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Abstract. A hybrid model is presented for stochastic simulation of multiseason
streamflows. This involves partial prewhitening of the streamflows using a parsimonious
linear periodic parametric model, followed by resampling the resulting residuals using
moving block bootstrap to obtain innovations and subsequently postblackening these
innovations to generate synthetic replicates. This model is simple and is efficient in
reproducing both linear and nonlinear dependence inherent in the observed streamflows.
The first part of this paper demonstrates the hybrid character of the model through
stochastic simulations performed using monthly streamflows of Weber River (Utah) that
exhibit a complex dependence structure. In the latter part of the paper the hybrid model
is shown to be efficient in simulating multiseason streamflows, through an example of the
San Juan River (New Mexico). This model ensures annual-to-monthly consistency without
the need for any adjustment procedures. Furthermore, the hybrid model is able to
preserve both within-year and cross-year monthly serial correlations for multiple lags.
Also, it is seen to be consistent in predicting the reservoir storage (validation) statistic at
low as well as high demand levels.

1. Introduction

In hydrology, time series models are often used for stochas-
tic simulation of streamflows. These simulations augment the
description provided by the observed (historical) streamflow
sequences (that are often limited in size) and are useful in the
design of reservoirs, evaluation of alternate operation policies,
assessment of risk and reliability of system operation, and
analysis of critical droughts, to mention a few.

Since the work of Box and Jenkins [1970], tremendous effort
has gone into developing and popularizing the conventional
linear parametric time series models. Salas et al. [1980, 1985]
and Salas [1993] provide reviews of parametric time series
models that are used in water resources planning and manage-
ment. In the context of stochastic modeling of streamflows, a
major limitation of the widely used periodic parametric models
is their inability to simultaneously reproduce summary statis-
tics and dependence structure at different temporal levels. To
circumvent this, linear disaggregation models were developed
[Harms and Campbell, 1967; Valencia and Schaake, 1973; Mejia
and Rousselle, 1976; Lane, 1979; Grygier and Stedinger, 1988,
1990; Santos and Salas, 1992]. However, these models are not
parsimonious, and in addition they require empirical adjust-
ments in order to restore summability of the disaggregated
flows to the aggregate flows, in the event of normalizing trans-
formations being applied. The increasing awareness of the
need to model nonlinearity and nonstationarity in the geo-
physical time series has spurred the growth of nonparametric
methods in several areas of hydrology in recent times [Lall,
1995; Lall and Sharma, 1996; Vogel and Shallcross, 1996;
Sharma et al., 1997; Tarboton et al., 1998; Rajagopalan and Lall,
1999; Kumar et al., 2000]. This has gained from the develop-

ment and use of nonparametric methods in more general time
series analysis [Efron, 1979; Künsch, 1989; Silverman, 1986;
Scott, 1992; LePage and Billard, 1992; Efron and Tibshirani,
1993; Hjorth, 1994; Davison and Hinkley, 1997]. More recently,
Tarboton et al. [1998] have developed a nonparametric disag-
gregation (NPD) model. They have shown that a kernel density
estimate of the joint distribution of disaggregate flow variables
can form the basis for conditional simulation based on an input
aggregate flow variable. Being data-driven and relatively auto-
matic, it is able to model the nonlinearity inherent in the
dependence structure of observed flows reasonably well as well
as to provide a good amount of smoothing in synthetic simu-
lations (unlike simple bootstrap methods). However, it is data
and computationally intensive [Tarboton et al., 1998, p. 118].

An ideal single-site multiseason synthetic flow generation
model should aim to reproduce the following statistics of ob-
served streamflows: (1) the summary statistics (mean, standard
deviation, and skewness) and marginal distribution of observed
flows at periodic and annual timescales; (2) within-year and
cross-year serial correlations; (3) autocorrelation structure at
aggregated annual level; (4) month-to-year cross correlations;
and (5) nonlinearity and nonstationarity in the underlying de-
pendence structure. In addition, it should provide sufficient
variety in the stochastic simulations with a reasonable degree
of smoothing and extrapolation.

While the conventional parametric models require assump-
tions regarding the marginal distribution of flows and the order
of dependence, the nonparametric methods are, in general,
data-driven and can capture the linear and nonlinear depen-
dence of observed flows without any prior assumptions [Lall
and Sharma, 1996; Vogel and Shallcross, 1996; Sharma et al.,
1997; Tarboton et al., 1998]. While parametric models provide
considerable smoothing and extrapolation in the simulations,
nonparametric bootstrap methods such as the moving block
bootstrap [Vogel and Shallcross, 1996] and k-nearest-neighbor
bootstrap [Lall and Sharma, 1996] cannot. They simply mimic
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the marginal distribution of observed flows, because flow val-
ues are resampled from the historic data. Such parsing of the
data defeats the purpose of synthetic streamflow simulation.

Considering the relative merits and demerits of both simple
low-order linear periodic parametric models and the nonpara-
metric bootstrap methods, we felt that simulations from a
novel method that blends the merits of both parametric and
nonparametric methods can represent the uncertainty in the
historical streamflow record better. The Postblackening
method suggested by Davison and Hinkley [1997] seems to be
an appropriate one in this context. In this hybrid method the
first step is to prewhiten the historical trace by fitting a linear
parametric model that is intended to remove much of the
dependence present in the observations of the historical se-
quence. A series of innovations is then generated by subjecting
the residuals obtained from the linear parametric model to
“moving block resampling,” with a view to capturing the weak
linear dependence (if any) present in the residuals and inher-
ent nonlinearities. The innovation series is then “postblack-
ened” by applying the estimated model to the resampled in-
novations. The effectiveness of the postblackening approach in
modeling dependent annual streamflows has been brought out
in an earlier paper by Srinivas and Srinivasan [2000], wherein
this approach is shown to be efficient in modeling critical run
characteristics of multiyear droughts.

In this paper, to start with, an attempt is made to gain some
understanding of the roles played by the two constituents of
the hybrid model (HM) (a simple linear parsimonious para-
metric model with no normalizing transformation (PAR(1)-
NT) and the moving block bootstrap (MBB)) in enhancing the
performance of HM over its constituents in the context of
periodic streamflow modeling. For this purpose, synthetic sim-
ulations of Weber River (Utah) streamflows are used. Follow-
ing this, a split sample validation test is performed on the
Weber River monthly streamflows to show that the hybrid
model is able to capture repeatable statistical structure present
in the observed streamflows. In section 5, HM is used to sim-
ulate the historical monthly streamflow record of San Juan
River, near Archuleta, New Mexico. The simulation results
from HM are compared with those from the popular paramet-
ric disaggregation package SPIGOT [Grygier and Stedinger,

1990] and the nonparametric disaggregation model NPD [Tar-
boton et al., 1998].

2. Algorithm for the Hybrid Model (HM)
This section presents the algorithm for generating synthetic

seasonal streamflows by the hybrid model proposed, which
uses the postblackening approach suggested by Davison and
Hinkley [1997]. It is to be noted that vectors will be represented
by bold uppercase letters, and the elements of the vectors will
be represented by lowercase letters.

Let the observed (historical) streamflows be represented by
the vector Q�,�, where � is the index for year (� � 1, � � � , N)
and � denotes the index for season (period) within the year
(� � 1, � � � , �); N refers to the number of years of historical
record, and � represents the number of periods within the
year. The modeling steps involved are as follows:

1. Standardize the elements of the vector Q�,� as

y�,� �
q�,� � q� �

s�

, (1)

where q� � and s� are the mean and standard deviation, respec-
tively, of the observed streamflows in period �. Note that the
historical streamflows are not transformed to remove skew-
ness.

2. Prewhiten the standardized historical streamflows, Y�,�,
using a simple periodic autoregressive model of order one
(PAR(1)) and extract the residuals ��,�. Take y1,0 � 0:

��,� � y�,� � �1,� y�,��1. (2)

In (2), �1,1, � � � , �1,� are the periodic autoregressive parame-
ters of order one. For the parameter estimation, a simple
method of moments [Salas et al., 1980] has been used. It is to
be noted that the residuals ��,� may possess some weak depen-
dence (since the parameters are estimated from a simple
PAR(1) model). We wish to mention that bootstrap schemes
like the moving block bootstrap (MBB) [Künsch, 1989] can
serve as reliable tools for modeling the weak linear depen-
dence, if any, in the residuals.

3. Obtain the simulated innovations �*
�,� by bootstrapping

Figure 1. Preservation of skewness of Weber River streamflows at monthly and aggregated annual levels by
the moving block bootstrap (MBB) model and the hybrid model (HM) graphed using box plots. A line in the
middle of the box represents median. The historical statistic is represented by a circle, and the mean of the
generated statistic over 100 replicates is represented by a solid square. The solid line that joins the circles
indicates the historical trend, while the dotted line connecting the solid squares depicts the mean synthetic
trend.
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Figure 2. Preservation of serial correlations of Weber River streamflows at monthly and aggregated annual
levels by periodic autoregressive model of order one with no normalizing transformation (PAR(1)-NT),
moving block bootstrap (MBB), and hybrid model (HM).
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Figure 3. Preservation of state-dependent correlations of monthly streamflows of Weber River by periodic
autoregressive model of order one with no normalizing transformation (PAR(1)-NT), moving block bootstrap
(MBB), and hybrid model (HM).
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��,� using the moving block bootstrap (MBB) method. The
monthly residuals resulting from the PAR(1) model are di-
vided into (possibly) overlapping blocks Bi with block size L
taken as an integral multiple of the number of periods (�)
within the year. It is to be noted that each of the overlapping
blocks starts with the first period in a hydrological water year.
This is done with a view to capturing the within-year correla-
tions for a significant number of lags. For example, the block
sizes of residuals in monthly streamflow modeling context
would be 12, 24, 36, and so on (abbreviated as L � � , L �
2� , L � 3� , and so on). Note that when the block length L
is n years long, the overlap is (n � 1) years, so that when it is
1 year long there is no overlap. In general, the ith block with
size L � m� , may be written as

Bi � �� i,1, . . . , � i�m�1,�� , (3)

where i � 1, � � � , q and q � N � m � 1. For example, if
L � 3� and � � 12, the fourth block is written as B4 �
(�4,1, � � � , �6,12). The block size L , to be selected for resam-
pling the residuals, would primarily depend on the amount of
unextracted weak dependence present in the residuals. Boot-
strapped innovations �*

�,� are generated by resampling the
overlapping blocks Bi at random, with replacement from the
set (B1, � � � , Bq) and pasting them end-to-end. It is to be
noted that each of the (possibly) overlapping blocks has equal
probability (1/q) of being resampled.

4. The bootstrapped innovation series �*
�,� is then post-

blackened by reversing (2) to obtain the sequence Z�,�:

z�,� � �1,� z�,��1 � �*�,�. (4)

The synthetic generation process is started with z1,0 � 0. The
“burn-in” or “warm-up” period is chosen to be large enough to
remove any initial bias. The values of Z�,� are then inverse
standardized (using equation (5)) to obtain the synthetic
streamflow replicate X�,�:

x�,� � � z�,� 	 s�� � q� �. (5)

It is to be noted that no normalizing transformation is ap-
plied in the case of the hybrid model. In this context we wish to
mention that when the number of data points in the historical
record is limited (as in case of annual streamflow modeling),
the mean of residuals recovered from the partial prewhitening
stage need not be necessarily equal to zero. In such a case, the
residuals are to be recentered to zero before proceeding with
resampling them for generating the innovation series [see
Davison and Hinkley, 1997, p. 397]. However, when the data
points are relatively plentiful (as in case of periodic streamflow
modeling), we find that the sum of residuals recovered from
the partial prewhitening stage tends to zero, and hence one
need not recenter the residuals.

Figure 4. Results from split sample validation of hybrid model. Shown is the preservation of historical mean
of monthly and annual streamflows, Weber River.

Figure 5. Results from split sample validation of hybrid model. Shown is the preservation of standard
deviation of monthly and annual streamflows, Weber River.
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3. Hybrid Effect
The results presented in this section aim to bring out the

efficacy of the hybrid model (HM) in effectively blending the
two constituents, namely, a simple periodic autoregressive
model of order one with no normalizing transformation
(PAR(1)-NT) and moving block bootstrap (MBB), so that the
resulting simulations are statistically indistinguishable from the
historical streamflows. The data set chosen for the illustration
is the 83-year (1905–1988) record of observed monthly stream-
flows of the Weber River, near Oakley, Utah (U.S. Geological
Survey station number 10128500). This streamflow data set has
been chosen because it displays a complex linear dependence
structure extending over a number of lags and a reasonable
length of reliable streamflow record is available. Recently, this
data set has been used by Lall and Sharma [1996] for modeling
periodic streamflows. To illustrate the hybrid effect, a reason-
able block size of L � 3� is used for both HM and MBB. In
order to enable the appreciation of the hybrid effect, the re-
sults of performance of the hybrid model are presented along-
side those of its own constituents, namely, PAR(1)-NT and
MBB, in the form of box plots.

The mean and the standard deviation of observed stream-
flows are well reproduced by the hybrid model and its constit-
uents (PAR(1)-NT and MBB) at both monthly and aggregated
annual levels. The same is not presented herein, for brevity.
Being a data-driven model, MBB reproduces skewness of flows
at monthly and aggregated annual levels (see Figure 1a). In the
case of HM, no normalizing transformation is applied to the
historical data, and hence skewness of historical streamflows is
apparently retained in the residuals that are extracted from the
partial prewhitening stage. The skewness contained in these
residuals is well reproduced in the bootstrapped innovations.
Postblackening these innovations, in turn, synthesizes repli-
cates that exhibit nearly the same behavior as MBB with regard
to the preservation of skewness of monthly flows (Figure 1b).
The hybrid model is found to inherit the characteristic of
capturing the salient features of the marginal distribution
(asymmetry, peakedness, and multimodality) of observed flows
from its nonparametric constituent (MBB) and is able to pro-
vide some smoothing and limited extrapolation, owing to its
parametric constituent. More details on these results are avail-
able from the authors and can be obtained on request.

As expected, the first-order serial correlations are well re-
produced by PAR(1)-NT (the simple parametric model used as
a component in HM), but not the significant higher-lag serial

correlations (Figure 2). In contrast, MBB (the nonparametric
component in HM) is able to preserve all the within-year serial
correlations well. This is because MBB resamples blocks of
observed streamflows, with block size taken in multiples of the
number of periods in a water year (12 for monthly streamflow
modeling) and that each block begins with the first month of a
water year.

Modeling monthly serial correlations across water years (ab-
breviated SCAWY) is important for the efficient simulation of
the critical water use (validation) statistics (especially when
such correlations are significant). It is noted from Figure 2 that
MBB does not preserve SCAWY. This is because year-to-year
dependence gets destroyed at the boundaries between the ad-
joining blocks of streamflows. If this performance is to be
improved, a much longer block size must be chosen for resam-
pling the flow data. However, this reduces the variety in the
simulations, which is undesirable. On the other hand, it is
observed from Figure 2 that the hybrid model is able to pre-
serve the serial correlations within the water year as well as
those between adjoining water years satisfactorily, owing to the
hybrid effect. With regard to preservation of lower-lag
SCAWY (lag-1 serial correlation of October), it may be noted
that HM is gaining from its parametric constituent almost
entirely, with only a very minor supplementation by MBB,
while in the case of higher-lag SCAWY (for instance, lag-4
serial correlations of flows of October–January months), a
considerable portion of the dependence is extracted by the
PAR(1)-NT model itself during the prewhitening process
(though not entirely, since it is only a first-order model), and
the weak dependence remaining in the residuals from the
PAR(1)-NT model is captured reasonably well by the innova-
tions during the resampling process using MBB. Eventually,
when the postblackening of the innovations is performed, the
amount of dependence present in the observed streamflows is
well preserved by the resulting synthetic replicates. One more
interesting point to note in Figure 2 is that whenever the
parametric model (at the prewhitening stage) provides a high
amount of overfitting or underfitting of any of the serial cor-
relations referred, the same effect is transmitted to HM also,
but to a lesser degree. For example, see lag-3 serial correlation
of October month flows for the overfitting effect (Figures 2g
and 2i) and lag-4 serial correlation of January month flows for
the underfitting effect (Figures 2j and 2l). This moderation is
provided by the resampling of residuals using MBB.

The hybrid effect with regard to preservation of nonlinear

Figure 6. Results from split sample validation of hybrid model. Shown is the preservation of skewness of
monthly and annual streamflows, Weber River.
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dependence (defined in terms of state-dependent correlations)
[Sharma et al., 1997] is presented in Figure 3. A significant
difference between the above- and below-median pairs of his-
torical correlations in either the forward or backward direction
indicates the presence of nonlinearity. Simulations from
PAR(1)-NT are not able to preserve state-dependent correla-
tions for months with significant nonlinearity (Figures 3a, 3d,
3g, and 3j). In contrast, MBB is good at reproducing the state-
dependent correlations except for the ones between months of
adjoining water years (Figures 3b, 3e, 3h, and 3k). Here again,
the reason for MBB not being able to preserve the state-

dependent correlations between months of adjoining water
years is the loss of dependence due to the discontinuities be-
tween the moving blocks. As discussed earlier, HM is able to
overcome the aforementioned shortcoming of MBB owing to
the hybrid effect (Figures 3c, 3f, 3i, and 3l).

4. Split Sample Test
In this section we intend to investigate whether the hybrid

model presented herein is able to capture repeatable statistical
structure present in the observed streamflows, through a split

Figure 7. Results from split sample validation of hybrid model. Shown is the preservation of serial corre-
lations of monthly streamflows and autocorrelation of annual streamflows, Weber River.
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sample validation test, performed on monthly streamflows of
Weber River (Utah). The split sample test was carried out in
two phases, namely, calibration and validation.

4.1. Calibration Phase

The hybrid model was calibrated with the first 55-year record
(1905–1960) of Weber River’s historical streamflows (equal to
about two thirds of the historical record length of 83 years).
The calibration process involves estimation of (1) periodic

means; (2) periodic standard deviations; (3) periodic autore-
gressive parameters of the linear parametric model (PAR(1)-
NT) used for partial prewhitening of the historical stream-
flows; and (4) the block size to be adopted for resampling the
resulting residuals using MBB. One hundred synthetic repli-
cates, each of size 55 years, are generated, as per the procedure
described in section 2. The block size of residuals for which the
historical statistics of interest are well reproduced in the syn-
thetic simulations is selected. In the case of the 55-year Weber

Figure 8. Results from split sample validation of hybrid model. Shown is the preservation of state-
dependent correlations of historical monthly streamflows, Weber River.
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River flows, HM is seen to satisfactorily reproduce summary
statistics, monthly serial correlations, autocorrelations at an-
nual level, and state-dependent correlations, when a block size
of 2� is used for resampling the residuals (see verification in
Figures 4–8).

4.2. Validation Phase

The residuals extracted from the calibration phase are boot-
strapped in blocks of size 2� (block size selected in calibration
phase) to obtain innovations. These innovations are then post-
blackened using the periodic autoregressive parameters (esti-
mated in calibration phase), followed by inverse standardiza-
tion using periodic means and periodic standard deviations
(estimated in the calibration phase) to obtain 100 synthetic
replicates each 28 years long. These synthetic replicates are
tested for their ability to reproduce a wide variety of statistics
of the remaining 28-year (1960–1988) observed streamflow
record of Weber River (not used in calibration phase). Figures
4–9 show that simulations from the validation phase reproduce
various statistics of interest fairly well. One may note consid-
erable deflation in the preservation of the monthly standard
deviation in the low-flow months (validation in Figure 5). This

is possibly due to some amount of nonstationarity inherent in
the historical flow data (as can be observed from the differ-
ences in the historical monthly standard deviation values for
the calibration and the test data sets (Figure 5)) that the
stationary hybrid model cannot capture. Further, it may be
noted from Figure 10 that the reservoir storage statistic
(known as storage validation statistic according to Stedinger
and Taylor [1982]) is well reproduced for the 28-year test data
set. The reservoir storage capacities required to cater to yields
of 50% mean annual flow (MAF) to 95% MAF (at 5% MAF
intervals) are computed using the sequent peak algorithm
[Loucks et al., 1981, p. 235] assuming the demand to be fixed
and uniform over the 12 months of the water year.

5. Performance Comparison With SPIGOT
and NPD

In this section we compare the performance of the hybrid
model with the popular SPIGOT [Grygier and Stedinger, 1990]
and nonparametric disaggregation (NPD) [Tarboton et al.,
1998] models in simulating the 80-year (1906–1985) observed
monthly streamflow record of the San Juan River (station
number AF3555 from U.S. Bureau of Reclamation Colorado
River simulation system). This station is located near Archul-
eta, New Mexico, at 36�48�05�N latitude and 107�41�51�W lon-
gitude and at an elevation of 1724 m (5655 feet) above mean
sea level. This streamflow data set has been chosen because it
contains appreciable nonlinear dependence and the record
length available is reasonable. Moreover, it has been recently
used for temporal disaggregation modeling by Tarboton et al.
[1998], and the results reported therein enable the perfor-
mance comparison. The performance comparison is presented
in terms of preservation of (1) summary statistics at monthly
and annual levels; (2) linear dependence structure (expressed in
terms of serial correlations and autocorrelations); (3) nonlinear
dependence (expressed in terms of state-dependent correlations
[Sharma et al., 1997]; and (4) reservoir storage statistic.

Historical mean monthly streamflows and the historical
mean annual streamflows are well reproduced by the hybrid
model (not presented herein for brevity). In reference to the
preservation of standard deviation, the SPIGOT model shows
some deflation in the October, August, and September
months, whereas the NPD model is seen to inflate standard
deviations at both monthly and annual levels. In contrast, HM
is able to reproduce standard deviations at both periodic and
annual levels (Figure 11). Likewise, one may note from Figure
12 that HM is good at reproducing the skewness of observed

Figure 9. Results from split sample validation of hybrid model. Shown is the preservation of marginal
distributions of monthly streamflows of November and March and annual streamflows, Weber River.

Figure 10. Results from split sample validation of hybrid
model. Shown is the preservation of reservoir storage capacity
of historical monthly streamflows for the test data set, Weber
River (1 	 106 m3 � 0.8112 	 103 acre-feet).
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flows at both monthly and annual levels compared with the
SPIGOT and NPD models.

From the results presented by Tarboton et al. [1998, Figure
10], it may be noted that although the NPD model exhibits a
better performance compared with SPIGOT, in terms of re-
producing month-to-month cross correlations, bias is seen for
some of the higher-lag within-year cross correlations (such as
2-11, 2-12, 3-11, and 3-12). Furthermore, the NPD model is seen
to inflate a few of the month-to-annual cross correlations. In
contrast, it can be seen from Figure 13 that HM is better at
reproducing the month-to-month and month-to-annual cross cor-
relations for the 80-year streamflow record of San Juan River.

In reference to state-dependent correlations, it is seen from
Tarboton et al. [1998, Figure 14] that the above-median and

forward correlations are poorly preserved by the SPIGOT
model, while the NPD model shows a reasonable preservation.
Furthermore, both the SPIGOT and NPD models are not able
to capture the historical trend of the below-median and for-
ward correlations, as can be noted from Figure 12 of Tarboton
et al. [1998, p. 116]. In contrast, HM is able to exhibit a rea-
sonable preservation of all the four state-dependent correla-
tions (Figure 14). Moreover, it may be seen from Figure 15
that the hybrid model is able to preserve serial correlations
across water years (SCAWY) owing to the hybrid effect.

To enable comparison of the performance of HM with
SPIGOT and NPD models in predicting reservoir storage sta-
tistics of the San Juan River, results are presented in terms of
relative bias (R-bias) (equation (6)) and relative root-mean-

Figure 11. Preservation of standard deviation (SD) of San Juan streamflows at monthly and aggregated
annual levels. Shown is a comparison between (a) SPIGOT, (b) nonparametric disaggregation (NPD) model,
and (c) hybrid model (HM).

Figure 12. Preservation of skewness of San Juan streamflows at monthly and aggregated annual levels.
Shown is a comparison between (a) SPIGOT, (b) nonparametric disaggregation (NPD) model, and (c) hybrid
model (HM).
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square error (R-RMSE) (equation (7)) computed over 100
synthetic replicates.

R-bias � �Khist �
1
N �

i�1

N

Ki��Khist (6)

R-RMSE � � 1
N �

i�1

N

�Khist � Ki�
2� 1/ 2�Khist, (7)

where Khist denotes the storage capacity estimated from ob-
served (historical) flows; Ki is the storage capacity estimated
from the ith synthetic replicate, and N denotes the number of
synthetic replicates. It is to be noted that for the SPIGOT and
NPD models, the results extracted from Tarboton et al. [1998,

p. 116] (wherein R-bias and R-RMSE are reported for only
50% and 90% MAF demand levels) are presented in Table 1
alongside the results of the hybrid model, for the sake of
comparison. However, for the hybrid model, the preservation
of reservoir storage statistics is presented in Table 2 for the
intermediate demand levels (from 55% to 85% MAF at 5%
MAF intervals).

The simulations from the SPIGOT and NPD models over-
estimate the storage capacity at a low demand level of 50%
MAF and underestimate the same at the higher demand level
of 90% MAF. It may be noted from Table 1 that at 90%
demand level, the SPIGOT model, in addition to highly un-
derestimating the storage capacity, is not able to show suffi-
cient variation, indicating a poor preservation of the statistic.

Figure 13. Simulated and observed cross-correlation pairs using HM. The sequence along the x axis is 1-2,
1-3, � � � , 1-12, 1-A, 2-3, 2-4, � � � , 2-12, 2-A, 3-4, and so on. Here (1,2) indicates cross correlation between
months 1 and 2, (1,A) indicates cross correlation between month 1 and annual aggregate. Months are
numbered according to the water year (1, October; 2, November; 4, January; and so on), San Juan River.

Figure 14. Preservation of state-dependent correlations of monthly streamflows of San Juan River by the
hybrid model (HM) for a block size of 4�.
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This may be because the SPIGOT model is not designed to
preserve the higher-lag serial correlations. Moreover, it is not
able to preserve the skewness that well. Furthermore, the pres-
ervation of the marginal distribution also seems wanting (see
Figure 11 of Tarboton et al. [1998, p. 115]). On the other hand,
the hybrid model (with L � 4�) is able to provide a reason-
able prediction of the storage capacity at the lower demand
level of 50% MAF. However, even the hybrid model deflates
the storage capacity at higher demand level (90% MAF). This
is due primarily to the inability to reproduce some of the
higher-lag annual autocorrelations that are significant in the
case of San Juan River flows. In addition, it may be observed
from Table 2 that HM is able to predict the reservoir storage
capacity from 55% to 85% MAF fairly well. This may be attrib-
uted to the better preservation of skewness, marginal distribution,
and the seasonal dependence structure including SCAWY.

6. Summary and Conclusions
A new hybrid stochastic model that effectively blends the

merits of the parsimonious parametric model (PAR(1)NT)
and simple moving block bootstrap (nonparametric) model has
been presented for simulating multiseason streamflows. The
first part of the paper demonstrates the hybrid character of the
model through stochastic simulations performed using
monthly streamflows of Weber River (Utah) that exhibit a
complex dependence structure. Following this, a split sample
validation is performed on the Weber River monthly
streamflows to show that the hybrid model is able to capture
repeatable statistical structure present in the observed
streamflows. The latter part of the paper presents a perfor-
mance comparison between SPIGOT [Grygier and Stedinger,
1990], NPD [Tarboton et al., 1998], and HM in simulating

historical monthly streamflows of San Juan River (New
Mexico).

This hybrid model is shown to offer better simulations than
its own constituents, by acquiring certain properties that are
characteristic of either of these models. The efficiency of HM
with regard to preservation of skewness and salient features of
the marginal distributions is attributed primarily to the non-
parametric component MBB, while the parametric component
aids in achieving some smoothing. The preservation of multi-
ple-lag cross-year serial correlations is due to the hybrid effect.
The hybrid model ensures annual-to-monthly consistency, thus
averting the adjustments to monthly or annual flows and the
associated problems that surface in the case of linear paramet-
ric disaggregation models.

For the appropriate block size chosen, the hybrid model is
seen to perform reasonably well in predicting the reservoir
storage (validation) statistic. Compared with SPIGOT (paramet-
ric) and NPD (nonparametric) models, HM is seen to be better at
reproducing a wide variety of statistics for the San Juan River.

Although the hybrid model presented here uses a simple
PAR(1) model for partial prewhitening and MBB for boot-
strapping the residuals, one can try other hybrid variants too.
The extension of this hybrid model to multisite, multiseason
hydrologic modeling requires devising the residual resampling
strategy in such a way as to maintain the contemporal relation-
ships between the residuals of different sites considered. Re-
search in this direction is under way. Further theoretical and
computational efforts should focus on exploring methods that
can combine the advantages of the parsimonious parametric
models with the wealth of nonparametric methods to effect
better streamflow synthesis, which is important in operational
hydrology.

Figure 15. Preservation of cross-year serial correlations of monthly streamflows of the San Juan River by the
hybrid model for a block size of 4�. Notation 1–12 on the X axis indicates serial correlation between month
1 of current hydrological water year and month 12 of previous water year. Months are numbered according
to the water year (1, October; 2, November; 4, January; and so on).

Table 1. Comparison of Predictions of Reservoir Storage Capacity Statistic for the
80-Year Monthly Streamflow Record of San Juan River

Demand Level,
% Mean

Annual Flow

Model

SPIGOT NPD HM

R-Bias R-RMSE R-Bias R-RMSE R-Bias R-RMSE

50 �0.192 0.457 �0.387 0.520 0.097 0.216
90 0.412 0.457 0.284 0.395 0.337 0.453
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Table 2. Prediction of Reservoir Storage Capacity Statistic by the Hybrid Model for the
80-Year Monthly Streamflow Record of San Juan River

Demand Level, % Mean Annual Flow

55 60 65 70 75 80 85

R-Bias 0.054 �0.047 �0.017 0.007 �0.006 0.027 0.207
R-RMSE 0.194 0.220 0.234 0.244 0.272 0.293 0.337
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