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ARTICLES

A Lorentzian function based spectral filter for calculating the energy
of excited bound states in quantum mechanics

Amrendra Vijaya)

Department of Chemistry, University of California, Santa Barbara, California 93106

~Received 4 March 2002; accepted 23 October 2002!

In this paper, we study a Lorentzian function based spectral filter suitable for computing highly

excited bound states of a quantum system. Using this filter, we have derived an expression for

spectral intensities and also implemented a filter diagonalization scheme. We have used a

Chebyshev polynomial based series expansion of the filter operator, and this allows us to accomplish

a partial resummation of the double series analytically when computing the necessary matrix

elements; this saves considerable computational effort. The exponential damping term in the

Lorentzian provides a convenient control over the resolution of the computed spectrum in the

spectral intensity plot. As a numerical test, we have computed eigenvalues and spectral intensities

of a model Hamiltonian in an arbitrary energy window. For situations where eigenvalues are

distributed nonuniformly we suggest a computational protocol, which judiciously combines the

spectral intensity information with the filter diagonalization method. This protocol is efficient only

with the Lorentzian filter studied here. © 2003 American Institute of Physics.

@DOI: 10.1063/1.1528895#

I. INTRODUCTION

With the advent of new laser techniques, it has increas-

ingly become possible to explore highly excited quantum

states within a selected energy window of a molecular

system.1,2 A quantum mechanical understanding of such sys-

tems requires an accurate knowledge of the eigenspectrum of

the corresponding Hamiltonian, in particular for the energy

window of experimental interests. The realization that it may

be possible to extract a small window from any region of the

spectrum of the Hamiltonian, using a spectral filter, without

having to solve the complete eigenvalue problem, has at-

tracted considerable interest in recent years.3–41 In this con-

text, we have elaborated the idea of spectral filters, which

originates from the basic propositions of the theory of mea-

surement in quantum mechanics.30,31 In spectral filter theory,

the quantity of central importance is the spectral density op-

erator ~SDO!, d(E2Ĥ), where the filter energy, E , is within

the spectral range of the Hamiltonian, Ĥ , of the quantum

system. As d(E2Ĥ) is a projection onto the space of solu-

tions of the homogeneous Schrödinger equation for scatter-

ing as well as bound states, its application on an arbitrary

wave function ~with appropriate boundary conditions!, yields

the eigenstates for the bound as well as scattering states.8

Using this property of the SDO, one can obtain a filter di-

agonalization ~FD! realization11–37 of the spectral filter, suit-

able for computing the bound state spectrum in an arbitrary

energy window. The SDO can also be used to obtain the

spectral intensity of various peaks in a selected energy win-

dow. In this paper, we are concerned with an efficient imple-

mentation of the SDO for the purpose of computing spectral

intensities and obtaining a convenient filter diagonalization

scheme.

Since the SDO, d(E2Ĥ), conceptually refers to a lim-

iting process, it must be suitably approximated and repre-

sented before it can be applied numerically; and this is an

important issue associated with the implementation of vari-

ous spectral filter algorithms. In practical applications, it is

often convenient to take the filter function as a prelimit ex-

pression of the SDO and express it as a convergent series,

such that it separates the action of the filter energy, E , from

that of the Hamiltonian. The choice of a prelimit expression

of the SDO and its series expansion necessarily dictates the

computational aspects of the resulting algorithm, and hence

there have been several suggestions on this issue in the

literature.11–37 In particular, Kouri et al.5–8 used a sinc func-

tion approximation of the SDO and obtained its series expan-

sion in terms of Legendre and Chebyshev polynomials. A

more general expansion of the SDO and Green’s function in

terms of Jacobi polynomials, of which Legendre and Cheby-

shev polynomials are special cases, has also been reported.42

Hermite polynomials have also been used to obtain a series

representation of the SDO, expressed as a Gaussian limiting

process.29 As we will explain later, a Lorentzian limiting ex-

pression of the SDO expressed in terms of Chebyshev poly-

nomials offers a better choice for a spectral filter. Chebyshev

polynomials are known to provide an uniformly convergent

approximating scheme, and in the context of filter diagonal-

ization they are very convenient for algebraic manipulations,

leading to a compact set of equations.

The filter diagonalization method is conceptually well

established and several important implementation schemes

have been suggested in the literature,11–37 differing mostly in

the choice of the filter function, d(E2Ĥ). Most earlier stud-
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ies have used either a sinc function or a prelimit Gaussian for

the filter function, expressed in terms of the Chebyshev

polynomials,11–32 though some elaborate choices of the filter

function have also been reported.11,35 Specifically, the formu-

lation of Neuhauser et al.14 involved a prelimit Gaussian

integral representation of the SDO, in conjunction with a

Chebyshev polynomial expansion for the quantum time

propagator.43 We note that the use of a Gaussian integral

representation, in conjunction with Chebyshev polynomials,

does not allow certain time integrals to be done analytically

and so the final expression for the SDO ~and hence the rel-

evant matrix elements, needed for diagonalization! is nu-

merically inconvenient.14 An efficient implementation of the

FD method was later accomplished by Mandelshtam and

Taylor,18,19 who used a sinc function approximation of the

spectral filter, expressed in terms of Chebyshev polyno-

mials.5–8 The use of the sinc function filter also appeared

in other publications of FD method.25–28,30–32 However, it

is known that the oscillations in the sinc function are damped

only slowly, and this damages its numerical efficacy for fil-

ter applications, particularly for computing spectral in-

tensities.30–32

There is a crucial difference in the way the matrix ele-

ments have been computed in the Gaussian function based

FD14,29 as compared to the sinc function based FD, even

though both used a Chebyshev polynomial exapnsion of the

quantum time propagator. To simplify the expression for

the matrix elements, the former studies have effectively used

an identity, d(Em2Ĥ)d(En2Ĥ)5d(Em2En)d(Em2Ĥ),

which is true in the exact limit of the delta function. This

factorization, however, involves some error since a practical

application uses only a finite number of terms in the series

expansion of the filter function. On the other hand, the sinc

function based FD methods18,19,30 have used a direct multi-

plication of two truncated series, corresponding to d(Em

2Ĥ)d(En2Ĥ), to simplify the expression for the matrix

elements. In fact, a partial resummation of the double series

could then be accomplished due to a special property of

Chebyshev polynomials, not shared by other classical or-

thogonal polynomials. In the present study, we have followed

the latter algebraic procedure.

In this paper, we propose the Lorentzian function as a

filter. This choice overcomes all the limitations associated

with the Gaussian and sinc function representations. We also

show that this choice allows a compact and numerically

convenient expression of the relevant matrix elements for

the purpose of FD applications. The paper is organized as

follows. In Sec. II, we discuss the idea and use of spectral

filter and obtain a Chebyshev polynomial based series

expansion of the Lorentzian filter operator. In Sec. III, we

obtain a compact expression of relevant matrix elements

for FD applications. We give the expression for the spectral

intensity in Sec. IV. In Sec. V, we present numerical tests

on a model Hamiltonian. Section VI contains a brief con-

clusion.

II. SPECTRAL FILTERS

Spectral filter methods use as a starting point

uxe ,z&5 f ~e2Ĥ;z !uc&5(
a

ua& f ~e2Ea ;z !^auc& , ~1!

where uxe ,z& is the filtered state. Here Ĥ is the Hamiltonian

of the system, the ua& are the eigenstates of Ĥ with eigenval-

ues Ea , uc& is an arbitrary state with nonzero ^auc&, e is an

arbitrary energy but within the range of Ĥ , and f (X;z) is a

function that peaks at zero and has a width, z. We call

f (X;z) a filter and examine here various possibilities for it,

such as a Lorentzian, a Gaussian, and a sinc function, where

sinc(x)5sin(x)/x.

As one can see from Eq. ~1!, the filtered state uxe ,z& is a

linear combination of energy eigenstates. The value of e and

z determine which eigenstates are included in this combina-

tion. A proper choice of these quantities ~z small and e close

to Ea) can turn uxe ,z& into an eigenstate ua&. If z is large, then

uxe ,z& is a linear combination of many eigenstates whose

energies are in the vicinity of e. It is thus clear that the filter,

f (X;z), is a prelimit form of the spectral density operator,

d(E2Ĥ).

Equation ~1! can be used in two ways. One is to take z
smaller than the gap between the energy eigenvalues and

vary e through a preselected energy range, @Emin ,Emax#.

When e equals an eigenvalue, uxe ,z& will peak and become

equal to the corresponding energy eigenstate. Alternatively,

one can calculate uxe ,z& at each of a set of e’s (Emin

<e1 ,e2 , . . . ,eL<Emax) and use these as an incomplete basis to

diagonalize the Hamiltonian.11–37 The eigenvalues obtained

this way will lie in the range @Emin ,Emax#. The latter proce-

dure, known as filter diagonalization,11–14 is very attractive

since the size of the filtered basis, L , is generally much

smaller than the size of the full Hamiltonian matrix. An ef-

ficient implementation of either idea requires a bit of care

and this is the subject of this paper. We survey briefly various

pitfalls and present the strategy we recommend for avoiding

them.

Since we plan to calculate uxe ,z& for many values of e in

an energy window, it is important to have a recipe in which

the calculation of a new value of e is performed efficiently.

We can achieve this in two steps. First, we represent f (e

2Ĥ;z) as an integral transform over time:

f ~e2Ĥ;z !5E
2`

`

dt f̃ ~ utu;z !e iete2iĤt. ~2!

This demands e and Ĥ to be time independent, which is

always satisfied for the conservative system. Thus we can

represent e2iĤt by an expansion of the form44

e2iĤt
5 (

k50

N

gk~ t !Pk~Ĥ !. ~3!

Here, Pk(Ĥ) is an orthogonal polynomial of order k . For

Hermitian Ĥ , four such expansions have been used so far in

quantum mechanics, in which Pk is a Chebyshev,43 or a

Legendre,6,45 or a Gegenbauer,42 or a Hermite polynomial.29
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The function gk(t) depends on which polynomial is used, but

in the first three cases, is proportional to a Bessel

function.5–8,42,43,45 This expansion is exact when N goes to

infinity. We note that the argument of gk and Pk should be

dimensionless and hence Ĥ and t should be properly scaled.

As Chebyshev, Legendre, and Gegenbauer polynomials are

defined for the values of their argument in the range @21,1#,

one must scale the Hamiltonian such that Ĥ5DlĤsc1l̄ ,

where Dl5(Hmax2Hmin)/2 and l̄5(Hmax1Hmin)/2. The ei-

genvalues of Ĥ in the range @Hmin ,Hmax# become eigenval-

ues of Ĥsc in the range @21,1#. Also, Dl and l̄ have dimen-

sions of energy, which renders Ĥsc dimensionless.

Using Eqs. ~2! and ~3! in Eq. ~1! gives

uxe ,z&5 f ~e2Ĥ;z !uc&5 (
k50

N

I~e ,z ,k !Pk~Ĥ !uc& ~4!

with

I~e ,z ,k !5E
2`

`

dt f̃ ~ utu;z !e ietgk~ t !. ~5!

The sum in Eq. ~4! may in practice have thousands of terms.

For this reason it is important to perform the integral,

I(e ,z ,k), analytically. This limits the choice of the filter op-

erator, f (e2Ĥ;z), and the orthogonal polynomial @Eq. ~3!#.
We use the one in which Pk is a Chebyshev polynomial, Tk .

The reasons for this choice will become clear later. There can

be many forms of the filter operator, f (e2Ĥ;z), suitable for

the purpose; however, with the choice of Chebyshev polyno-

mials, we find that Eq. ~5! can be evaluated analytically if

f (e2Ĥ;z) is a Lorentzian or a sinc function,5–8,42 but not

for a Gaussian.14 The Fourier transform of a sinc function is

a step function, and this is known to be a bad filter due to the

‘‘Gibbs phenomenon.’’ 46 For this reason, we use a Lorentz-

ian.

The most important feature of Eq. ~4! is that if we

change e and z we need not recompute Pk(Ĥ), which is the

most time-consuming part of the calculation. This is

achieved because in Eq. ~3!, the functional dependence on t

is separated from the dependence on Ĥ .

With Chebyshev polynomials, Tk , for Pk , the function

gk in Eq. ~3! is the Bessel function, Jk(tDl).43 The Lorent-

zian choice for the filter operator makes f̃ (t;z)5exp(2zt).

The integral in Eq. ~5! can then be done analytically5,42 and

we can express Eq. ~4! as follows:

uxe ,z&5 f ~e2Ĥ;z !uc&

5S 1

pDl
D (

k50

N

~22dk0!Re@D~e !Zk~e !#Tk~Ĥsc!uc&,

~6!

where D(e)21
5@12(esc1izsc)

2#1/2, Z(e)5@(esc1izsc)

2iD(e)21# , zsc5z/Dl , and esc5(e2l̄)/Dl . Equation ~6!
is the final expression for the filtered state, which can be used

either to obtain eigenstates and spectral intensities or as a

basis to diagonalize the Hamiltonian in a selected energy

window. We note that if we do not take the real part, Eq. ~6!

is the expansion of the causal Green’s function, (E2Ĥ

1iz)21, in terms of Chebyshev polynomials, known

through the work of Kouri.5 We have recently given a more

general derivation of the Green’s function, based on the ul-

traspherical polynomials, of which Eq. ~6! is a special case.42

A comment concerning the convergence of the series in

Eq. ~6! is in order here. This series is composed of terms that

oscillate faster with higher k , superimposed upon a

k-dependent exponential damping factor. It is easy to verify

the damping factor to be exp(2ky), where y is a positive

number determined from the relation, 2 cosh2 y5(11esc
2

1zsc
2 )1@(11esc

2
1zsc

2 )2
24esc

2 #1/2. The convergence is guar-

anteed here due to two factors: ~1! summation of fast oscil-

lating terms, and ~2! the exponential damping. On the other

hand, if we take the width of the Lorentzian, z, to be zero, y

becomes zero and the damping term drops out. Then Eq. ~6!
will be transformed to the one obtained using a sinc function

based spectral density operator,5–8,42 and the convergence

will depend entirely on the cancellation due to the summa-

tion of fast oscillating terms. We do not recommend taking

this limit, as this would defeat the whole purpose of damp-

ing. We will later examine the role of this exponential damp-

ing in the computations of eigenvalues by FD and the spec-

tral intensities.

III. FILTER DIAGONALIZATION

A FD method involves diagonalizing the Hamiltonian,

expressed in the basis of filtered states, uxe ,z&, e
5e1 ,e2 , . . . ,eL , in a given energy window.11–37 We will

later comment on the location and the length of the energy

set, $em ,m51,L% at which the filtering process should be

carried out. At present, it may be considered as arbitrary.

Since the filtered basis will not form an orthogonal set, we

set up a generalized eigenvalue equation,14 HB5SBE ,

where the vector B is defined through ua&
5(m51

L Ba ,muxem ,z&. H and S are the Hamiltonian and over-

lap matrices, respectively. In the basis of filtered states, a

generic matrix element can be expressed as follows:

Am ,n
(p)

5^cu f ~em2Ĥ;z !Ĥp f ~en2Ĥ;z !uc& ~7!

or equivalently,

Am ,n
(p)

5^xem ,zuĤ
puxen ,z&, ~8!

where p50 gives the overlap matrix S , and p51 gives the

Hamiltonian, Ĥ . As we explain in the following, although

Eqs. ~7! and ~8! are formally equivalent they provide two

alternate ways of deriving the final expression for the matrix

elements. In the first approach, we can use the identity

f (em2Ĥ;z) f (en2Ĥ;z)5 f (em2en ;z) f (em2Ĥ;z) to fac-

torize the product of two filter operators in Eq. ~7! and for-

mally obtain

Am ,n
(p)

5 f ~em2en ;z !^cu f ~em2Ĥ;z !Ĥpuc& . ~9!

We may then use Eq. ~6! for the filter operator to finally

obtain a single series for the matrix elements. This line of

derivation has been implicit in some of the earlier

studies.14,29 As we pointed out in Sec. I, this factorization
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holds only for an ‘‘exact’’ delta function. This assertion can

easily be verified by using an integral representation, Eq. ~2!
of the Gaussian, sinc, or Lorentzian function. However, if

one uses a series representation for the filter operator as

given in Eq. ~6!, the above-mentioned factorization demands

that N→` , which is never realized in practice. For an arbi-

trarily truncated series approximation of the filter operator, as

in Eq. ~6!, the above-mentioned factorization is not valid and

represents a further unnecessary approximation. We have

therefore avoided the use of this identity in the present work.

Instead, we substitute a truncated series expansion ~finite N)

of the filtered state, Eq. ~6!, directly into Eq. ~8! and obtain a

double series for the generic matrix element, as follows:47

Am ,n
(p)

5

4

~pDl !2 (
k50

N

(
k850

N S 12

dk0

2
D S 12

dk80

2
D

3Re~DmZm
k !Re~DnZn

k8!^cuTk8
~Ĥsc!ĤpTk~Ĥsc!uc&

~10!

5

1

~pDl !2 (
k50

N

(
k850

N S 12

dk0

2
D S 12

dk80

2
D

32 Re~DmZm
k !Re~DnZn

k8!~c
k1k8

(p)
1c uk2k8u

(p)
! ~11!

5

1

~pDl !2 Re (
k50

N

(
k850

N S 12

dk0

2
D S 12

dk80

2
D

3~DmDnZm
k Zn

k8
1DmDn

*Zm
k Zn

*k8!~c
k1k8

(p)
1c uk2k8u

(p)
!,

~12!

where ck
(0)

5^cuTk(Ĥsc)uc& and ck
(p)

5(ck1p
(0)

1c uk2pu
(0) )/2. To

pass from Eq. ~10! to ~11!, we have used a known identity of

the product of Chebyshev polynomials, 2Tk(x)Tk8
(x)

5Tk1k8
(x)1T uk2k8u(x). As we explain in the following, this

identity allows a partial resummation of the double series in

Eq. ~11!, which turns into a single series. In this way we

recover the computational advantage associated with the use

of the factorization of the product of two filter functions as

described previously. This line of derivation has been fol-

lowed in some of the earlier studies.18,30 No other orthogonal

polynomial satisfies the above-mentioned property and this is

one reason why we prefer Chebyshev polynomials. More-

over, Chebyshev polynomials are known to provide a uni-

form approximation scheme for the quantum time

propagator.43 To pass from Eq. ~11! to ~12!, we have used the

identity, 2 Re(X)Re(Y)5Re(XY)1Re(XY*), noting ck
(p) to be

real-valued.

We now discuss the resummation procedure used in the

present study. We use a ‘‘Cauchy-type’’ expansion48 of the

double series, in which we collect all the terms for which

uk1k8u and uk2k8u have the same values in Eq. ~12! and

then perform the summation of the resulting geometric series

analytically.18,30 This is possible because the series in Eq. ~6!
is absolutely convergent and it is presumed that the filtering

process at a particular energy is complete after summing to

N terms in Eq. ~6!. The essential result is

(
k50

N

(
k850

N S 12

dk0

2
D S 12

dk80

2
DZm

k Zn
k8~c

k1k8

(p)
1c uk2k8u

(p)
!

5 (
k50

N

~12dk0!ck1N
(p) FZm

N11Zn
k
2Zm

k Zn
N11

Zm2Zn
G1S 12

dk0

2
D

3ck
(p)F S Zm

k11
2Zn

k11

Zm2Zn
D 1

ZmZn

12ZmZn

~Zm
k

1Zn
k !

3@12~ZmZn!N2k#G ~ZmÞZn!

5 (
k50

N S 12

dk0

2
D ck

~p !

12Zm
2 @~k11 !Zm

k
2~k21 !Zm

k12

22Zm
2N2k12]1~12dk0!~N2k11 !ck1N

~p ! Zm
k1N

~Zm5Zn!. ~13!

Equation ~13! is the main result of the paper. It can be used

to compute the matrix elements of the Hamiltonian, for an

arbitrary energy window.

We can also make an independent error estimate of the

computed eigenvalues as

~DEa!2
5u^au~Ĥ2Ea!2ua&u

5u~B tA (2)B !mm2em
2 ~B tSB !mmu. ~14!

We note that Eq. ~14! gives an upper bound to the error

estimate. For a better error estimate, one may also use dif-

ferent variational principles, as suggested by Beck and

Meyer,35 and the extension of the present formulation would

be straightforward.

We now comment on the numerical implementation of

the present FD equations. The first step is to compute the

scalar coefficients, ck
(0)

5^cuTk(Ĥsc)uc& , using a three-term

recurrence relation of the Chebyshev polynomials, Tm(Ĥsc)

52ĤscTm21(Ĥsc)2Tm22(Ĥsc), acting on uc&. The initial uc&

is chosen randomly. Computing ck
(0)’s is the most expensive

step. However, N Chebyshev recursions are sufficient to gen-

erate 2N ck
(0)’s as noted by Neuhauser.14 In fact, using prop-

erties of Chebyshev polynomials it is straightforward to

show that c2m21
(0)

52^fm21ufm&2c1
(0) and c2m

(0)
52^fmufm&

2c0
(0) , where ufm&5Tm(Ĥsc)uc&. In the next step, we use

these ck
(0)’s to compute the overlap and Hamiltonian matri-

ces @Eqs. ~12! and ~13!# for a preselected energy window and

solve the general eigenvalue problem by the method of sin-

gular value decomposition.14,49 The same ck
(0)’s can also be

used to obtain an error estimate of the computed eigenvalues

@Eq. ~14!#. One may use overlapping energy windows for

efficient computation of a broad range of eigenvalues, as

suggested by Neuhauser.14

How does the present FD method compare with earlier

ones? We first note that the computation of ck
(0)s, which is

the most expensive step, is a step commonly shared by all

Chebyshev polynomial based FD methods in the

literature,14,18,25,30 and so the most important issue here is

how many terms, N in Eqs. ~6! and ~13!, are required to

obtain converged eigenvalues in a given energy window. We

will analyze this and other related issues in Sec. V. The

present FD method closely resembles the sinc function based

1010 J. Chem. Phys., Vol. 118, No. 3, 15 January 2003 Amrendra Vijay

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

109.175.155.122 On: Fri, 23 May 2014 20:26:37



FD method discussed in earlier studies.18,19,30–32 However,

the expression for the matrix elements here @Eqs. ~12! and

~13!# differs from the one obtained by the sinc function based

methods. Presumably, this may have a different convergence

behavior for eigenvalues. We will analyze this further in Sec.

V. In any case, the numerical effort necessary to compute the

matrix elements by the present method, and also the storage

requirement, is similar to that of the sinc function based

method.

IV. SPECTRAL INTENSITY

The spectral intensity gives the contribution of an indi-

vidual eigenstate, ua&, to the initial wave packet, uc&, and it is

defined as uA(Ea)u2
5u^cua&u2. In principle, one could com-

pute the spectral intensities in a given energy window by

using the coefficients, ck
(0) and the eigenvectors obtained by

filter diagonalization. However, it is computationally favor-

able to use a more direct approach. Using Eq. ~6!, the spec-

tral intensity at energy E can be computed as

uA~E !u2
5^cu f ~E2Ĥ;z !uc&

5S 1

pDl
D (

k50

N

~22dk0!Re@D~E !Zk~E !#ck
(0) . ~15!

If z is small enough, for finite N , Eq. ~15! will give a Lorent-

zian spectrum, with peaks whenever E equals an eigenvalue,

Ea . An important feature of Eq. ~15! is that it provides a

complementary way of identifying the spectrum in a given

energy window. If we take the parameter z as zero, Eq. ~15!
will transform to the one obtained by the sinc function based

method.7,8,18,30,31 We do not recommend this approach here.

V. RESULTS AND DISCUSSION

To test the numerical performance of the present theory,

we have selected a model Hamiltonian due to Wyatt,40 which

was studied earlier with the sinc function based FD

method.30–32 The model system consists of nb bands of

states, with ns states in each band. The Hamiltonian matrix

elements are as follows: For diagonal matrix elements,

H i j ,i j5(i21)D1( j21)d; for intraband coupling, H i j ,i j8

5C exp(2uj2j8u); and for interband coupling, H i j ,i8 j8

5@C/(nodui2i8u11)#exp(2uj2j8u), where i denotes the

band index, i51,2, . . . ,nb , and j denotes the index for states

in this band, j51,2, . . . ,ns . The model has six parameters,

for which we choose the following values: nb510, ns

5200, C50.04, D50.1, d50.0001, and nod55. For com-

parison, we obtained the exact eigenvalues for this model

200032000 matrix by explicit diagonalization. All the eigen-

values fall between 0 and 1. In order to test the present filter

diagonalization scheme, we have generated uc& by taking

random real amplitudes on a spatial grid, and then normaliz-

ing. We looked at several energy windows but we show only

representative results here.

The present scheme, for a given energy window, in-

volves three parameters: the number of terms N @Eq. ~6!#, the

number of filtered basis functions L , and the damping pa-

rameter z. A judicious choice of these parameters should give

good accuracy in the calculations. Obviously, z should be

smaller than the expected smallest eigenvalue gap in the win-

dow. If z is large, not all eigenvalues in the window may be

resolved, particularly when we compute the spectral intensi-

ties. We will comment on the number and location of filtered

basis later.

As an example, we first show the results for a small

window, with energy range 0.5001–0.5021 in Table I. This

window contains eight eigenvalues. The results shown in

Table I have used basis functions filtered at an equidistant

energy grid within the energy window. The starting initial

vector, uc&, was chosen as random. It is pleasing to note that

the results computed by the present method are in good

agreement with the exact values. We point out some notable

features. First, L should be as large as the number of eigen-

values expected in the window. The parameters N and L are

coupled for lower values of L . For a fixed value of N , the

results are more or less insensitive to L beyond a certain

value (L[20 in the present case!. We see a significant im-

provement in increasing L from 18 to 20 here. With L fixed,

as N increases, the computed results improve and approach

the exact results. Second, it is also clear from Table I that the

well-separated eigenvalues ~at the edge of the window! con-

verge before those that lie closer together. Third, the error

estimate provides reliable guidance for identifying spurious

~if any! eigenvalues in the calculations. We have also com-

puted the eigenvalues using the sinc function based FD

method18,19,30 for the same energy window and set of param-

eters. We show the results in Table II. We do not find any

TABLE I. A comparison of the present FD method and exact eigenvalues for the energy window, 0.5001–

0.5021, of the model Hamiltonian. The value of z is 231024.

(6000/18)a (6000/20)a (6500/20)a (7000/20)a Exact

0.500 160 ~2.384! 0.500 157 ~2.649! 0.500 158 ~0.877! 0.500 161 ~0.305! 0.500 162

0.500 416 ~4.872! 0.500 400 ~5.223! 0.500 400 ~1.901! 0.500 407 ~0.232! 0.500 409

0.500 665 ~0.912! 0.500 664 ~1.442! 0.500 663 ~0.609! 0.500 664 ~0.221! 0.500 664

0.501 143 ~14.311! 0.501 019 ~18.042! 0.500 868 ~5.140! 0.500 914 ~0.809! 0.500 925

0.501 221 ~10.929! 0.501 199 ~4.016! 0.501 194 ~0.388! 0.501 194 ~0.246! 0.501 194

0.501 470 ~0.787! 0.501 470 ~0.602! 0.501 470 ~0.130! 0.501 470 ~0.088! 0.501 470

0.501 755 ~1.213! 0.501 754 ~1.244! 0.501 753 ~0.262! 0.501 753 ~0.248! 0.501 753

0.502 044 ~1.041! 0.502 044 ~1.044! 0.502 043 ~0.326! 0.502 041 ~1.403! 0.502 043

a(N/L) refers to the number of Chebyshev recursions and the number of filtered states. N Chebyshev recursions

are sufficient to generate 2N terms, and 2N ck
(p)’s were finally used in Eq. ~13!. The error estimate, (DEa)2

3103 @Eq. ~14!#, is given in parentheses.
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significant difference between the two methods for this ex-

ample.

We now address the role of the time-energy uncertainty

principle within spectral filter methods. This issue has been

debated in the earlier studies on the sinc function based

methods.18,19,30–32 We first note that the uncertainty principle

becomes relevant here only due to the use of an integral

transform of the filter function over time, Eq. ~2!, and that

this step is inevitable in the derivation of spectral filters. We

have also seen that the same spectral filter is used in the

derivation of FD as in the expression for the spectral inten-

sities. Traditionally, the uncertainty principle has been dis-

cussed only in the context of spectral intensities, wherein the

spectral resolution is constrained by the relation DE

52p/T , where DE is the eigenvalue gap and T is the total

length of time propagation. T is related to the number of

Chebyshev recursions. The question naturally arises: Is the

FD method also limited by this uncertainty constraint? Spe-

cifically, is it possible to resolve the spectrum, by computing

spectral intensities, with the same numerical effort ~that is,

the number of Hamiltonian operations on the wave function!
as that required in the FD method? As we explain in the

following, the answer is yes, but there is no conflict between

the two approaches of obtaining the spectrum. In fact, as we

explain in the following it turns out that the FD and spectral

intensities play complementary roles here, and a judicious

use of both offers us a faithful computational protocol for

spectral prediction.

First, we discuss the computation of spectral intensities,

using Eq. ~15!. We have selected an energy window ranging

from 0.796 to 0.803. Within this window, the smallest eigen-

value gap is 0.000 168 09, which should be the upper limit

for the damping parameter, z, for a faithful spectral identifi-

cation by the spectral intensity method. In fact, the choice of

z dictates the resolution in the final computed spectrum. In

Fig. 1, we show the computed spectrum for z50.000 05 and

for z50.000 20, along with the location of exact eigenvalues

in this window. For this purpose, we have used N516 000;

due to a special property of Chebyshev polynomials, only

8000 recursions are necessary in Eq. ~15!. It is clear from

Fig. 1 that the spectral resolution is markedly improved with

the decrease in z. The larger value of z is able to resolve only

high intensity peaks, whereas a majority of eigenvalues are

easily identifiable with the smaller value of z. We note, how-

ever, that a few peaks of very low intensity are still not fully

resolved here, which can be improved. In general, we ob-

serve a systematic improvement in the spectral resolution as

we decrease the value of z with fixed N , and high intensity

TABLE II. A comparison of the sinc function based FDa and exact eigenvalues for the model Hamiltonian.

(6000/18)b (6000/20)b (6500/20)b (7000/20)b Exact

0.500 156 ~2.514! 0.500 156 ~2.512! 0.500 159 ~0.941! 0.500 162 ~0.214! 0.500 162

0.500 401 ~4.743! 0.500 401 ~4.743! 0.500 400 ~1.802! 0.500 409 ~0.376! 0.500 409

0.500 664 ~1.352! 0.500 664 ~1.352! 0.500 663 ~0.671! 0.500 664 ~0.123! 0.500 664

0.501 084 ~17.288! 0.501 085 ~17.316! 0.500 867 ~5.034! 0.500 923 ~1.202! 0.500 925

0.501 197 ~3.617! 0.501 197 ~3.653! 0.501 194 ~0.326! 0.501 194 ~0.098! 0.501 194

0.501 470 ~0.760! 0.501 470 ~0.764! 0.501 470 ~0.155! 0.501 470 ~0.047! 0.501 470

0.501 753 ~0.683! 0.501 753 ~0.687! 0.501 753 ~0.268! 0.501 753 ~0.080! 0.501 753

0.502 046 ~1.531! 0.502 046 ~1.533! 0.502 039 ~3.027! 0.502 043 ~0.489! 0.502 043

aSee Refs. 18 and 30.
b(N/L) refers to the number of Chebyshev recursions and the number of filtered states. N Chebyshev recursions

are sufficient to generate 2N terms, and 2N ck
(p)’s were finally used in Eq. ~13!. The error estimate, (DEa)2

3103 @Eq. ~14!#, is given in parentheses.

FIG. 1. The spectral intensity as a function of energy.

The intensity is plotted in arbitrary units. The lower

lines show results obtained using the present method

@Eq. ~15!#: the continuous line refers to z50.000 05 and

the broken line refers to z50.000 20. The upper con-

tinuous line shows the result obtained using the sinc

function based method ~see Refs. 30–32!. The locations

of the exact eigenvalues are indicated by vertical dotted

lines.
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peaks are resolved before those with lower intensity. This

means that either small or large values of z may be useful

depending on the situation: for example, one could choose a

z consistent with the resolution of an experimental result.

For comparison, Fig. 1 also shows the spectral intensities

obtained by the sinc method.30–32 It is clear that the spectral

resolution is much better with the present Lorentzian filter

than that obtained with the sinc method. In fact, only the

present method is able to identify the peak locations cor-

rectly. This is not surprising, since for the sinc method, it is

well known that if an eigenstate has a very small intensity

compared to its neighbors, its spectral features get masked

by the sinc structure of the neighboring peaks and therefore

is not identifiable.31 By definition, the present method does

not suffer from this difficulty.

We have used the present FD method to compute the

eigenvalues for the same spectral window ~0.796–0.803!, as

shown in Table III. We have performed the filtering on a

uniform energy grid in the window. The number of Cheby-

shev recursion required to obtain the eigenvalues faithfully

by the present method can vary ~though not a great deal!
with the choice of number and energies of the filtered basis

vectors, and the damping parameter, z. However, Table III

shows typical results. We find that the present FD method is

reliable, and for the present model it requires about 6500–

7000 Chebyshev recursions to produce the spectrum reliably,

which is similar to what has been noted for the sinc

method.30–32

The above-described numerical experiments reveal that

the number of Chebyshev recursions required to resolve the

spectrum by computing spectral intensities can be expected

to be similar to the number needed to compute the eigenval-

ues by the FD method. This suggests an useful computational

protocol for studying quantum bound state problems. First,

we calculate the coefficients, $ck
(0) ,k51,N%, by Chebyshev

recursions and store them. Using these ck
(0)’s, we calculate

the spectral intensities using Eq. ~15! by varying the damp-

ing parameter, z, to identify tentative eigenvalues. We then

use these estimated eigenvalues as the energies at which we

filter the states for the purpose of filter diagonalization. We

do not need to filter states in regions where there are no

peaks. We have then obtained a very compact representation

of Hamiltonian for the selected energy window. This proto-

TABLE III. A comparison of the present FD method and exact eigenvalues for the energy window, 0.796–

0.803, of the model Hamiltonian. The value of z is 0.00017.

(6500/50)a (7000/50)a (7500/50)a Exact

0.796 037 59 ~5.139 90! 0.796 061 43 ~1.583 87! 0.796 066 37 ~1.370 78! 0.796 075 29

0.796 176 59 ~5.818 79! 0.796 244 00 ~0.318 03! 0.796 243 40 ~0.325 19! 0.796 248 08

0.796 408 56 ~2.279 04! 0.796 419 11 ~0.293 05! 0.796 419 24 ~0.212 22! 0.796 420 28

0.796 589 59 ~1.185 50! 0.796 591 77 ~0.033 24! 0.796 591 76 ~0.032 58! 0.796 591 88

0.796 762 37 ~0.645 10! 0.796 762 88 ~0.033 22! 0.796 762 88 ~0.021 47! 0.796 762 90

0.796 932 38 ~0.998 11! 0.796 933 32 ~0.020 24! 0.796 933 32 ~0.019 00! 0.796 933 36

0.797 097 06 ~2.748 28! 0.797 103 01 ~0.088 90! 0.797 103 01 ~0.057 95! 0.797 103 26

0.797 271 76 ~1.154 10! 0.797 272 57 ~0.020 28! 0.797 272 57 ~0.018 50! 0.797 272 60

0.797 441 16 ~0.762 10! 0.797 441 41 ~0.016 76! 0.797 441 41 ~0.011 48! 0.797 441 42

0.797 609 11 ~1.560 29! 0.797 609 75 ~0.019 01! 0.797 609 75 ~0.016 58! 0.797 609 77

0.797 776 77 ~3.182 64! 0.797 777 83 ~0.026 86! 0.797 777 83 ~0.019 23! 0.797 777 86

0.797 887 80 ~32.165 21!

0.797 948 41 ~6.184 31! 0.797 946 26 ~0.033 05! 0.797 946 25 ~0.027 15! 0.797 946 31

0.798 117 33 ~2.221 77! 0.798 116 29 ~0.082 32! 0.798 116 29 ~0.060 31! 0.798 116 53

0.798 290 69 ~0.303 91! 0.798 290 65 ~0.031 12! 0.798 290 65 ~0.023 98! 0.798 290 68

0.798 470 92 ~0.077 29! 0.798 470 92 ~0.024 02! 0.798 470 92 ~0.017 44! 0.798 470 94

0.798 658 68 ~0.018 73! 0.798 658 68 ~0.012 89! 0.798 658 68 ~0.009 37! 0.798 658 69

0.798 854 43 ~0.018 42! 0.798 854 43 ~0.025 14! 0.798 854 43 ~0.017 58! 0.798 854 44

0.799 055 94 ~0.227 05! 0.799 055 49 ~0.346 07! 0.799 055 53 ~0.237 34! 0.799 058 20

0.799 269 25 ~0.104 35! 0.799 269 15 ~0.179 05! 0.799 269 17 ~0.118 31! 0.799 269 77

0.799 488 92 ~0.011 33! 0.799 488 92 ~0.019 69! 0.799 488 92 ~0.012 61! 0.799 488 93

0.799 715 47 ~0.023 16! 0.799 715 47 ~0.042 85! 0.799 715 47 ~0.026 32! 0.799 715 49

0.799 949 15 ~0.076 12! 0.799 949 09 ~0.146 68! 0.799 949 11 ~0.086 34! 0.799 949 33

0.800 190 30 ~0.036 01! 0.800 190 29 ~0.074 20! 0.800 190 30 ~0.041 58! 0.800 190 34

0.800 438 36 ~0.071 47! 0.800 438 31 ~0.157 98! 0.800 438 33 ~0.083 70! 0.800 438 47

0.800 693 68 ~0.018 65! 0.800 693 67 ~0.045 04! 0.800 693 68 ~0.022 41! 0.800 693 68

0.800 955 96 ~0.039 84! 0.800 955 94 ~0.106 84! 0.800 955 95 ~0.049 38! 0.800 955 98

0.801 225 35 ~0.039 23! 0.801 225 33 ~0.119 34! 0.801 225 34 ~0.050 48! 0.801 225 36

0.801 501 85 ~0.024 80! 0.801 501 84 ~0.088 03! 0.801 501 85 ~0.033 43! 0.801 501 86

0.801 785 50 ~0.042 25! 0.801 785 47 ~0.180 98! 0.801 785 50 ~0.059 83! 0.801 785 50

0.802 076 35 ~0.011 08! 0.802 076 35 ~0.059 51! 0.802 076 35 ~0.016 34! 0.802 076 35

0.802 374 47 ~0.048 58! 0.802 374 39 ~0.330 56! 0.802 374 49 ~0.068 89! 0.802 374 46

0.802 679 89 ~0.012 90! 0.802 679 88 ~0.091 10! 0.802 679 89 ~0.012 20! 0.802 679 89

0.802 992 71 ~0.217 36! 0.802 992 49 ~0.691 55! 0.802 992 73 ~0.037 02! 0.802 992 71

a(N/L) refers to the number of Chebyshev recursions and the number of filtered states. N Chebyshev recursions

are sufficient to generate 2N terms, and 2N ck
(p)’s were finally used in Eq. ~13!. The error estimate, (DEa)2

3103 @Eq. ~14!#, is given in parentheses.
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col does not excessively suffer from the overcompleteness

problem occurring in the overlap matrix, S , which of course

is taken care of by the SVD algorithm.49 The diagonalization

step of the FD method ~to obtain the exact location of eigen-

values! is then very efficient.

We have tested this protocol here. In the present ex-

ample, we have found that two energies within each peak

seen on the spectral intensity plot are sufficient in the filter

diagonalization. After finding the exact location of eigenval-

ues in this way by the FD method, we may compute the

corresponding intensity again using Eq. ~15!.
We thus see that the information obtained by the inten-

sity plot—as illustrated in Fig. 1—can be used as comple-

mentary to the FD method presented here. We envision this

protocol to be useful for the situation when some eigenvalues

are very close together while the others are well spaced. In

particular, the spectral intensity plot gives us an idea as to

how to position the energy window. We then need to sample

the filtered basis only in the region where we have seen that

there are eigenstates present. We wish to emphasize that this

protocol is less feasible with the sinc function, as the latter

has difficulty in resolving peaks in the intensity plot, and

generate spurious peaks where there are no eigenvalues.31,32

VI. CONCLUSIONS

In this paper, we have clarified the notion and use of

spectral filtering in quantum mechanics. It appears that the

Lorentzian function based filter developed here offers the

best protocol at the present time. It has an advantage over the

Gaussian function based method because within the Cheby-

shev polynomial framework, it allows all the relevant inte-

grals to be solved analytically and obtain a very efficient

expression for the relevant matrix elements. It must, how-

ever, be admitted that a Lorentzian function displays a

slower falloff than a Gaussian and is hence expected to be

somewhat less efficient in the filtering process.

The present FD method is conceptually similar to the

one based on the sinc function. From the numerical applica-

tions in the present study, it appears that the computational

efficiency of the Lorentzian based filter diagonalization is

similar to that of the sinc function. However, the Lorentzian

filter is more reliable in computing spectral intensities. We

have thus shown that the present implementation has been

able to resolve difficulties faced by other methods. To con-

clude, the Lorentzian function based spectral filter method

derived here allows us to faithfully study bound state prob-

lems in nonrelativistic quantum mechanics.
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