10 14 0 1130 90

6 40 69 20 11 621 702 90

7 40 66 20 28 0 1130 90

8 38 68 20 29 255 324 90

9 38 70 10 7 534 605 90

10 35 66 10 13 357 410 90

11 35 69 10 11 448 505 90

12 25 85 20 10 0 1107 90

13 22 75 30 19 30 92 90

14 22 85 10 6 567 620 90

15 20 80 40 57 384 429 90

16 20 85 40 42 475 528 90

17 18 75 20 28 99 148 90

18 15 75 20 29 179 254 90

19 15 80 10 14 278 345 90

20 30 50 10 12 10 73 90

Table A2. Problem instance details – vehicles.

Vehicle Dispatching cost Capacity

1 59 200

2 66 200

3 51 200

4 74 200

Table A3. Problem instance details – customers.

Node X Y

Delivery

quantity

Pickup

quantity

Earliest

start

time

Latest

arrival

time

Service

time

0 35 18 0 0 0 1000 0

1 41 49 10 5 18 898 10

2 35 17 7 7 93 333 10

3 55 45 13 15 436 676 10

4 55 20 19 17 620 860 10

5 15 30 26 38 20 260 10

6 25 30 3 1 345 585 10

7 20 50 5 7 251 491 10

8 10 43 9 13 323 563 10

9 55 60 16 12 329 569 10

10 30 60 16 21 485 725 10

11 20 65 12 13 146 386 10

12 50 35 19 9 167 407 10

13 30 25 23 14 639 879 10

14 15 10 20 12 32 272 10

15 30 5 8 11 118 358 10

16 10 20 19 20 203 443 10

17 5 30 2 2 682 922 10

Table A3. continued

Node X Y

Delivery

quantity

Pickup

quantity

Earliest

start

time

Latest

arrival

time

Service

time

18 20 40 12 17 286 526 10

19 15 60 17 24 204 444 10

20 45 65 9 11 504 744 10

Table A4. Problem instance details – vehicles.

Vehicle Dispatching cost Capacity

1 111 1000

2 124 1000

3 95 1000

4 139 1000

Table A5. Problem instance details – customers.

Node X Y

Delivery

quantity

Pickup

quantity

Service

time

0 40 31 0 0 0

1 25 85 20 10 10

2 22 75 30 32 10

3 22 85 10 12 10

4 20 80 40 35 10

5 20 85 20 29 10

6 18 75 20 11 10
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Table A5. continued

Node X Y

Delivery

quantity

Pickup

quantity

Service

time

7 15 75 20 28 10

8 15 80 10 14 10

9 10 35 20 15 10

10 10 40 30 40 10

Table A6. Problem instance details – depot and vehicles.

Number of vehicles 2

Capacity of vehicles 1000

Time limit (for depot) 960

Table A7. Problem instance details – customers.

Node X Y

Delivery

quantity

Pickup

quantity

Service

time

0 40 55 0 0 0

1 45 68 10 5 90

2 45 70 30 32 90

3 42 66 10 12 90

4 42 68 10 8 90

5 42 65 10 14 90

6 40 69 20 11 90

7 40 66 20 28 90

8 38 68 20 29 90

9 38 70 10 7 90

10 35 66 10 13 90

11 35 69 10 11 90

12 25 85 20 10 90

13 22 75 30 19 90

14 22 85 10 6 90

15 20 80 40 57 90

Table A8. Problem instance details – depot and vehicles.

Number of vehicles 3

Capacity of vehicles 200

Time limit (for depot) 1236
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