
A Framework for Evolutionary Networking
Gautam Kumar Gupta and S V Raghavan

Network Systems Laboratory
Department of Computer Science and Engineering

Indian Institute of Technology Madras
Chennai, INDIA 600 036

{gautam, svr}@cs.iitm.ernet.in

ABSTRACT
In Computer-Communication Networks, addressing and routing
have been fundamental issues that have challenged researchers –
resulting in myriads of addressing and routing protocols. In recent
times, self-configuration of nodes has become a necessity due to
large number of networked devices and pervasive use of
networks. Emergence of autonomic networks based on wireless
mesh or ad hoc approach underline the need for self-
configuration. Besides, success in sensor technology resulting in
proliferation of wireless sensor networks is rapidly pushing the
frontiers of self-configuration in large scale. The solutions
reported hitherto in literature, has an interesting underlying
similarity – Addressing, Routing and Mobility (A.R.M.) issues
have been tackled separately.

In this work, we propose Protocol for Evolutionary Addressing
(PEA) Framework, pronounced as “P”, which solves the problem
of addressing and routing in unison - thereby eliminating the need
for separate routing algorithm. In PEA Framework, nodes assume
addresses and self-configure the forwarding tables to reflect the
changes in the network topology. Besides, PEA Framework
enables self-configuration of nodes in a network so that the
network naturally evolves (or readjusts) as it grows (or changes).

We describe the framework, protocol, and evolution of network in
addition to analyzing the time and message complexity of the
protocol.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design – Distributed Networks, Network
Communications, Network Topology, Wireless Communication.

General Terms
Design, Performance.

Keywords
Self-Configuration, Next-Gen Network Architecture, Addressing.

1. INTRODUCTION
In networks, the emergence of new opportunities in speed of
transmission, choice of technology, dynamism in topology and
proliferation of devices, brings in new challenges. Perhaps, the
need of the hour is to encourage a paradigm shift in the way we
perceive the “address of a node” – from static to dynamic – that
too dynamic and transient – we are in essence moving from the
era of Assigning1 or Acquiring2 an address to an era of Assuming
an address.

In our work, we argue that the nodes in a network can assume an
address with an associated context. When the context changes,
the address also changes. Such an addressing scheme has three
inherent benefits as given below:

• The first and foremost benefit is the relative ease of
associating addresses to nodes. By definition, the collision
domain of addresses is localized. This results in scalable address
management.

• The second benefit is the ease in routing of packets in a
network. As the address of a node contains the Point of
Attachment by definition, packets can be routed by simply
interpreting the address, obviating the need for an explicit routing
algorithm. We call this concept as Address Guided Forwarding
(AGF).

• The third benefit is the self-organization in the context of
mobility. When nodes move, they leave their previous logical
domain and join new ones. In the process, they assume new
addresses and update the corresponding forwarding tables.

All the three benefits mentioned above, traditionally required
development of separate protocols. Departing from the tradition,
we propose an integrated framework of definitions, axioms, and
protocol to handle the A.R.M. issues in a consistent manner.
Besides, inspired by the simplicity, robustness and scalability of
natural systems (which are evolutionary in nature), we prove that
the networks produced using the PEA Framework exhibit the
characteristics of natural systems.

1 Assigning refers to static IP addresses assigned to nodes in IP

subnets.
2 Acquiring refers to dynamic IP addresses acquired by nodes in

DHCP environment.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MobiArch’07, August 27-31, 2007, Kyoto, Japan.
Copyright 2007 ACM 978-1-59593-784-8/07/0008…$5.00.

2. PEA FRAMEWORK
A framework is a system (or an extensible structure) of describing
concepts, principles or methods that is used to build something
[1]. PEA Framework comprises of a conceptual component
(Definitions, Axioms, Information and Properties) and an
operational component (PEA Protocol). The conceptual and
operational components of PEA Framework are the guiding
principles for self-configuration of nodes. In the PEA Framework,
networks evolve based on a Policy of Evolution. Conceptual
component of PEA is independent of the Policy of Evolution and
the operational component, i.e. the PEA Protocol, is dependent on
the Policy of Evolution.

PEA Definitions
Node – Node is any communication device that is used to
form a network. We call it a PEA node.
Address – A PEA node has two types of addresses - Local
and Global.
Cluster – A group of nodes that are in the vicinity of each
other in terms of signal strength.
Local Address (LA) – Local Address of a node is unique in
its cluster.
Global Address (GA) – Global Address of a node is unique
in whole network.
Family – A family is a collection of an L1 cluster with all of
its descendant clusters, as illustrated in Figure 1. Each
family has a unique family-id.
Peer-to-Peer Join – Within a cluster, two nodes are
connected through Peer-to-Peer (P-2-P) join.
Parent-to-Child Join – Two nodes at consecutive levels are
connected through Parent-to-Child (P-2-C) join.
Cluster-to-Cluster Join – Two nodes at non-consecutive
levels are connected through Cluster-to-Cluster (C-2-C)
join.
Cluster Head Node (CHN) – A node is said to be Cluster
Head Node if it forms a P-2-C join with its upper level
node. In Figure 2, gray color nodes that have LA 1 and 2 are
CHNs.
Gateway Node (GN) – A node is said to be Gateway Node if
it forms a C-2-C join across families or networks. In Figure
2, checked nodes are GNs.

Figure 1. Fragment of a PEA network having 3 families, F1,

F2, F3 and 3 levels, L1, L2, L3

To manage addressing and routing in any network, we need to
impose some structure on the network of nodes. In system design,
hierarchy is often used to organize entities in a system, as it can
deal with complexity and scalability [2]. By the same token,
hierarchy becomes the natural choice for the organization of
nodes in a network. In PEA Framework, hierarchy is the
fundamental structure and PEA networks have different levels of
clusters of nodes viz. L1, L2, L3 and so on, with L1 as the root.
Fragment of such a PEA network with three levels is shown in
Figure 1.

PEA Axioms
1. A node can have only one Local Address but it can

have more than one Global Addresses.

2. Within a cluster, all nodes are at the same hierarchical
level.

3. At a time, there can be only one type of join between
two nodes.

4. At a time, a node can be in one cluster only.

2.1 PEA Node and its Associated Information
In PEA Framework, each node has following information that is
needed for the operation of the PEA protocol.

Neighborhood Information
a. Peer Address Set (PAS): It is set of Local Addresses (LAs)

of all the nodes in the same cluster.

b. Cluster Head Address Set (CHAS): It is set of LAs of Cluster
Head Nodes in the same cluster.

CHAS ⊆ PAS

c. Gateway Address Set (GAS): It is set of the LAs of all GNs
with which a node establishes C-2-C join.

d. Child Address Set (CAS): It is set of LAs of all the child
nodes of a node. It will be non empty only if the node is a
parent node with one or more child nodes.

Hierarchy Information
e. Hierarchical level (L): It is the level of the node in the PEA

network hierarchy.

f. Family Set (FS): It is set of all the family-ids of the families
to which a node belongs. A node can be multi-homed to
more than one family.

Packet Routing Information
g. Global Address Prefix Set (GAPS): It is set of prefixes of all

the GAs of a node such that appending LA or φ (Null) to the
prefix results in one of the GAs of the node.

h. Intra-Cluster Forwarding Table (ICFT): It is set of ordered
pairs of LAs. For example ICFT of a node x is as follows.

ICFT (x) = {(4, 1), (1, 1), (3, 3), (5, 3), (x, *)}

 In the ordered pair, the first element is LA of destination and
the second element is LA of next hop that is used to reach
the destination. The element (x, *) signifies that x is the LA
of the node itself. We can establish relation between ICFT

and PAS as follows.

ICFT ⊂ (PAS X PAS) ∪ {(x, *)}

i. Inter-Family Forwarding Table (IFFT): It is set of ordered
pairs of family-id and LA. Example of IFFT of an L1 node is
as follows.

IFFT = {(1, 5), (2, 4), (4, 7), (3, *)}

In the ordered pair, the first element is family-id of the
destination family and the second element is the LA of GN
that is used to reach the destination family. The element (3,
*) signifies that 3 is the family-id of the node.

Figure 2. Illustration of CHN, GN and GA of a node

For an isolated node, the PAS, CHAS, GAS, CAS, FS, GAPS,
ICFT and IFFT sets will be NULL. The value of L will be 0. As a
node joins a network, there are appropriately updated by the PEA
protocol.

2.2 Properties of PEA Nodes
The definitions, axioms and PEA node information described
hitherto give rise to the following properties:

P1. Family Set of an L1 node is always a singleton set.

P2. For L1 nodes, Cluster Head Address Set (CHAS) is always an
empty set.

P3. Inter-Family Forwarding Table (IFFT) of non L1 nodes is
always an empty set.

2.3 Anatomy of Global Address (GA)
The GA of a node consists of family-id, LAs of intermediary P-2-
C Join nodes, and the LA of the node itself. For example, the GA
of the node shown in black color in Figure 2 is 3-62-41-5. Here 3
is the family-id, 5 is the LA, and the middle part - 6, 2, 4 and 1 - is
the LAs of the intermediate P-2-C join nodes (shown in gray color
in Figure 3). These intermediate nodes – 6, 2, 4 and 1 – come into
the picture while traversing path from L1 cluster to the node under
discussion. Since there can be more than one path from L1 cluster
to the node, it can potentially have more than one GA. Besides,
forwarding of packets is guided by the GA of the destination. This
results in a novel concept of Address Guided Forwarding (AGF)
[3].

If c is the number of bits in a LA, f is the number of bits in
family-id, l is the number of bits in hierarchical level, L, then the
minimum and maximum length of Global Address (GA) of a node
will be f + c and f + 2* c *(2l - 1) + c respectively.

3. PEA PROTOCOL
PEA protocol is designed for self-configuration of nodes’ address
and the corresponding forwarding tables. PEA protocol consists
of three sub-protocols called JDP (Join Decision Protocol), JEP
(Join Establishment Protocol), and JTP (Join Termination
Protocol). JEP and JTP handle join establishment and termination
between two nodes. PEA has three types of joins: P-2-P, P-2-C
and C-2-C. Using the Policy of Evolution, JDP decides the type of
join to be established. One can visualize the role of the three joins
as follows: P-2-P join fills a cluster, P-2-C join forms a hierarchy
of clusters, and C-2-C join fuses all the hierarchies forming the
PEA network.

When a new node enters the PEA network, JDP decides the type
of join to be established. JEP establishes this join, thus initializing
the address and the forwarding tables of the node. When the node
leaves, JTP terminates the existing join, and updates the
forwarding tables of the remaining nodes. Mobility of a node is
handled as JTP followed by JDP and then JEP, as the existing
join has to be terminated before the establishment of a new join.
In summary, new nodes are handled by JDP and JEP and mobility
is handled by JTP, JDP, and JEP in a cycle.

Since a node’s GA changes due to mobility, to avoid (or
minimize) disruptions at upper (transport) layer, mechanisms
similar to Extended TCP [4], MSOCKS [5], SCTP [6] etc. can be
used. After assuming the new address, the node informs its peer
communicating nodes and their cluster head nodes about the new
address so that the communication continues without disruption.
Upper bound on the time a node takes to assume a new address is
presented in section 4.

Network Evolution using HELLO Messages: PEA network
evolves using HELLO messages broadcast by nodes as beacons. If
a node is already in the network, then the beacon signifies that the
node is alive and if the node is “new”, beacon signifies a join. The
nodes then exchange messages based on Challenge – Response
(C-R) protocol and JDP then takes over to decide the type of join.
C-R based approach prevents circular transmission resulting in
“infinite” join.

Illustration of PEA Protocol Operation: Evolution of a PEA
network begins when two isolated PEA nodes come in the
vicinity of each other and forms an L1 cluster. Using P-2-P joins
the cluster fills up to the maximum cluster size. Once the cluster
is full, next level of clusters and other L1 clusters are formed
using P-2-C and C-2-C joins respectively. The order in which P-
2-C and C-2-C joins are established is decided by policy of
evolution. Thus, hierarchy of clusters and fusion of these
hierarchies occur as per policy of evolution. In Figure 3, a
fragment of an already evolved PEA network is shown. Here, we
illustrate the instances of the three joins: P-2-P, P-2-C and C-2-C.

In order to appreciate the operational simplicity of PEA protocol,
one should understand the three join operations and the context in
which they happen. It is important to note that when a P-2-P join
is used (between two nodes in a cluster), the information
associated with all the nodes in the cluster is updated.

Figure 3. Illustration of PEA Protocol working

Similarly, when a P-2-C join is used, the information associated
with all the nodes that are descendant to P-2-C join is updated.
Extending the same logic, when a C-2-C join is used, the
information associated with all the L1 nodes is updated. These
three operations are illustrated in the sequel using appropriate
annotations in Figure 3.

Table 1. Impact Matrix of PEA Protocol

Info.

Action

P
A
S

C
H
A
S

C
A
S

G
A
S

L F
S

IC
FT

GA
PS

IF
FT

P-2-P
P-2-C
C-2-C

Table 1 summarizes the PEA node information that is updated
when a P-2-P, P-2-C or C-2-C join occurs. The updates in the
neighborhood and hierarchy information is minor (used for book
keeping purpose only) and they occur only in the nodes directly
involved in the join. Therefore, we focus on routing information
(shown in gray color) of PEA nodes while illustrating the three
types of join updates.

A P-2-P join (shown in Figure 3 as single zigzag line) is updated
between node 4 and 3 at L3. Before and after the establishment of
the P-2-P join, the ICFT of cluster nodes is shown in Table 2. The
updated entries are shown in bold face.

Table 2. Illustration of ICFT updates in the cluster

Node ICFT (Before Join) ICFT (After Join)
1 (1, *), (2, 2), (3, 3) (1, *), (2, 2), (3, 3), (4, 3)
2 (1, 1), (2, *), (3, 1) (1, 1), (2, *), (3, 1), (4, 1)
3 (1, 1), (2, 1), (3, *) (1, 1), (2, 1), (3, *), (4, 4)
4 --- (1, 3), (2, 3), (3, 3), (4, *)

A P-2-C join (shown in Figure 3 as double zigzag line) is updated
between node 2 of L1 and node 4 of L2. Before and after the
establishment of P-2-C join, the GAPS of nodes of L3 cluster (the
one with 4 nodes and blue color arrows) is as follows. The
updated entry is shown in bold face.

GAPS (Before Join) = {2-43-12, 1-31-33}
GAPS (After Join) = {2-43-12, 1-31-33, 1-24-12}

A C-2-C join (shown in Figure 3 as triple zigzag line) between
node 1 and 2 is updated. Before and after the establishment of the
C-2-C join, the IFFT of L1 nodes (with family-id 1) is shown in
Table 3. The updated entry is shown in bold face.

Table 3. Illustration of IFFT updates in L1 clusters

Node IFFT (Before Join) IFFT (After Join)
1 (1, *), (2, 4), (3, 1*) (1, *), (2, 4), (3, 1*), (4, 4)
2 (1, *), (2, 4), (3, 1) (1, *), (2, 4), (3, 1), (4, 4)
3 (1, *), (2, 4), (3, 1) (1, *), (2, 4), (3, 1), (4, 4)
4 (1, *), (2, 3*), (3, 1) (1, *), (2, 3*), (3, 1), (4, 3*)

JDP is based on a policy of evolution to decide the type of join to
be established. In fact, the policy of evolution decides the
structural and topological properties of PEA networks. It is
therefore interesting to know the impact of the policy of evolution
on the operational efficiency of the PEA protocol.

4. ANALYSIS OF PEA PROTOCOL
In system design, from control theoretic perspective,
Observability and Controllability are two important aspects to be
considered during analysis. In the work reported in this paper, we
concentrate mainly on the Observability of PEA Framework.

An Approach to Analyze PEA Evolution: Since PEA protocol
pre-supposes the existence of a policy of evolution, we begin the
analysis of PEA protocol by considering policy of evolution.

For different policies of evolution, different PEA networks
evolve. Basically, a policy of evolution governs the size of core
(L1 nodes) that has implications on time and message complexity
of PEA protocol operation. One such policy of evolution is
represented in the following relation.

Lk (c / 2) + Lk+1 (c / 2) if k = 1

Lk (1)

Lk+1 (c) if k ≠ 1

Lk (c / 2) + Lk+1 (c / 2) if k = 1

Lk (1)

Lk+1 (c) if k ≠ 1

Lk (c / 2) + Lk+1 (c / 2) if k = 1

Lk (1)

Lk+1 (c) if k ≠ 1

Lk (c / 2) + Lk+1 (c / 2) if k = 1

Lk (1)

Lk+1 (c) if k ≠ 1

Lk (c / 2) + Lk+1 (c / 2) if k = 1

Lk (1)

Lk+1 (c) if k ≠ 1

Lk (c / 2) + Lk+1 (c / 2) if k = 1

Lk (1)

Lk+1 (c) if k ≠ 1

Lk (c / 2) + Lk+1 (c / 2) if k = 1

Lk (1)

Lk+1 (c) if k ≠ 1

Lk (c / 2) + Lk+1 (c / 2) if k = 1

Lk (1)

Lk+1 (c) if k ≠ 1

Here c = maximum size of cluster and Lk (x) = x nodes at level k.
Essentially, an L1 node gives rise to c/2 nodes of L1 level and c/2
nodes of L2 level. But a non L1 node gives rise to c nodes of next
level. We call this policy of evolution as L2L1… because at L1
level, L2 and L1 levels evolve alternately.

Intuitively speaking, use of such a policy of evolution ensures that
there will be (always) enough number of L1 clusters when a
network evolves. It is necessary to have enough L1 clusters as
their role in PEA network operation is critical (explained in
subsequent analysis).

In our analysis, we explore the evolutionary pattern in terms of
rounds of clusters. In first round, there is only one L1 cluster. As
nodes come from all the directions, other rounds of clusters are
formed. After filling the kth round, k+1th round starts. We call
such a formation of rounds as the Ripple Round Model of PEA
evolution. If we want to get regular distribution of load on the
core of network, we need to control the evolution and foresee how
far L1 nodes grow in PEA network evolution. Using a policy of
evolution such as L2L1…, one can evaluate the maximum number
of rounds in which the core (L1 nodes) of a PEA network is
present.

(a) Small Core (b) Medium Core (c) Large Core
Figure 4. Three PEA networks evolved using Policy of Evolution L2L1…

For a given number of L1 clusters (Nf) and given cluster size (c),
the extent, up to which the core of network is present, can be
given as follows:

Nf = 1 + (c2 / 2) ((qk - 1)/ (q - 1)) where q = (c2 / 2) – 1

This information can be used to estimate the upper bound on
forwarding latency.

The four parameters that control the performance of PEA
networks are the arrival rate of nodes, the arrival direction of
nodes, the cluster size and the policy of evolution. Arrival rate of
nodes governs the rate at which PEA network evolves. If the
nodes arrive at increased rate, the PEA network will evolve
quicker than otherwise. Cluster size governs the rate at which next
levels of clusters are formed. As cluster size increases, the rate at
which newer levels are formed slows down. But the trend in time
and message complexity does not change. Therefore, in our
simulation experiments, we concentrate on the policy of evolution
in conjunction with arrival direction of nodes.

For the L2L1… policy of evolution, with controlled arrival
direction, PEA network evolution is shown for three different
scenarios in Figure 4. Here, evolution of PEA networks can be
visualized as blooming flower starting from first L1 cluster.
Basically these three scenarios of evolution differ in the size of
core (L1 nodes). For small core, arrival direction is chosen such
that new nodes go to fill non L1 clusters so that core evolution is
restricted. For large core, arrival direction is chosen such that new
nodes always fill L1 clusters so that the core evolves at a rapid
rate. But if we release the constraint of controlled arrival direction
and allow nodes to come from all directions uniformly, the
medium core PEA network is evolved. In fact, we observed in all
our simulation experiments that the medium core PEA network is
the most probable in PEA evolution. It should be noted that the
evolution of these three scenarios of PEA networks is done
manually so that the arrival direction can be controlled to contain
the core at desired size.

We consider these three scenarios of evolution because large and
small core PEA networks are two extreme cases of PEA evolution
(even though they are extremely rare) while medium core PEA
network is a realistic case of PEA evolution. In the sequel, we
report on simulation experiments from the performance point of
view.

Comparison of the three scenarios of PEA Evolution: We

compare the three scenarios of PEA evolution – large, medium
and small core - with respect to the following two criteria: Join
Establishment Time (JET) and Message overhead.

In a PEA network, the amount of time a node takes to establish a
join is called Join Establishment Time (JET). In case of node
mobility, JET is equivalent to handover latency. Establishment of
a join consists of associating an address to the node, initializing
the forwarding tables of the node and updating the information of
other corresponding nodes.

Figure 5. – Cumulative Mean JET vs. Nodes

Figure 5 shows how cumulative mean JET varies as the network
evolves in the three scenarios. From the point of view of JET,
large core network is the worst while small core network is the
best. It happens because in large core most of the nodes are L1
nodes and in small core L1 nodes are very few. As explained in
section 3, when L1 nodes establish C-2-C joins, it results in update
of all L1 nodes. In other words, a C-2-C join takes more time to
establish than other types of join. Therefore, as core size (L1
nodes) increases, JET also increases. This disfavors large core
PEA evolution.

When a join is established, a number of update messages are
transmitted to disseminate information about the updated join.
This Message overhead is shown for three different scenarios of
PEA evolution in Figure 6. Again, from the point of view of
message overhead, large core network is the worst while small
core network is the best. The reason is that in large core most of
the nodes are L1 nodes and establish C-2-C joins. And as
explained earlier in section 3, each C-2-C join entails update of all
the L1 nodes. Therefore, as the core size (L1 nodes) increases,

message overhead also increases. Again, this disfavors large core
PEA evolution.

Figure 6. – Cumulative Mean Messages vs. Nodes

From JET and Message overhead analysis, one can safely exclude
large core PEA networks. And one may conclude that PEA
network with small or medium core is desirable. But there is a
tradeoff between time-message complexity and other performance
criteria. Small core signifies lesser no. of L1 clusters which in turn
implies lesser no. of GAs per node. This results in lesser no. of
paths between any two nodes and overloads the small no. of L1
nodes. Besides, small core PEA network is more prone to
disconnectivity due to scarce L1 clusters. These results reinforce
our intuition that medium core PEA network has desirable tradeoff
between time-message complexity and other performance criteria
such as no. of paths etc. Medium core PEA network that is natural
and realistic, and perhaps the best scenario in PEA network
evolution, from performance point of view.

So far, we have seen that a given policy of evolution with
controlled arrival direction results in PEA networks of varying
core sizes and the resulting medium core PEA network is the most
desirable and realistic scenario of PEA evolution. In the following
section, we analyze performance of PEA networks evolved using
various policies of evolution and identify the ideal policy of
evolution. While analyzing different policies of evolution, it is
worth noticing that the nodes come from all the directions with
uniform distribution.

Performance of different Policies of Evolution: In PEA
Framework, role of the policy of evolution is to determine the
core size for the evolved network. Instead of L2L1… as policy of
evolution, one can have some other policy of evolution such as
L2L2L1… which means that L1 nodes form two L2 clusters then
one L1 cluster alternately and like wise. We take following five
policies of evolution in consideration: L2L2L2L1…, L2L2L1…,
L2L1…, L2L1L1…, and L2L1L1L1…To compare these five
policies, again we use the same two criteria: JET and Message
overhead. The results reported in this section are obtained through
simulation using MATLAB [7] with uniform arrival direction and
cluster size 4. Due to uniform arrival direction, PEA networks
with medium core evolve.

From Figure 7 and 8, one can observe, as core size (L1 nodes)
increases due to policy of evolution, JET and message overhead
also increases. It happens for L2L1L1… and L2L1L1L1… because
no. of L1 nodes and therefore C-2-C joins increases which are
costly in terms of JET and message overhead. On the contrary, for

L2L2L2L1…and L2L2L1…, number of L1 nodes are lesser and
therefore JET and message overhead is also lesser.

Figure 7. – Cumulative Mean JET vs. Nodes

Figure 8. – Cumulative Mean Messages vs. Nodes

The next logical step is to identify (construct) the ideal policy of
evolution? From the above analysis, one can conclude that policy
of evolution has direct impact on performance of evolved
network. One should choose a policy of evolution such that the
core size is neither too large nor too small. Considering the
tradeoff between time-message complexity and other performance
criteria such as no. of paths etc., our choice of the policy of
evolution L2L1… satisfies this criterion because it produces L1
and non L1 nodes alternately.

4.1 Asymptotic Analysis
To understand the upper and lower bounds on time and message
complexity of PEA protocol, we perform the asymptotic analysis
of the PEA protocol. It is worth noticing that asymptotic analysis
is independent of policy of evolution. Since PEA protocol
consists of three sub-protocols, we investigate each of the sub-
protocol for analysis.

4.1.1 Time Complexity
The Time Complexity of an algorithm is a measure of time it
takes in execution of algorithm. Here, we compute time taken by
PEA Protocol (i.e. JDP, JEP and JTP). Time complexity of JDP is
always Θ(1) because in each case, JDP decides the type of join in
constant time.

The time complexity of JEP and JTP depends on Update-ICFT(),
Update-GAPS() and Update-IFFT() procedures that are invoked
due to update in P-2-P, P-2-C and C-2-C joins respectively. Since

Update-ICFT messages are transmitted in one cluster only as
shown in Figure 3, the time complexity of Update-ICFT()
procedure is Θ(c), where c is the cluster size. The time
complexity of Update-GAPS() depends on which P-2-C join is
updated. In case of establishment of a P-2-C join with an isolated
node, the time complexity is always Θ(1). If a P-2-C join is
updated between two non isolated nodes, the time complexity
depends on the level at which P-2-C join is updated as shown in
Figure 3. Suppose, there are l levels below the updated P-2-C
join, the time complexity will be Θ(c*l). Update-IFFT()
procedure updates the IFFT of all the L1 level nodes, as shown in
Figure 3. In the best case, L1 nodes of only one cluster are
updated – thus resulting in time complexity as Θ(c). In the worst
case, when L1 nodes are spread throughout the network, the time
complexity of Update-IFFT() procedure will be Θ(r), where r is
the radius of the evolved network. In Table 4, these time
complexities are tabulated.

Table 4. Time Complexity of PEA Protocol

Action Algorithm Best Case Worst Case

P-2-P Update-ICFT() Θ (1) Θ (c)

P-2-C Update-GAPS() Θ (1) Θ (c*l)

C-2-C Update-IFFT() Θ (c) Θ (r)

4.1.2 Message Complexity
Message complexity of an algorithm is a measure of number of
messages that are passed during the execution of algorithm. While
calculating message complexity of PEA protocol, we do not
include HELLO Messages because they are transmitted
periodically.

The messages complexity of JDP is always Θ(1) because in all
the three scenarios of JDP, at most two messages are transmitted.
The message complexity of JEP and JTP depends on Update-
ICFT(), Update-GAPS(), and Update-IFFT() procedures. Due to
unique Message-Id, each node transmits update messages only
once. Therefore, message complexity depends on the number of
nodes involved in update. In case of update of a P-2-P join, nodes
only within a cluster have to be updated. In case of update of a P-
2-C join, nodes of the cluster and the descendant clusters have to
be updated. In case of update of a C-2-C join, all the L1 nodes
have to be updated. We tabulate the best case and worst case
message complexity for all three update procedures in Table 5 as
follows:

Table 5. Message Complexity of PEA Protocol

Action Algorithm Best Case Worst Case

P-2-P Update-ICFT() Θ (1) Θ (c)

P-2-C Update-GAPS() Θ (1) Θ (c*n)

C-2-C Update-IFFT() Θ (c) Θ (c*f)

Here c = cluster size, n = number of clusters under the P-2-C join
that is updated, and f = number of families or L1 clusters.

The above mentioned time and message complexity helps in
appreciating the upper and lower bounds on handover latency and
message overhead irrespective of the choice of policy of
evolution.

5. RELATED WORKS
The idea of hierarchical addressing [8] is as old as computer
networks itself. Recent research related to wireless ad hoc
networks has mandated the self-configuration of addresses in
nodes. Besides, the Ad-hoc Network Auto configuration
(autoconf) [9] working group of IETF aims at self-configuration
of nodes in MANETs. The proposals addressing the concerns,
(attempt to) solve just one piece of the general addressing
problem [10]. For example, most of them use some variation of
DAD [11, 12, 13] but either they do not guarantee unique
addresses to nodes or they do auto-configuration but at link level
only [14]. On the contrary, the PEA Framework does not impose
any such restrictions and solves the problem in totality. There are
also attempts [15] that make use of the fact that addressing affects
routing; but they rely on a single source to control the address.

The concept of Address Guided Forwarding (AGF) which is the
foundation of PEA may appear similar to Self-Routing [16], but
authors are not aware of any architecture or framework that
allows the self-configuration of nodes with respect to addressing
and also enable self-routing. The hierarchy built by PEA
Framework may appear parallel to Landmark Hierarchy [17] and
related works such as LANMAR [18]. While the landmark
hierarchy based protocols assume that each node in the network
has a unique identifier, PEA Framework does not make any such
assumption. In fact such an assumption defeats the purpose of
PEA Framework.

6. CONCLUSIONS AND FUTURE WORK
In this work, we proposed an addressing framework called
Protocol for Evolutionary Addressing (PEA) that enables self-
configuration of nodes in an autonomic network. We introduced
the concept of Address Guided Forwarding (AGF) obviating the
need for separate routing algorithm. To understand the time and
message complexity, we studied PEA networks with varying core
sizes and with different policies of evolution. We understood that
there is a tradeoff between time-message complexity and other
performance criteria such as disconnectivity. Besides, we
analyzed the PEA Protocol by calculating the asymptotic time and
message complexity. The proposed framework can be used for
contemporary Internet and autonomic networks such as hospital
network, campus network and PANs etc.

Being a nascent concept, there are many avenues yet to be
explored in the PEA Framework. For given number of nodes and
given routing latency, one can back calculate the core size.
Authors are working on it. Further, we intend to extend PEA
Framework so that it can handle the union of two separately
evolved PEA networks. Naming issue (mapping from address to
name and vice versa) needs to be handled before PEA Framework
can be realized fully. The built-in hierarchy of PEA networks can
be used to provide naming service and can also be studied for
mobility management as in [19]. PEA Framework can also be
extended to handle the automatic reorganization of the PEA
network. Besides, the feasibility of PEA Framework can be
shown by emulating the framework on top of the contemporary
TCP/IP framework.

7. REFERENCES
[1] MSN Encarta. Available from http://encarta.msn.com/

[2] Herbert A Simon, “The Architecture of Complexity:
Hierarchic Systems,” In Proceedings of the American
Philosophical Society, December 1962.

[3] G K Gupta and S V Raghavan, “PEA Framework: An
Evolutionary Approach to Networking,” Technical Report
IITM-NSL-TR-01, April 2007. Available from
http://netlab.cs.iitm.ernet.in/publications_files/TR/IITM-
NSL-TR-01.pdf

[4] C Huitema, “Multi-Homed TCP,” Internet Draft, IETF, May
1995. Available from http://tools.ietf.org/html/draft-huitema-
multi-homed-0.txt

[5] D A Maltz and P Bhagwat, “MSOCKS: An Architecture for
Transport Layer Mobility,” In Proceedings of IEEE
INFOCOM 1998, March 1998.

[6] R Stewart and et al, “Stream Control Transmission
Protocol,” RFC 2960, IETF, October 2000.

[7] MATLAB Version 7.0.0.19901 (R14),
http://www.mathworks.com/

[8] J McQuillan, “Adaptive Routing Algorithms for Distributed
Computer Networks,” BBN Report 2831, Bolt Beranek and
Newman Inc., Cambridge, MA, May 1974.

[9] Ad-Hoc Network Autoconfiguration (autoconf), IETF
Working Group. Available from
http://ietf.org/html.charters/autoconf-charter.html

[10] C Bernardos and M Calderon. “Survey of IP Address
Autoconfiguration Mechanisms for MANETs” Internet
Draft, IETF, July 2005. Available from
http://tools.ietf.org/id/draft-bernardos-manet-autoconf-
survey-00.txt

[11] S Thomson and et al, “IPv6 Stateless Address
Autoconfiguration,” RFC 2462, IETF, December 1998.

[12] Nitin H Vaidya, “Weak Duplicate Address Detection in
Mobile Ad Hoc Networks,” In Proceedings of ACM
MobiHoc 2002, September 2002.

[13] K Weniger, “Passive Duplicate Address Detection in Mobile
Ad Hoc Networks,” In Proceedings of IEEE WCNC 2003,
March 2003.

[14] M E Chamlee, E W Zegura, and A Mankin, “Design and
Evaluation of a Protocol for Automated Hierarchical Address
Assignment,” In Proceedings of IEEE ICCCN 2000, October
2000.

[15] S Cheshire and et al, “Dynamic Configuration of IPv4 Link-
Local Addresses,” RFC 3927, IETF, May 2005.

[16] S Lee and M Lu, “New Self-Routing Permutation
Networks,” IEEE Transactions on Computers, vol. 43, issue
11, November 1994.

[17] Paul F Tsuchiya, “The Landmark Hierarchy: A New
Hierarchy for Routing in Very Large Networks,” In
Proceedings of ACM SIGCOMM 1988, September 1988.

[18] G Pei, M Gerla and X Hong, “LANMAR: Landmark Routing
for Large Scale Wireless Ad Hoc Networks with Group
Mobility,” In Proceedings of ACM MobiHoc 2000, August
2000.

[19] Alex C Snoeren and H Balakrishnan, “An End-to-End
Approach to Host Mobility,” In Proceedings of ACM
MobiCom 2000, August 2000.

