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Wedevelop an end-to-end deep learning-based anomaly detectionmodel for temporal data in transportation networks.

The proposed EVT-LSTMmodel is derived from the popular LSTM (Long Short-TermMemory) network and adopts an

objective function that is based on fundamental results from EVT (Extreme Value Theory). We compare the EVT-LSTM

model with some established statistical, machine learning, and hybrid deep learning baselines. Experiments on seven

diverse real-world data sets demonstrate the superior anomaly detection performance of our proposed model over the

other models considered in the comparison study.
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1. Introduction

The increasing availability of large-scale traffic data sets provides an op-

portunity for innovation in Intelligent Transportation Systems. The avenues

for exploration are numerous, ranging from uncovering traffic patterns

(Lippi et al., 2010), city dynamics (Zheng et al., 2011), driving directions

(Yuan et al., 2010), discovering demand hot spots (Chang et al., 2010),

finding vacant taxis around a city (Phithakkitnukoon et al., 2010),

predicting taxi demand (Davis et al., 2019b), taxi operation patterns (Li

et al., 2011), to detecting anomalies (Chen et al., 2013), among others.

The various verticals of Intelligent Transportation Systems have re-

ceived adequate research attention in the past. However, the recent emer-

gence of deep learning techniques and their applicability in

transportation systems has resulted in a heightened interest in this area

(Wang et al., 2019). Consequently, traditional machine learning models

in many applications are now being replaced by deep learning techniques,

which is reshaping the landscape of intelligent transport networks. An ap-

plication domain that has benefited significantly from the evolution of

deep learning-based technologies is anomaly detection (Chalapathy,

2019). Anomaly detection aims to find patterns that are not normally ex-

pected from the data. Typical observations from traffic data demonstrate

strong spatio-temporal patterns, showing periodicity and correlations be-

tween adjacent locations. These patterns may vary depending on the time

of the day, day of the week, season, or location. Occasional deviations

from these patterns can be termed as abnormal events. While various

short-term forecasting models can learn about periodic patterns in the

data (Davis et al., 2018), they usually are unable to capture these anoma-

lous events accurately. However, it is necessary to detect these unusual

events as well as they often indicate useful and critical information that

can yield instructive insights. For example, abnormal traffic event detection

can be utilized to mitigate congestion, plan driving routes, and reduce taxi

demand-supply imbalance.

Based on the nature of data, anomalous event detection can find uses in

various applications. Within the transportation domain, anomaly detection

has been applied to abnormal trajectory detection (Chen et al., 2013), find-

ing atypical regions (Kong et al., 2018), obstacle detection (Dairi et al.,

2018), congestion analysis (Markou et al., 2017), and irregularities in taxi

passenger demand (Wittmann et al., 2018), among others. One also finds

extensive use in a wide range of applications such as fraud detection for

credit cards, insurance, or health care, intrusion detection for cyber-

security, fault detection in safety-critical systems, and military surveillance

for enemy activities (Chandola et al., 2009).

1.1. Related literature

Traditionally, anomaly detection has been performed using parametric

and non-parametric statistical models, data clustering, rule-based systems,

mixture models, and SVMs (Support Vector Machines), among others. For

extensive surveys, the interested reader can refer to (Chandola et al.,

2009) and (Hodge and Austin, 2004). These traditional models often fail

to fully capture complex structures in the data. Additionally, as the volume

of data increases, traditional methodsmay experience difficulties infinding

outliers at large scale. Thus, the performance of the aforementioned
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algorithms, in detecting outliers, might be sub-optimal for emerging real-

world use cases.

In recent years, deep learning-based anomaly detection algorithms have

become increasingly popular, with applications in a diverse set of tasks

(Chalapathy, 2019). Unsupervised anomaly detection using deep learning

has mainly been hybrid in nature. First, the deep neural network learns

the complex patterns of the data. Then, the hidden layer representations

from this trained network are used as input to traditional anomaly detec-

tion algorithms. There are two popular categories of deep learning-based

hybrid anomaly detection. The first category consists of methods that ana-

lyze the reconstruction errors in an auto-encoder trained over the normal

data. A deficiency in the reconstruction of a test point indicates abnormality

(Malhotra et al., 2016). The second class of methods utilizes either an auto-

encoder trained over the normal class to generate a low-dimensional em-

bedding, or a neural network to generate predictions. To identify anoma-

lies, one applies classical methods over the embedding or predictions,

such as a parametric distribution assumption (Malhotra et al., 2016), an

OC-SVM (One Class-SVM) (Oza and Patel, 2018), etc.

While the currently popular hybrid deep learning-based anomaly detec-

tion techniques have proven to be effective in multiple tasks, these neural

networks are not customized for anomaly detection. Since the hybrid

models extract features using a neural network and feed it to a separate

anomaly detectionmethod, they fail to influence the representational learn-

ing in the hidden layers. A more advanced variant of this approach com-

bines the encoding and detection steps using an appropriate objective

function, which is used to train a single neural model that performs both

procedures (Ruff et al., 2018). In another related research (Golan and El-

Yaniv, 2018), the authors use geometrical transformations to perform

end-to-end deep learning-based anomaly detection using CNNs

(Convolutional Neural Networks). In (Chalapathy et al., 2018), an OC-

SVM objective is implemented in a feed-forward neural network for deep

anomaly detection.

The primary focus of the aforementioned literature is on anomaly detec-

tion in the context of image data sets. The anomaly detection techniques tai-

lored for images need not necessarily perform well with time-sequences.

Therefore, in this study, we aim to develop an end-to-end anomaly detec-

tion using LSTM (Long Short-Term Memory) network (Gers et al., 1999),

which is a neural network designed for sequential data. By gathering in-

sights from EVT (Extreme Value Theory) (Siffer et al., 2017), we design

an end-to-end LSTM-based anomaly detection model. To the best of our

knowledge, an LSTM-based end-to-end deep anomaly detection model for

transportation data has not been explored in the literature. Further, our ob-

jective function and network weight update rules are based on results from

EVT. So far, ExtremeValue Theory has not been employed in training a neu-

ral networkmodel for performing anomaly detection. These features set our

research apart from existing literature.1

1.2. Our contributions

We propose an end-to-end deep anomaly detection algorithm, and com-

pare the model against several baseline models: (i) parametric GARCH

(Generalized Auto Regressive Conditional Heteroskedasticity) model, (ii)

non-parametric OC-SVM model, and (iii) hybrid LSTM anomaly detection

models based on different detection rules. The detection rules used in the

hybrid deep anomaly detection models are based on Gaussian distribution

assumptions, Tukey's method, and EVT. An evaluation across seven diverse

data sets shows that our proposed EVT-LSTM model outperforms the tradi-

tional statistical, machine learning, and hybrid deep learning baseline

models. Through this study, we highlight the need for a customized neural

network model in a deep learning-based anomaly detection setting.

The rest of the paper is organized as follows. In Section 2, we explain the

traditional baseline models considered for anomaly detection in this study.

The hybrid deep anomaly detection model, along with the three detection

strategies, is explained in Section 3. It is followed by Section 4, where we

introduce our proposed EVT-LSTM model. The experimental settings are

provided in Section 5, and the results are outlined in Section 6.We conclude

our work in Section 7.

2. Traditional anomaly detection

In this section, we provide brief descriptions of two traditional anomaly

detection models considered as baselines in our comparison study.

2.1. GARCH model

Parametric statistical models (Fox, 1972) represent one of the early

works on outlier detection in time-series. Severalmodelswere subsequently

proposed in the literature for parametric anomaly detection, including

ARMA (Auto Regressive Moving Average), ARIMA (Auto Regressive Inte-

grated Moving Average), and EWMA (Exponentially Weighted Moving Av-

erage), to list a few (Chandola et al., 2009).We assume that the normal data

instances are located at the high probability regions of a stochastic model

compared to the anomalies that have a low probability. A common practice

followed here is to either assume a distribution for the anomalies (Eskin,

2000) or fit a regression model to the data (Chen et al., 2005).

A regression-based anomaly detection technique involves two steps:

(a) fit a regression model to the data, (b) the residuals, i.e., the part not ex-

plained by the regression model, are used to determine the anomaly scores.

A popular choice for regression-based anomaly detection is the GARCH

model (Engle, 2001), which is typically applied to financial time-series. A

GARCH process is often preferred over other regression models such as

ARMA because it imposes a specific structure on the conditional variance

of the process. The variance is not assumed to be a constant, making the se-

ries non-stationary in nature and rendering them suitable for real-world

scenarios. Essentially, the GARCH process models the error variance of

the time-series as an ARMA process. The AR part models the variance of

the residuals and the MA part models the variance of the process. The

time-series εt at each instance t is given by:

εt ¼ σtwt ; ð1Þ

where, wt is discrete white noise with zero mean and unit variance, and σt
2

is given by:

σt
2 ¼ δ0 þ

X

r

i¼1

δiσt−i
2 þ

X

s

i¼1

γiεt−i
2
; ð2Þ

where, δi and γi are the parameters of the model. In other words, εt is a Gen-

eralized Auto Regressive Conditional Heteroskedastic model of order r and

s, denoted by GARCH(r, s).

Parametric methods allow the model to be evaluated very rapidly for

new instances and are suitable for large data sets; the model grows only

with model complexity and not the data size. However, they limit their ap-

plicability by enforcing a predetermined distribution to the data. These ap-

proaches are accurate only if the data fits the chosen distribution model.

The non-parametric approach described below can overcome this disadvan-

tage associated with parametric models.

2.2. OC-SVM model

Non-parametric methods such as SVMs (Schölkopf et al., 2002) apply

local kernel models rather than a single global distribution model to the

data. Their popularity stems from the ability to combine speed and low

complexity growth of parametric methods with themodelflexibility associ-

ated with non-parametric methods. Kernel-based methods estimate the

density distribution of the input space and identify outliers as lying in re-

gions of low density.

Typically, the SVMmodel is given a set of training examples labeled as

belonging to one of two classes. The model tries to divide the training1 A part of this work has been presented as a conference paper (Davis et al., 2019a, 2019b).
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sample points into two categories by creating a boundary while penalizing

those training samples that fall on thewrong side of the boundary. The SVM

model can then make predictions by assigning points to either side of the

boundary. For anomaly detection applications, the training examples are

often limited. As a result, SVMs are more popularly applied in a one-class

setting here, where the SVM model is trained on data that has only one

class, that is the normal class. This is particularly useful in anomaly detec-

tion because by inferring the properties of the normal class, the examples

that deviate from the normal class can be identified. The SVM model

needs a kernel function that can map the original non-linear observations

into a higher-dimensional space in which they are separable. Commonly

used kernel functions are Linear, Sigmoid, Gaussian, and RBF (Radial

Basis Function) (Schölkopf et al., 2002, Chapter 2). During the testing

phase, if a test instance falls within the learned region, it is declared as nor-

mal, else it is deemed as anomalous.

The SVM model requires a kernel function, which has to be carefully

tuned for obtaining good classification accuracy. Further, the anomaly de-

tection is supervised in nature; it requires prior knowledge of the labels.

On the other hand, the recently developed anomaly detection models

based on neural networks can perform unsupervised anomaly detection,

and hence, have seen widespread use over SVMmodels for anomaly detec-

tion lately.

3. Hybrid deep anomaly detection

Neural networks can perform unsupervised modeling and learn com-

plex time-sequences, which makes them suitable candidates for anomaly

detection in large real-world data sets. When we feed non-anomalous

data to the network, the model learns the normal behavior of the system.

Later, when the network encounters an instance that deviate significantly

from the rest of the data, the model classifies it as an anomalous event.

This classification is performed on the basis of the prediction errors gener-

ated from themodel. A high prediction error associatedwith any sample in-

dicates the presence of a potential anomaly. For performing such prediction

error-based anomaly detection, we need detection rules. Detection rules are

usually traditional statistical or machine learning-based algorithms applied

on top of the prediction errors to generate anomaly scores. Anomalous data

points are detected based on these anomaly scores and a suitable threshold.

In other words, prediction error-based deep anomaly detection is hybrid in

nature. Popular detection rules involve thresholding the prediction errors

(Wang et al., 2011), making distributional assumptions (Malhotra et al.,

2016), or applying machine learning techniques such as an SVM model to

the errors (Ergen et al., 2017). We now briefly describe the prediction

model and detection rules considered in our study.

3.1. Prediction model

The LSTM model is a popular neural network architecture widely used

for learning temporal sequences (Gers et al., 1999). This motivates the

choice of an LSTM network in our anomaly detection setting, as we aim

to learn from temporal data and use the predictions to perform detection.

At each instant, lb number of values are fed into the model to create la num-

ber of predictions. The parameters lb and la are known as look-back and

look-ahead times respectively. Further, to avoid over-fitting, techniques

such as dropout and early stopping are applied.

We divide each data set into training, validation, and test sets. The

model learns from the training data, and validates its performance on the

hold-out validation data. We assume that the training set is free of anoma-

lies. This is a reasonable assumption as instances of normal behavior are

often available in abundance, but instances of anomalous behavior may

be rare in real-world use cases. Validation and test sets are comprised of

both normal and anomalous samples. First, we feed the training data, i.e.,

the data without anomalies, to the neural network. This enables the

model to learn the normal behavior of the data. Once training is completed,

the model utilizes the validation set to derive an appropriate anomaly

threshold for that data. Then, the model detects anomalies from a test set

by applying this threshold to the prediction errors obtained. In this work,

we define prediction error at time t as the absolute difference between

the input and the corresponding network output at t.

For developing anomaly thresholds on prediction errors, we consider

three detection rules: (i) the Gaussian-based technique that assumes a Nor-

mal distribution on the prediction errors, (ii) the Tukey's method that does

not make any assumptions on the distribution, and (iii) the EVT-based rule

that assumes a tail distribution, but makes no assumptions about the parent

distribution. Those instances for which the corresponding prediction error

values lie beyond the chosen threshold are classified as anomalies. The de-

tection rules are explained below.

3.2. Gaussian-based detection (Malhotra et al., 2016)

One of the earliest and popular works in prediction-based anomaly de-

tection setting (Malhotra et al., 2016) assumes that the prediction errors

from the training set follow a Gaussian distribution. The prediction errors

obtained from the LSTM model are fit to a Gaussian distribution. The

mean, μ, and variance, σ2, of the distribution are computed using MLE

(Maximum Likelihood Estimation) (Myung, 2003). The Log PDs (Probabil-

ity Densities) of errors are calculated based on the parameters estimated,

and they act as anomaly scores. Lower the value of Log PD, higher is the

likelihood that the observation is an anomaly. A threshold τg is determined

on the Log PD values based on a validation set containing both normal and

anomalous data. The threshold is chosen such that it incurs as few false

alerts as possible while detecting all the abnormal instances from the set

of observations. A separate test set is used to evaluate the chosen threshold.

3.3. Tukey's method based detection (Wang et al., 2011)

Tukey's method uses percentiles to set anomaly thresholds without

making any distributional assumptions. That is, no quantitative measures,

such as the moments of the function, are required to classify the data. In

Tukey's method, an instance is marked as an outlier if it lies outside the

threshold τt = Q3 + 3 × (Q3 − Q1), where Q1 is the lower quartile or

the 25th percentile, and Q3 is the upper quartile or the 75
th percentile. The

metric Q3 − Q1 is known as the interquartile distance. After obtaining the

prediction errors from the training, validation, and test sets, the errors are

concatenated to calculate the lower quartiles and interquartile distances.

Any value lying outside τt is identified as a potential outlier.

3.4. EVT-based detection (Siffer et al., 2017)

For a random variable X, the CDF (Cumulative Distribution Function) is

defined as F(x)= P(X≤ x). Similarly, ~FðxÞ ¼ PðX > xÞdenotes the tail dis-

tribution. The probability P(X > x) tends to zero for the extreme events in

the system. A key result from EVT (De Haan and Ferreira, 2007) suggests

that the distribution of the extreme deviations in any system is not highly

sensitive to the parent distribution. In other words, we can accurately com-

pute the probabilities of extreme values without estimating the underlying

distribution. Under a weak condition, the extreme events have the same

kind of distribution, regardless of the parent distributions, known as the

EVD (Extreme Value Distribution):

G σ; γð Þ : y→ exp − 1þ γ
y

σ

� �−
1

γ

0

B

@

1

C

A
; γ∈ℝ; 1þ γ

y

σ
> 0; ð3Þ

where, σ is the scale parameter and γ is the extreme value index of the dis-

tribution. Based on the value γ takes, the tail distribution can be Fréchet (γ

> 0), Gumbel (γ = 0), or Weibull (γ < 0). Once we associate an EVD

with the tail of an unknown distribution, the probability of the extreme

events can be readily computed. Recently, results from EVT have been ap-

plied to the problem of anomaly detection in uni-variate data streams

(Siffer et al., 2017). In that study, the authors follow the POTs (Peaks-

N. Davis et al. Transportation Research Interdisciplinary Perspectives 5 (2020) 100112

3



Over-Thresholds) approach to design a threshold. Rather than fitting an

EVD to the extreme values of X, the POTs approach fits a GPD to the ex-

cesses X-T, where T is some initial threshold. Often, T is chosen as the

98% quantile. To compute parameter estimates for GPD, we follow the pro-

cedure outlined by (Grimshaw, 1993). Once the parameters are obtained,

the threshold τe can be computed as:

τe ¼ T þ
σ̂

γ̂

qn

N t

� �−γ̂

−1

 !

; ð4Þ

where, σ̂ and γ̂ are the estimated parameters of the GPD, q is the desired

probability or the risk, n is the number of observations, andNt is the number

of peaks, i.e., the number of Xi s.t. Xi > T. The probability P(X > τe) is calcu-

lated for the test set, and those data instances for which P(X > τe) < q are

classified as plausible anomalies. The authors in (Siffer et al., 2017) recom-

mend choosing a value for q within [10−3, 10−5], which we follow in our

study. More details of this algorithm can be found in (Siffer et al., 2017).

4. End-to-end deep anomaly detection

In Section 1.1, we highlighted the need for developing end-to-end deep

learning-based anomaly detection models, especially for time-series data.

An end-to-end deep anomaly detection technique involves modifying the

objective function of a deep learning model such as an LSTM or a CNN.

Modifications are introduced so that the models that were formerly learn-

ing patterns for forecastingwill now learn to detect deviations from the nor-

mal behavior. Instead of first predicting using a neural network and then

feeding the predictions to a separate post-processing technique, the outputs

of an end-to-end deep anomaly detection model can be directly interpreted

as anomaly scores. In (Ruff et al., 2018), the authors combine a CNN with

an SVDD (Support Vector Deep Description) objective. The SVDD is a tech-

nique similar to the OC-SVM, where a hyper-sphere is used to separate the

data instead of a hyper-plane.

Let ϕð�;WÞ : X→Y be a neural network with L layers and a set of

weightsW ¼ fW1
;…;W

Lg. This network maps data from an input spaceX

⊆ℝ
p to an output space Y⊆ℝq. That is, ϕðx;WÞ∈Y is the network represen-

tation of x∈X given by the network ϕ with parameters W. The One-Class

Deep SVDD objective given in (Ruff et al., 2018), for a CNN model with

input {x1, …, xN}, is as follows:

min
W

1

N

X

i¼1

N

ϕ xi;Wð Þ−ck k2 þ
λ

2

X

i¼1

L

W
l

�

�

�

�F2
: ð5Þ

The first term in the quadratic loss objective function penalizes the dis-

tance between every network representation ϕðxi;WÞ and the center of the

hyper-sphere c. The second term penalizes the network weights by

employing a network weight decay regularizer with hyper-parameter λ >

0, where ‖.‖F denotes the Frobenius norm. In (Ruff et al., 2018), the c

was fixed as the mean of the network predictions that results from

performing an initial forward pass on the training data samples. The exper-

iments were conducted for MNIST and CIFAR-10 image data sets.

In order to develop a similar model for time-sequences, we implement

the aforementioned objective function in an LSTM model. Interestingly,

wefind that while this quadratic loss objective functionworks satisfactorily

for anomaly detection in images, it does not fare well for temporal data.

When adopted in the LSTM network, we notice that Eq. (5) minimizes the

distance between the predictions and their initial mean by reducing the

magnitude of the predictions, resulting in a large fraction of false positives.

This behavior suggests that an objective function that directly minimizes

the network predictions might not be a sensible choice for anomaly detec-

tion in temporal data. We recall that the success of hybrid deep learning-

based anomaly detection algorithms was mainly attributed to an efficient

threshold based on the prediction errors. Therefore, it is natural to explore

an objective function that minimizes the prediction errors and not the ac-

tual predictions.

Further, in our recent work (Davis et al., 2019a), after comparing dif-

ferent detection strategies for hybrid deep anomaly detection, we no-

ticed the potential of a strategy based on extreme values. We found

that an EVT-based detection rule performed better than other popular

detection techniques. The superior performance of an EVT-based strat-

egy in a deep learning setting encouraged us to integrate EVT into the

objective function of the LSTM model, leading to an end-to-end deep

anomaly detection model.

4.1. EVT-LSTM model

In our study, the inputs {x1,…,xN} in X⊆ℝ
p are mapped to the set

{y1,…,yN} inY⊆ℝ. Our EVT-LSTMmodel is based on the objective function

given as follows:

min
W

1

N

X

i¼1

N

E ϕ xi;Wð Þð Þ−τek k2 þ
λ

2

X

l¼1

L

W
l

�

�

�

�F2
: ð6Þ

Here, instead of minimizing the distance between the network repre-

sentations and the mean obtained after an initial forward pass as in

Eq. (5), we minimize the Euclidean distance between every absolute

prediction error Eðϕðxi;WÞÞ and a threshold τe. The threshold τe is ob-

tained from Eq. (4), and is updated periodically during the training

phase. This form of optimization is called an alternating minimization

approach and has been used with similar objective functions in related

literature (Ruff et al., 2018; Chalapathy et al., 2018). The objective

functions in these related literature minimized a function of the predic-

tions obtained from image data sets. On the other hand, our objective

function in Eq. (6) optimizes a function of the prediction errors. Our pro-

posed algorithm is given in Algorithm 1.

Algorithm 1. The training process of the proposed EVT-LSTMmodel. The

threshold τe is updated every k = 20 epochs.

The threshold τe is initialized to zero at the beginning of the experiment.

During the training phase, the LSTM model tries to optimize the objective

function given in Eq. (6). The prediction errors on the training set are calcu-

lated every k epochs. The 98% empirical quantile of the errors is chosen to

set an initial threshold T in InitThreshold(Eðϕðx;WÞÞ). The excesses occur-

ring above T are fit to a GPD using MLE, and the parameters γ̂ and σ̂ are esti-

mated. Then, using Eq. (4), we calculate the new value for the threshold τe.

The objective function in Eq. (6) is updatedwith this recent value of threshold

obtained. The next k epochs use the modified objective function to train the

model, after which the threshold τe is again calculated and updated. The

training stops when either the convergence is achieved, or the maximum
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number of epochs is reached. Finally, on a test set, the decision scores are cal-

culated and used for classifying instances as anomalous or non-anomalous.

5. Experimental settings

In this section, we discuss the data sets considered, evaluation metrics

used, and the procedure for choosing parameters for each anomaly detec-

tion model.

5.1. Description of data sets

Seven diverse real-world data sets are considered in our comparison

study. We employ three road traffic-based data sets, two taxi demand

data sets, and two data sets from miscellaneous application domains. The

travel time, vehicle occupancy, and traffic speed data sets considered are

real-time data obtained from a traffic sensor near the Twin Cities Metro

area and collected by the Minnesota Department of Transportation. These

traffic data sets are available at the Numenta Anomaly Benchmark GitHub

repository.2 The NYC (New York City) taxi demand data set is publicly

available at (Taxi and Limousine Commission, 2016) and contains the trip

details of government-run street hailing taxis. The proprietary Bengaluru

taxi demand data set is acquired from a leading private Indian transporta-

tion company dealing with app-based taxi-hailing services. The ECG (elec-

trocardiogram) data is available in (Keogh et al., 2005) and has annotations

from a cardiologist to indicate the unusual heartbeat patterns. Bitcoin his-

toric prices are obtained from coindeskr3 package, R.

Brief descriptions of the data sets used are given below.

1. Vehicular Travel Time2: The travel time data is obtained from a traffic

sensor and has 2500 readings from July 10, 2015, to September 17,

2015, with eight marked anomalies. The sensor outputs are obtained

from a road link, in intervals of 10 min.

2. Vehicular Speed2: The data set contains the average speed of all vehicles

passing through the traffic detector, obtained in 5 min intervals. A total

of 1128 readings for the period September 8, 2015 - September 17,

2015, is available. There are three marked unusual sub-sequences in

the data set.

3. Vehicle Occupancy2: There are a total of 2382 readings indicating the

percentage of the time, during a 30-s period, that the detector sensed a

vehicle. The data is available for a period of 17 days, from September

1, 2015, to September 17, 2015, and has twomarked anomalies. A read-

ing is obtained once in every 5 min, from a traffic sensor for a road link.

4. NYC (New York City) Taxi Demand (Taxi and Limousine Commission,

2016): The publicly available NYC data set contains the pick-up loca-

tions and time stamps of street hailing yellow taxi services from the pe-

riod of January 1, 2016, to February 29, 2016. The data is aggregated

over 15min time intervals in 1 km2 grids. This spatio-temporal aggrega-

tion results in sequences of length 5760 from more than 700 grids. We

pick three time-sequences (S1, S2, and S3) with clearly apparent anom-

alies from data aggregated.

5. Bengaluru Taxi Demand: This data set has GPS traces of passengers

booking a taxi by logging into the service provider's mobile application.

Similar to the NYC data set, this data is also available for January and

February 2016. We aggregate the data over 15 min periods in 1 km2

grids and pick three sequences with clearly visible anomalies. Similar

to NYC data set, we have time-sequences, each of length 5760, from

around 740 grids.

6. ECG (Electrocardiogram) (Keogh et al., 2005): There are a total of

21,600 readings, with three unusual sub-sequences labeled as anoma-

lies. The data set has a repeating pattern, with some variability in the pe-

riod length.

7. Bitcoin Prices3: Historical bitcoin prices are available for the period from

January 1, 2017, toMay 27, 2019. The fraction of anomalies in this data

set of 877 readings is observed to be 0.06%, most of them occurring

around the beginning of the year 2018.

5.2. Evaluation metrics

We consider three evaluation metrics for comparing our models:

(i) Precision, P, (ii) Recall, R, and (iii) F1-score, F1, which is the harmonic

mean of Precision and Recall. Min-max normalization is performed on

every data set before modeling and evaluation.

1. Precision, P:

P ¼
True positives

True positivesþ False positives
; ð7Þ

2. Recall, R:

R ¼
True positives

True positivesþ False negatives
; ð8Þ

3. F1-score, F1:

F ¼ 2 �
P� R

Pþ R
: ð9Þ

True positives are the anomalous instances that have been correctly

classified as anomalies by the model. Similarly, true negatives are the in-

stances correctly identified as non-anomalous data. False positives are the

non-anomalies incorrectly classified as anomalous, and false negatives are

the incorrectly identified anomalies. Since F1-score summarizes both Preci-

sion and Recall, we consider the model with the highest F1-score as the su-

perior anomaly detection technique. For each data set, we manually select

the validation and test sets so that they contain both anomalous and non-

anomalous instances while preserving the seasonality in the sequences.

The training-validation-test split is approximately 60–10–30.

5.3. Parameter selection

In order to perform efficient anomaly detection, it is necessary to set ap-

propriate hyper-parameters and anomaly thresholds for each model. The

suitable set of parameters and thresholds varywith the use case considered.

Below, we briefly discuss the procedures through which the parameters are

shortlisted for each anomaly detection model.

2 https://github.com/numenta/NAB/tree/master/data
3 https://cran.r-project.org/package=coindeskr

Table 1

Appropriate ARIMA(p, d, q)-GARCH(r, s) models obtained for each data set, by vary-

ing p, q in the range [0, 5], d in [0, 1], and r, s in [1, 2]. The anomaly thresholds are

obtained from a hold-out validation set, so that as few false positives are incurred.

Data Sets Model Threshold

Vehicular Travel Time ARIMA(1, 0, 3)-GARCH(1, 1) 0.016

Vehicular Speed ARIMA(0, 1, 4)-GARCH(1, 1) 0.036

Vehicle Occupancy ARIMA(0, 1, 1)-GARCH(1, 1) 0.433

NYC Taxi Demand S1 ARIMA(0, 1, 3)-GARCH(1, 1) 0.009

S2 ARIMA(3, 0, 4)-GARCH(1, 1) 0.047

S3 ARIMA(2, 1, 2)-GARCH(2, 2) 0.051

Bengaluru Taxi Demand S1 ARIMA(1, 0, 3)-GARCH(1, 2) 0.064

S2 ARIMA(3, 1, 3)-GARCH(1, 1) 0.003

S3 ARIMA(1, 0, 1)-GARCH(1, 2) 0.060

Electrocardiogram ARIMA(4, 1, 2)-GARCH(1, 1) 10−6

Bitcoin Prices ARIMA(2, 1, 2)-GARCH(1, 1) 0.025
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5.3.1. GARCH model

For every data set, time-sequences are generated based on the training

data. For Bengaluru and NYC taxi demand data sets, the temporal aggrega-

tion is performed at sampling periods of 15 min. Then, by varying the p, q,

and d parameters of an ARIMA(p, d, q) process between [1, 5], appropriate

models are chosen for every time-sequence. The residuals obtained from

fitting the ARIMA processes are then modeled as suitable GARCH(r, s) pro-

cesses. We find that suitable values for parameters r and s often lie in the

range [1, 2]. Once appropriate models are developed, anomaly scores are

obtained based on the deviation of the GARCH predictions from the actual

values. An anomaly threshold is set based on the validation set and exam-

ined on a test set. The parameters of the fitted ARIMA-GARCH models,

along with the anomaly thresholds are given in Table 1.

5.3.2. OC-SVM model

Appropriate kernel functions are crucial for satisfactory anomaly detec-

tion performance of SVMs, and the choices vary with the data sets consid-

ered. In our study, we consider Linear, RBF, Polynomial, and Sigmoid

kernels. Another important parameter is the kernel coefficient α for the

RBF, Polynomial, and Sigmoid kernels. After varying α in the range

[0.0001, 0.1], a value of 0.0001 is found to suitmost of the data sets consid-

ered. For every use case, we ran multiple SVMmodels on the training data,

with different parameters chosen from the range of values considered.

Then, suitable choices are made by observing the classification accuracy

on a hold-out validation set. Finally, the best OC-SVM model obtained is

used to detect anomalies on a test set. The shortlisted OC-SVM models are

given in Table 2.

5.3.3. Hybrid LSTM models

Before training any neural networkmodel, it is essential to set appropri-

ate hyper-parameter values. These parameters cannot be inferred while

training the model as they correspond to the model selection task and influ-

ence the speed of the learning process. Hyper-parameters pertaining to the

model selection task include topology and size of the network. Similarly,

mini-batch size, drop out, and learning rate are some of the hyper-

parameters that affect the speed and quality of the learning process. Since

the selection of the suitable hyper-parameters is not a trivial task, we em-

ploy a Bayesian Optimization technique known as the TPE (Tree-structured

Parzen Estimator) algorithm (Bergstra et al., 2011) for this exercise. We

consider a fully connected dense layer with Relu activation as the output

layer. The objective to be minimized is the Mean Squared Error, for

which we use the Adam optimizer (Kingma and Ba, 2014). All the LSTM-

based models are trained for 100 epochs, with a mini-batch size of 64.

The hyper-parameters shortlisted for each data set are given in Table 3.

For the ECG data, we follow the architecture given in (Singh, 2017), where

the authors have shortlisted suitable parameters for this data set. The lim-

ited availability of readings for data sets such as traffic speed, travel time,

vehicle occupancy, and bitcoin prices suggest small look-back and look-

ahead periods. Since we have over 10 million points for the two taxi de-

mand data sets, we can have a larger look-back time. For scenarios with

large lb, we find that the LSTM learns better representations of the data,

aiding the anomaly detection process.

A key parameter that can influence the accuracy of the detection algo-

rithms is the false positive regulator. For the Gaussian or Tukey's method

based detection rule, this parameter is the corresponding threshold τg or

τt. For EVT-based techniques, the desired probability q is the false positive

regulator. We select a threshold τg for the Gaussian-based hybrid anomaly

detection such that the threshold maximizes the F1-score on the validation

set. The threshold τt for the Tukey's method is directly obtained from the

entire set of prediction errors, based on a simple quantile calculation. For

both hybrid and end-to-end EVT-LSTM deep learning models, we follow

similar procedures to set the parameters for EVT rule. Prediction errors

from the training and validation sets are concatenated to form an initializa-

tion data stream. The desired probability q for the EVT-based rule is chosen

based on this data stream. We use the same sequence to choose the initial

threshold T, which is typically set to 98% quantile. The false positive regu-

lator q is chosen such that the EVT algorithm detects all the anomalous in-

stances from the data stream. The chosen values for the false positive

regulators of the hybrid LSTM-based techniques are given in Table 4.

5.3.4. EVT-LSTM model

The hyper-parameters and false positive regulators chosen for hybrid

LSTM models are used for the EVT-LSTM model as well. We follow the

guidelines in (Ruff et al., 2018) while setting the hyper-parameter λ for

the network weight regularizer. The threshold is updated every k = 20

epochs. The values chosen for hybrid deep learning models seem to suit

end-to-end deep learning models, for most of the scenarios considered.

An exception is the Bengaluru taxi demand data set, where the suitable

Table 2

The shortlisted OC-SVM models for the data sets considered. We consider Linear,

Sigmoid, Polynomial, and RBF kernels, and vary α between [0.0001, 0.1].

Data Sets Kernel Setting

Vehicular Travel Time RBF(0.0001)

Vehicular Speed Poly(0.0001)

Vehicle Occupancy RBF(0.0001)

NYC Taxi Demand S1 RBF(0.0001)

S2

S3

Bengaluru Taxi Demand S1 RBF(0.0001)

S2

S3

Electrocardiogram Linear

Bitcoin Prices Sigmoid(0.0001)

Table 3

The LSTM architectures for the data sets considered. For each data set, hyper-pa-

rameters are chosen after running the TPE (Tree-structured Parzen Estimator)

Bayesian Optimization algorithm.

Data Sets LSTM Architecture

Vehicular Travel

Time

1 Recurrent layer: {20}, Dropout: 0.2,

1 Dense layer: {1}, Learning rate: 0.01

Vehicular Speed 1 Recurrent layer: {60}, Dropout: 0.19,

1 Dense layer: {1}, Learning rate: 0.0001

Vehicle Occupancy 1 Recurrent layer: {50}, Dropout: 0.23,

1 Dense layer: {1}, Learning rate: 0.0001

NYC Taxi Demand 2 Recurrent layers: {50, 20}, Dropout: 0.4,

1 Dense layer:{24}, Learning rate: 0.0001

Bengaluru Taxi

Demand

2 Recurrent layers: {20, 10}, Dropout: 0.25,

1 Dense layer:{24}, Learning rate: 0.0001

Electrocardiogram 2 Recurrent layers: {60, 30}, Dropout: 0.1,1 Dense layer:{5},

Learning rate: 0.05

Bitcoin Prices 1 Recurrent layer: {10}, Dropout: 0.1,1 Dense layer: {1},

Learning rate: 0.0001

Table 4

The chosen false positive regulator values for the LSTM-based hybrid anomaly de-

tection models. While the thresholds for both Gaussian and Tukey's method based

models vary significantly with each data set considered, the probability values for

EVT-based detection is found to remain within [10−3, 10−5].

Data Sets Hybrid LSTM Models

Gaussian (τg) Tukey (τt) EVT (q)

Vehicular Travel Time −20 572.9 10−4

Vehicular Speed −18 24.4 10−3

Vehicle Occupancy −23 12.9 10−5

NYC Taxi Demand S1 −19 12.1 10−5

S2 −17 12.8 10−5

S3 −15 10.5 10−5

Bengaluru Taxi Demand S1 −25 33.5 10−4

S2 −18 27.1 10−4

S3 −25 14.0 10−4

Electrocardiogram −23 0.1 10−4

Bitcoin Prices −17 12,961.8 10−3
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value for q turns out to be 10−5. Nevertheless, the best choices for the prob-

ability q remain within [10−3, 10−5].

6. Results

In this section, we analyze whether the tails of the prediction error dis-

tributions follow a GPD, and present results from the numerical tests

performed.

6.1. Statistical tests

We conduct a statistical test known as the A-D (Anderson-Darling) test

(Stephens, 1974) to check whether the tail distribution follows a GPD.

The A-D test can be used to assess whether a sample of the data comes

from a particular probability distribution. This test makes use of the specific

distribution while calculating the critical values. The test statistic A2 calcu-

lates the distance between the hypothesized distribution and the empirical

CDF of the data. The null hypothesis states that the data follow a specific

distribution, which is GPD in our case. Based on the test static and the p-

values obtained, the null hypothesis can (cannot) be rejected. The A-D

test is a modification of the KS (Kolmogorov-Smirnov) test (Massey Jr,

1951), and gives more weight to the tails than does the KS test. We conduct

the A-D test on the excessesX-T, i.e., on the prediction errors lying above the

empirical threshold T. The p-values obtained from this statistical test are

given in Table 5. We reject the null hypothesis for each data set if the cor-

responding p-value lies below 0.001. From the table, we find that the pre-

diction error distribution tail appears to follow GPD, for all the data sets

considered. This finding supports our proposal to employ an EVT-based de-

tection rule.

6.2. Numerical results

Table 6 contains the anomaly detection performance of various models

across different data sets, based on the F1-scoremetric.We draw the follow-

ing inferences from the table:

• The poor performance of the parametric GARCH models suggest that as-

suming a particular distribution on the prediction errors can critically af-

fect anomaly detection accuracy.

• Deep learning-based anomaly detection algorithms exhibit superior de-

tection accuracy over statistical and machine learning-based algorithms

across seven diverse data sets.

• Out of the two classes of deep learning-based anomaly detection models

considered, an end-to-end detection algorithm outperforms hybrid detec-

tion models on a broad variety of data sets.

When the parametric GARCHmodel is employed for anomaly detection,

we observe that the model has a sufficiently high Recall, but very low Pre-

cision. The threshold chosen based on the validation set classifies a large

number of non-anomalies as anomalous on the test set. Thus, the overall

anomaly detection performance is affected by the presence of several

false positives, resulting in a lowF1-score value. Exceptions to this behavior

are observed with vehicle occupancy data set and to an extent, with the

bitcoin prices data. The magnitude of the anomalies is much higher than

that of the non-anomalies in these data sets, which appears to be the reason

behind this exception.

The OC-SVM model achieves a higher detection accuracy compared to

statistical GARCHmodel but does not fare well compared to the deep learn-

ing variants. They also showcase high Recall and poor Precision values. On

the other hand, a single value of kernel coefficient α (0.0001) proved to be a

satisfactory fit for all the data sets considered.

On comparing hybrid and end-to-end deep anomaly detection models,

we see that the proposed end-to-end EVT-LSTM model shows superior de-

tection accuracy. The anomaly detection requires no post-processing

tools, and the performance is always at least as good as that of the hybrid

models considered, for the majority of data sets considered. This observa-

tion suggests that a deep learning model customized for anomaly detection

can provide better accuracy results than running traditional algorithms on a

deep learning model developed for forecasting. The only exception is ob-

served in the ECG data set, which can be attributed to the anomaly labeling

scheme followed. The labeling scheme employed in this data set marks an

entire period of the ECG signal as anomalous in case any point in that period

is an anomaly. In other words, we deal with collective anomalies in this data

set. The fraction of anomalies is, hence, higher in the ECG data set com-

pared to other data sets that have point anomalies. Thus, the anomalies

cover a broad spectrum above the upper quartile of prediction errors for

the ECG data. Since the Tukey's method thresholds the raw prediction er-

rors based on the upper quartile, it results in good anomaly detection for

Table 5

P-values obtained on statistical testing. Null hypothesis is rejected if the p-values are

found to lie below 0.001. In all the data sets considered, the null hypothesis that the

tail distribution follows a GPD is accepted.

Data Sets P-values

Vehicular Travel Time 0.005

Vehicular Speed 0.005

Vehicle Occupancy 0.370

NYC Taxi Demand S1 0.805

S2 0.056

S3 0.147

Bengaluru Taxi Demand S1 0.570

S2 0.180

S3 0.006

Electrocardiogram 0.002

Bitcoin Prices 0.051

Table 6

The anomaly detection performance of variousmodels considered in the study, across diverse data sets, based on F1-score. The proposed end-to-end EVT-LSTMdeep anomaly

detection model is observed to perform better compared to the statistical, machine learning and hybrid deep learning techniques considered.

Data Sets Anomaly Detection Models

GARCH OC-SVM LSTM

Tukey (Hybrid)

LSTM Gaussian (Hybrid) LSTM

EVT (Hybrid)

EVT-LSTM (End-to-End)

Vehicular Travel Time 0.01 0.04 0.07 0.21 0.36 0.36

Vehicular Speed 0.18 0.56 0.79 0.74 0.79 0.79

Vehicle Occupancy 1.0 0.33 0.5 1.0 1.0 1.0

NYC Taxi Demand S1 0.002 0.03 0.25 1.0 1.0 1.0

S2 0.005 0.16 0.14 0.33 1.0 1.0

S3 0.007 0.6 0.66 0.86 0.86 0.86

Bengaluru Taxi Demand S1 0.03 0.29 0.47 0.57 1.0 1.0

S2 0.002 0.12 0.08 0.5 0.5 0.66

S3 0.04 0.44 0.26 0.54 0.62 0.72

Electrocardiogram 0.1 0.22 0.49 0.32 0.37 0.28

Bitcoin Prices 0.52 0.31 0.19 0.83 0.83 0.84
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the ECG data set. This finding suggests that a simple threshold based on the

magnitude of prediction errors might be sufficient when the fraction of

anomalies in the data set is relatively high. Generally, Tukey's method de-

tects most of the anomalies but results in a large number of false positives,

similar to GARCH and OC-SVMmodels. This behavior is not desirable in an

anomaly detection setting.

An important observation is made regarding the variability in false pos-

itive regulator values of various methods. Recalling the results from

Table 4, we find high variability in the false positive regulator values of

Gaussian and Tukey detection rules. The choices for thresholds τg and τe
vary significantly with the data set considered. While τg varies between

[−15, −25], τt is found to take values between [0.11, 12,961.8]. The de-

pendence of the anomaly thresholds on the time-sequence considered limits

the applicability of such detection rules. On the other hand, the only free pa-

rameter for EVT-based detection, the probability q, does not appear to have a

significant dependence on the data set. This false positive regulator is found

to stay within the range [10−3, 10−5]. A false positive parameter with low

dependency on the data sets is highly preferred in real-world settings, thereby

strengthening the case of a detection algorithm based on EVT.

The accuracy improvement obtained by our proposed model on data

sets originating from different verticals of transportation suggests the gen-

eralization capability of the end-to-end deep learning-based EVT-LSTM

model. The model can be used in conjunction with a broad range of data

sets. Further, it requires no separate post-processing techniques, which is

a clear advantage over the popular hybrid deep learning-based anomaly de-

tection models. Our model is also unsupervised in nature and requires no

anomaly labels.

In summary, considering data sets from various verticals of transporta-

tion networks, we found that an end-to-end deep learning-based anomaly

detection algorithm holds great potential in detecting abnormal traffic in-

stances. Our proposed EVT-LSTM model accurately detected anomalous

traffic speed, vehicle occupancy, travel time, and taxi demand instances,

in addition to data sets from medical and financial domains.

7. Conclusions

We conclude with a summary of our contributions, and some avenues

for further research.

7.1. Contributions

In this study, we explored anomaly detection techniques for various

transportation based data sets such as traffic speed, travel time, vehicular

occupancy, and taxi demand, among others. Detection of anomalies can

aid Intelligent Transportation Systems by providing recommendations for

better road network and traffic management. For example, the sudden

drops in traffic speed can be indicators of road accidents. The detection of

such events can facilitate the timely intervention of officials to deal with

possible emergencies. An unusual increase in travel time may be related

to traffic congestion. These eventsmay occur even on very short timescales,

and can be utilized by the drivers to follow less congested routes. Anomaly

detection also finds applications in ride-hailing taxi services. Unexpected

spikes in the demand for taxis may be used by taxi service providers to re-

route additional drivers to meet the sudden rise in demand. Motivated by

the role of anomalous event detection in such scenarios, we developed an

end-to-end deep learning-based algorithm that performs unsupervised

and near real-time anomaly detection for transportation networks.

The key contributions of this paper are outlined below.

• We proposed a novel end-to-end deep anomaly detection algorithm for

temporal data that incorporates concepts from EVT (Extreme Value The-

ory) into the objective function of an LSTM (Long Short-Term Memory)

deep learning model.

• The proposed EVT-LSTM model does not require additional post-

processing techniques. The output network representations from our

model can be directly utilized for anomaly detection, which is a clear

advantage over the currently popular hybrid deep learning-based detec-

tion models that require separate post-processing tools.

• We observed the superior anomaly detection performance of the EVT-

LSTM model across seven diverse data sets, by comparing against

established statistical, machine learning, and hybrid deep learning base-

line models. The proposed model was able to detect true positives faith-

fully while incurring as few false positives as possible.

• Wehighlighted the need for a customized neural networkmodel in a deep

learning-based anomaly detection setting.

7.2. Avenues for future research

There are numerous avenues that merit further attention. For additional

validation of the proposed algorithm, new data sets can be introduced.

While our algorithm employs an objective function based on EVT, it

would be useful to explore other objective functions, to enhance the detec-

tion accuracy. Further, it is necessary to identify and quantify the factors

that cause anomalies. The work in (Huang et al., 2018) employs a Markov

machine to model traffic speed and volume data and use mutual informa-

tion to find the potential causes for anomalies. Correlation matrices

(Hojati et al., 2016) and decision trees (Zhang and Chen, 2019) have

been utilized to measure the impact of accidents and weather effects on

travel time. While several deep learning models have used features to im-

prove the prediction accuracy of a variable (Koesdwiady et al., 2016),

there are limited investigations on the influences of various input features

on anomalous events in deep learning-based models.
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