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Abstract — A multilevel augmentation method is considered to solve parameter iden-
tification problems in elliptic systems. With the help of the natural linearization tech-
nique, the identification problems can be transformed into a linear ill-posed operation
equation, where noise exists not only in RHS data but also in operators. Based on mul-
tiscale decomposition in solution space, the multilevel augmentation method leads to
a fast algorithm for solving discretized ill-posed problems. Combining with Tikhonov
regularization, in the implementation of the multilevel augmentation method, one only
needs to invert the same matrix with a relatively small size and perform a matrix-vector
multiplication at the linear computational complexity. As a result, the computation
cost is dramatically reduced. The a posteriori regularization parameter choice rule and
the convergence rate for the regularized solution are also studied in this work. Numer-
ical tests illustrate the proposed algorithm and the theoretical estimates.

2010 Mathematical subject classification: 35R30, 65J15, 65J22.

Keywords: Parameter Identification, Multilevel Augmentation Method, Balancing
Principle.

1. Introduction

Parameter identification problems in PDEs are typical inverse problems which are ill-posed,
as opposed to the forward problems of solving PDEs. In this paper, we consider the problem
of identifying a distributed parameter a = a(x) from noisy measurements uδ of the solution
of the boundary value problem

−∇(a∇u) = f in Ω,

u = g on ∂Ω.
(1.1)

Here Ω is a convex domain with Lipschitz boundary in the Euclidean space R
d, f ∈ L2(Ω),

and g ∈ H
3

2 (Ω), and for some fixed noise level δ, we have

‖uδ − u‖L2
6 δ.

The inverse problem above plays an important role in many scientific and industrial applica-
tions. For example, it can model the inverse ground water filtration problem of reconstruction
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350 Hui Cao, M. Thamban Nair

of the diffusivity a of a sediment from the measurements of the piezometric head u in the
steady state case.

Here we assume the existence of the exact solution a† corresponding to the unperturbed
data u. On the other hand, if a is known on the boundary of Ω and △u is bounded away
from zero, then the uniqueness of a on Ω can be also proved (see, e.g., [2]). In this paper, we
are interested in the numerical reconstruction of the parameter in the considered problem.

Although (1.1) is a linear elliptic equation, the relation between a and u is obviously
nonlinear. Meanwhile, the inverse problem of identifying a from the noisy measurements of
u is also ill-posed in the sense that arbitrarily small perturbation on u can lead to arbitrarily
large deviation in the solution a in any meaningful topology. A major cause of such an
instability is that in the process of the identification problem, data differentiation is usually
unavoidable. Therefore, a suitable regularization method has to be applied to obtain a
reconstruction with desired accuracy.

The parameter identification problem (1.1) is usually treated as a nonlinear operator
equation

F (a) = u, (1.2)

where F is a nonlinear “coefficient-to-solution” mapping, which, for example can be con-
sidered as acting from an appropriate subset of L∞(Ω) to H1(Ω). For solving a nonlinear
ill-posed problem of the form (1.2), iterative regularization methods, such as Landweber
iteration or Newton-type methods, are usually applied (see, e.g., [15,21]). The idea of these
iterative methods consist of linearizing repeatedly the nonlinear equation (1.2) around some
approximate solution obtained from the previous iterations. However, since the adjoint of
the Fréchet derivative of the nonlinear forward mapping must be calculated many times,
the above methods require a lot of numerical efforts. In [15], a linearization technique was
proposed, and it has been effectively applied in [3]. Such a linearization method is essentially
different from iterative regularization methods. It makes use of the structure of the elliptic
PDE and avoids the appearance of the adjoint operator which is usually complicated for
computational purposes. As in [3], we call the above mentioned linearization procedure the
natural linearization (NL) technique.

In this paper, for a linearized form of the parameter identification problem (1.1), we
develop a fast algorithm based on the so-called multilevel augmentation method (MAM)
which was first proposed in [8] for solving operator equations. Later the MAM algorithm
has been further investigated in [10, 11] for solving linear integral equations and ordinary
differential equations. The problems considered in the literatures mentioned above are linear
and well-posed. In [12, 13], MAM is further utilized for solving ill-posed operator equations
combined with the Galerkin method and the collocation method, respectively. MAM is an
iterative algorithm based on the multiscale structure of the discretized linear system. The
main feature of the MAM algorithm is that during the process of resolution, one only needs to
invert the same matrix with a relatively small size and perform a matrix-vector multiplication
at the linear computational complexity. In this sense, the computation cost is dramatically
reduced. We will apply the MAM algorithm combined with Tikhonov regularization and
solve the linear ill-posed operator equation obtained by the NL technique, where both the
operator and the data on the right-hand side are noisy. Moreover, for the choice of the
regularization parameter, we shall use the recently developed a posteriori parameter choice
rule based on the balancing principle (cf., e.g., [5, 19, 20]). By the balancing principle, the
regularization parameter is chosen corresponding to a simulated solution with order-optimal
accuracy. At the same time it can provide an estimate to the constant in stability bound
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A Fast Algorithm for Parameter Identification Problems 351

which indicates some accuracy of noise level in numerics. In the last section of the paper,
we present some numerical tests data to illustrate the algorithm as well as the theoretical
estimates.

2. Natural Linearization and Multilevel Augmentation Method

2.1. Reformulation of the Problem by Natural Linearization

As in [3, 15], using an initial guess a0, we can represent (1.1) as follows:

−∇(a0∇(u− u0)) = ∇((a− a0)∇u) in Ω,

u− u0 = 0 on ∂Ω,

where u0 solves
−∇(a0∇u0) = f in Ω,

u0 = g on ∂Ω.

Then a linear operator equation can be obtained:

Ās = r̄, (2.1)

where s = a − a0 is the difference between the unknown parameter a and the initial guess
a0, r̄ = u− u0, and the operator Ā maps s to the solution z of

−∇(a0∇z) = ∇(s∇u) in Ω,

z = 0 on ∂Ω.
(2.2)

Replacing u by a smoothed version uδ
sm

of uδ such that ∇(s∇uδ
sm
) is well-defined, we switch

to the equation
As = rδ, (2.3)

with perturbed operator A = A(uδ) and noisy right-hand side rδ = uδ
sm

− u0, where A maps
s to the solution z of

−∇(a0∇z) = ∇(s∇uδ
sm
) in Ω,

z = 0 on ∂Ω.
(2.4)

We notice that as long as ∇uδ
sm

, the gradient of the smoothed version uδ
sm

of noisy data
uδ, belongs to L∞(Ω), and s belongs to L2(Ω), one can always seek the solution z to (2.4)
in H1

0 (Ω), which leads to the compactness of the perturbed operator A on L2(Ω), and which
results in the ill-posedness of (2.3). Therefore, in this paper we consider Ā and A as operators
acting from L2(Ω) to itself and rely on an estimates of the form

‖r̄ − rδ‖ = ‖u− uδ
sm
‖ 6 δ and ‖Ā− A‖ 6 ε.

In general, the quantity ε can be larger than the estimate δ, i.e.,

ε≫ δ,

as the following argument shows: Note that by (2.2) and (2.4), the operator Ā − A maps
s := a− a0 to the solution z of the Dirichlet problem

−∇(a0∇z) = ∇(s∇(u− uδ
sm
)) in Ω,

z = 0 on ∂Ω.
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Now, by applying the Lax–Milgram theorem, there exists c > 0 such that

‖(Ā− A)s‖H1
0
(Ω) 6 c‖∇(s∇(u− uδ

sm
))‖H−1

0
(Ω) = c‖s∇(u− uδ

sm
)‖L2(Ω).

Thus, we obtain

‖(Ā− A)s‖L2(Ω) 6 c‖s∇(u− uδ
sm
)‖L2(Ω) 6 c‖s‖L2(Ω)‖∇(u− uδ

sm
)‖L∞(Ω).

Consequently,
‖Ā− A‖L2(Ω)→L2(Ω) 6 c‖∇(u− uδ

sm
)‖L∞(Ω).

As in [3], with additional assumptions, the above estimate can be strengthened to

‖Ā− A‖L2(Ω)→L2(Ω) 6 c‖∇(u− uδ
sm
)‖L2(Ω).

Now, due to the ill-posedness of the operation v 7→ ∇v, the quantity ‖∇(u − uδ
sm
)‖L2(Ω)

can be much larger than ‖u − usm‖L2(Ω). For example, in [3], ε = O(
√
δ). For the detailed

method to obtain uδ
sm

we refer the reader to [3, 15].

2.2. Descriptions of the MAM Algorithm

Once data mollification is completed, the operator equation (2.3) is to be solved numerically.
Since (2.3) is ill-posed, we will apply Tikhonov regularization combined with the projection
method. The Tikhonov regularized solution of (2.3) is obtained by solving the equation

αs+ A∗As = A∗rδ. (2.5)

Since the MAM algorithm and the corresponding error estimation are applicable in a
general setting, we assume, in this section, that A : X → Y is a compact operator between
Hilbert spaces X and Y . For the linearized parameter identification problem as described
in Section 2.1, we have X = Y = L2(Ω). Now let {Xn : n ∈ N} be a sequence of finite-
dimensional subspaces of X satisfying

⋃

n∈N

Xn = X,

and for each n ∈ N, let Pn : X → X be the orthogonal projection with range Xn. Then the
projected version of (2.5) can be written as

αs+ PnA
∗APns = PnA

∗rδ, (2.6)

with its solution denoted by sδα,n.
We assume that Xn ⊂ Xn+1, n ∈ N. Let Wn be the orthogonal complement of Xn−1 in

Xn, n ∈ N, that is, Xn = Xn−1 ⊕⊥Wn, where W0 := X0 and the notation ⊕⊥ stands for the
direct sum operation of two orthogonal subspaces. Thus, for any k ∈ N and ℓ ∈ N, we have
the decomposition

Xk+ℓ = Xk ⊕⊥ Wk+1 ⊕⊥ Wk+2 ⊕⊥ · · · ⊕⊥ Wk+ℓ. (2.7)

Under this settings, the solution sδα,k+ℓ ∈ Xk+ℓ to (2.6) can be represented as

sδα,k+ℓ = (sδα,k+ℓ)0 +
ℓ∑

j=1

(sδα,k+ℓ)j,

where (sδα,k+ℓ)0 ∈ Xk and (sδα,k+ℓ)j ∈ Wk+j for j = 1, . . . , ℓ.
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As in [7], we use w(i) to denote the dimension of the space Wi and assume that Wi has
a basis {wij : j ∈ Zw(i)}, where Zn := {0, 1, . . . , n− 1}. Then according to (2.7),

Xn = span{wij : j ∈ Zw(i), i ∈ Zn+1}.

Let hi := max{diam(Sij) : j ∈ Zw(i)}, where Sij is the support set of wij and diam(S)
denotes the diameter of a set S ⊂ R

d. Denoting the dimension of the space Xn by dn, we
assume the following multiscale properties:

dn ∼ µn, w(i) ∼ µi, hi ∼ µ−i/d, (2.8)

where µ > 1 is an integer. In the one-dimensional case, µ can be taken as 2, which can
be viewed as the scaling factor in the construction of the wavelet basis. For details on the
construction of such multiscale spaces we refer the reader to [9].

Now, in order to apply the multilevel augmentation to equation (2.6), we split the initial
approximate solution sδα,n into two terms as

sδα,n = sδ,Lα,n + sδ,Hα,n

with sδ,Lα,n ∈ Xk and sδ,Hα,n ∈ Wk,ℓ := Wk+1⊕⊥Wk+2⊕⊥ · · ·⊕⊥Wk+ℓ, which correspond to lower
and higher resolutions of the approximate solution sδα,n, respectively.

Defining Qn+1 := Pn+1 − Pn, n ∈ N, the MAM algorithm can be described as follows:

Algorithm for MAM.

1. Fixing initial level: For a fixed k > 0, solve (2.6) for sδα,k ∈ Xk with n = k, i.e.,

αsδα,k + PnA
∗APns

δ
α,k = PnA

∗rδ,

and set sδα,k,0 = sδα,k. For ℓ = 1, 2, . . ., suppose sδα,k,ℓ−1 ∈ Xk+ℓ−1 has been obtained,

then sδα,k,ℓ will be constructed by higher and lower resolution respectively, i.e.,

sδα,k,ℓ := sδ,Lα,k,ℓ + sδ,Hα,k,ℓ.

2. Higher resolution part: Compute

sδ,Hα,k,ℓ = α−1(Pk+ℓ − Pk)(A
∗rδ − A∗Asδα,k,ℓ−1)

i.e.,
(sδα,k,ℓ)j
︸ ︷︷ ︸

∈Wk+j

= α−1Qk+j(A
∗rδ − A∗Asδα,k,ℓ−1) for j = 1, 2, . . . , ℓ.

3. Lower resolution part: Solve

Pk(αI + A∗A)sδ,Lα,k,ℓ = PkA
∗rδ − PkA

∗Asδ,Hα,k,ℓ

for sδ,Lα,k,ℓ ∈ Xk, i.e.,

Pk(αI + A∗A) (sδα,k,ℓ)0
︸ ︷︷ ︸

∈Xk

= PkA
∗rδ − PkA

∗A
( l∑

j=1

(sδα,k,ℓ)j

)

︸ ︷︷ ︸

sδ,H
α,k,ℓ

.
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As in [12], the MAM algorithm above can be rewritten in a matrix form. Then the
iterative scheme described above can be realized by augmenting the corresponding matrices
and vectors in each iteration and due to this, the algorithm takes its name. At the same
time, if we introduce the notations

Bk,ℓ(α) := I + α−1PkA
∗APk+ℓ and Ck,ℓ(α) := α−1(Pk+ℓ − Pk)A

∗APk+ℓ,

and formally, augment sδα,k,ℓ−1 into the form

s̃δα,k,ℓ :=

[
sδα,k,ℓ−1

0

]

∈ Xk+ℓ,

then the solution sδα,k,ℓ for the next level is obtained by solving the following equation with
the augmented matrices and the corresponding vectors:

Bk,ℓ(α)s
δ
α,k,ℓ = α−1Pk+ℓA

∗f δ − Ck,ℓ(α)s̃δα,k,ℓ. (2.9)

To estimate the accuracy of the augmented solution, we need the following assumptions
for the considered inverse problem.

Assumption 2.1. The solution s = a− a0 to (2.1) belongs to the source set

Mφ,R :=
{
s ∈ X : s = φ(Ā∗Ā)w, ‖w‖ 6 R

}
, (2.10)

where φ is an ‘index function’ defined on an interval [0, b] containing the spectrum of Ā∗Ā,
which in general is operator monotone (see [16, 17]) and satisfies the conditions φ(0) = 0
and

sup
0<λ6b

∣
∣
∣

α

α + λ

∣
∣
∣φ(λ) 6 cφ(α) for all α ∈ (0, ᾱ]

for some ᾱ > 0.

It is worth pointing out that the well-known index functions related to Tikhonov regu-
larization of ill-posed operator equations are of the forms

φ(λ) = λν , λ > 0 for 0 < ν 6 1,

φ(λ) = log−p(1/λ), 0 < λ < 1 for p > 0,

which are contained in our considerations about index functions.

Assumption 2.2. For some positive constant r > 0, there exist c1 > 0 and µ > 1 such that

‖Ā(I − Pn)‖ 6 c1µ
−rn/d and ‖A(I − Pn)‖ 6 c1µ

−rn/d (2.11)

for all n ∈ N.

The above assumption is motivated by the following considerations.
If Ā is defined as in Section 2.1, then Ā∗ is given by

Ā∗ψ = ∇u · ∇ψ̃, (2.12)

where ψ̃ solves the adjoint problem

−∇(a0∇ψ̃) = ψ in Ω,

ψ̃ = 0 on ∂Ω.
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When Ā acts from L2(Ω) to L2(Ω), for every ψ ∈ L2(Ω), Ā∗ψ will be an element in H1(Ω) as
long as ∇u belongs to H1(Ω). In this case, when Pn is the orthogonal projection from L2(Ω)
onto the n-dimensional space Xn of piecewise linear continuous functions with multiscale
properties (2.8), that is, the mesh size Xn is µ−n/d, then we have

‖I − Pn‖H1
0
(Ω)→L2(Ω) 6 c̃µ−rn/d

according to the Jackson type inequality in approximation theory (cf. [1]). Then

‖Ā(I − Pn)‖ = ‖(I − Pn)Ā
∗‖ 6 ‖I − Pn‖Hr

0
(Ω)→L2(Ω)‖Ā∗‖L2(Ω)→Hr(Ω) 6 crµ

−rn/d

holds true with r = 1.
As for the second inequality in (2.11) concerning noisy operator A, one can use a similar

argument by replacing ∇u in (2.12) by ∇uδ
sm

. Then the inequality ‖A(I − Pn)‖ 6 c1µ
−rn/d

holds for some r in (0, 1), when the data mollification can guarantee ∇uδ
sm

∈ Hr(Ω).
On the other hand, while considering singular value decomposition, in particular, if the

same orthogonal system is used for the SVD of Ā and A, and the noise of operator A only
embodies in the coefficients in SVD corresponding to different frequencies, then the two
equalities in (2.11) will hold true for the same r > 0. An example in [3, Section 1] can
illustrate this when Ā and A are defined by (2.2) and (2.4) on an interval [0, 2π]. We refer
the reader to [6] for a general discussion, where noisy operators having similar properties are
considered.

3. Estimation of Accuracy

Let
s̄α = R̄αr̄ and sδα,n = R(n)

α rδ,

where
R̄α = (αI + Ā∗Ā)−1Ā∗ and R(n)

α = (αI + PnA
∗APn)

−1PnA
∗.

Then we obtain

‖s̄α − sδα,n‖ 6 ‖(R̄α −R(n)
α )r̄‖+ ‖R(n)

α (r̄ − rδ)‖ 6 ‖(R̄α −R(n)
α )r̄‖+ ε√

α
.

Hence, the proof of the following lemma is a consequence of the assumption (2.11) and
[18, Corollary 5.1].

Lemma 3.1. Under Assumption 2.2, the estimate

‖s̄α − sδα,n‖ 6
c2√
α
(ε+ µ−rn/d) (3.1)

holds.

We denote the estimate in (3.1) by γα,n, i.e.,

γα,n :=
c2√
α
(ε+ µ−rn/d),

and note that
γα,n
γα,n+1

6 σ := µr/d for n ∈ N.

The proof of the following lemma is similar to [12, Proposition 3.1]. In order to keep the
present paper self-contained, we give a brief sketch of the proof.
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Lemma 3.2. Under Assumption 2.2, there exists an integer N such that for any k ∈ N with
k > N and for any ℓ ∈ N, the estimate

‖sδα,k,ℓ − sδα,k+ℓ‖ 6 γα,k+ℓ (3.2)

holds, where sδα,k,ℓ is obtained from the MAM algorithm and sδα,k+ℓ solves (2.6) with n = k+ℓ.

Proof. From (2.6) and (2.9), we have

Bk,ℓ(α)(s
δ
α,k,ℓ − sδα,k+ℓ) = Ck,ℓ(α)(s̃δα,k,ℓ − sδα,k,ℓ). (3.3)

From the definitions of operators Bk,ℓ(α) and Ck,ℓ(α), we obtain

‖Ck,ℓ(α)‖ = ‖α−1(Pk+ℓ − Pk)A
∗APk+ℓ‖ 6 cα−1µ−rk/d

for some constant c > 0 so that

‖Ck,ℓ(α)‖ → 0, uniformly for ℓ ∈ N as k → ∞. (3.4)

Also, for any x ∈ X

‖Bk,ℓ(α)(x)‖ =
∥
∥
(
I + α−1Pk+ℓA

∗APk+ℓ − Ck,ℓ(α)
)
x
∥
∥ > (1− ‖Ck,ℓ(α)‖)‖x‖.

Therefore, there exists an integer N (depending on α) such that

‖B−1
k,ℓ(α)‖ 6

1

1− ‖Ck,ℓ(α)‖
(3.5)

for k > N . Now we can prove (3.2) by induction on index ℓ. When ℓ = 0, since sδα,k,0 = sδα,k,
estimate (3.2) holds obviously. Suppose that (3.2) holds for ℓ = m − 1, m ∈ N

∗. Recalling
the definition of s̃δα,k,ℓ, and from (3.1) and the induction hypothesis, we have

‖sδα,k+m − s̃δα,k,m‖ 6 ‖sδα,k+m − s̄α‖+ ‖s̄α − sδα,k+m−1‖+ ‖sδα,k+m−1 − s̃δα,k+m‖
6 γδα,k+m + 2γδα,k+m−1

6 (1 + 2σ)γδα,k+m.

Then in view of (3.3) and (3.5), we can obtain

‖sδα,k,m − sδα,k+m‖ 6 ‖B−1
k,m(α)Ck,m(α)‖ 6

‖Ck,m(α)‖
1− ‖Ck,m(α)‖

(1 + 2σ)γδα,k+m.

From (3.4) we notice that for fixed α > 0, when k is sufficiently large,

‖Ck,m(α)‖
1− ‖Ck,m(α)‖

6
1

1 + 2σ
,

which implies that

‖sδα,k,m − sδα,k+m‖ 6 γδα,k+m.

Thus, we have proved (3.2) for ℓ = m. This completes the proof.

Brought to you by | University of Iowa Libraries

Authenticated

Download Date | 5/24/15 1:44 PM



A Fast Algorithm for Parameter Identification Problems 357

Since in Assumption 2.1 we assume that our exact solution s belongs to the source set
Mφ,R, we obtain the estimate corresponding to the Tikhonov regularized solution s̄α as

‖s− s̄α‖ 6 c3φ(α) (3.6)

(cf. [18, Theorem 4.3.1]). Based on (3.6), together with (3.1) and (3.2), we can get the final
estimate for the regularized solution obtained by the MAM algorithm as follows.

Theorem 3.3. Under the Assumptions 2.1 and 2.2, there exists an integer N ∈ N such that
for any k ∈ N with k > N and for any ℓ ∈ N

‖s− sδα,k,ℓ‖ 6 c3φ(α) + 2c2

( ε√
α
+
µ−r(k+ℓ)/d

√
α

)

. (3.7)

4. Parameter Choice by Balancing Principle

We first choose initial level k := k(α) > N large enough such that for any l ∈ N

µ−r(k+ℓ)/d
6 ε. (4.1)

Then, in view of (3.7), we have

‖s− sδα,k(α),ℓ‖ 6 c3φ(α) +K
ε√
α
, (4.2)

where K, for example, can be taken as 4c2. Observing that the two terms in estimate
(4.2) have different monotonic properties with respect to α, and the function φ in general is
unknown, we employ an posteriori parameter choice rule based on a balancing principle. In
this adaptive strategy, we follow an extended form of the balancing principle developed in
[4, 5]. This modified principle adapts to a suitable estimate for constant K in (4.2).

To describe such a strategy, we introduce the set

∆I :=
{
αi = a0q

i : i = 0, 1, . . . , I
}
,

with α0 = ε2, q > 1 and I such that αI−1 6 1 6 αI . The regularization parameter will be
chosen from the finite set above.

For any given value of the constant K in (4.2), one can select α = α(K) by the following
adaptive rule:

α(K) = max
{

αj ∈ ∆I : ‖sδαi,k(αi),ℓ
− sδαj ,k(αj),ℓ

‖ 6 Kε
( 3
√
αj

+
1√
αi

)

, i = 0, 1 . . . , j − 1
}

.

(4.3)
Since the value of K cannot be precisely determined, we combine the adaptive strategy (4.3)
with successive testing of the hypothesis that K is not larger than some term in a fixed
geometric sequence

KM :=
{
Km = K0p

m : m = 0, 1, . . . ,M
}
, (4.4)

with p > 1. For each of these hypotheses, α = α(Km) ∈ ∆I is chosen according to the rule
(4.3), which results in a nondecreasing sequence,

α(K0) 6 a(K1) 6 · · · 6 a(Km) 6 · · · 6 a(KM).
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We further assume a two-sided stability bound

p̃K
ε√
α

6 ‖s̄α − sδα,k(α),ℓ‖ 6 K
ε√
α

(4.5)

for some p̃ ∈ (0, 1) and for any α ∈ ∆I , where s̄α is defined in Lemma 3.1. At the same time,
we require that the testing set (4.4) is designed in such a way that there are two adjacent
terms Km̄, Km̄+1 ∈ KM such that

Km̄ 6 p̃K < K 6 Km̄+1, (4.6)

which means that the term Km̄+1 with an unknown index m̄+1 is the best candidate for the
estimate to K among the elements in KM . Then, as in [5], one can show when Km is strictly
smaller than the unknown lower bound Km̄ in (4.6), i.e., m 6 m̄− 1, then α(Km) is smaller
than a threshold determined by α0 and p. Therefore, we have the following proposition.

Proposition 4.1. Let assumptions (4.5) and (4.6) hold, and let

α(Km̃) := min
{

α(Km) : α(Km) 6 9α0

(p2 + 1

p− 1

)2

, m = 0, 1, . . . ,M
}

.

Then either m̃ = m̄ or m̃ = m̄+ 1.

In order to guarantee the regularized solution stable enough, the final choice of parameter
α given by the balancing principle is

α+ = α(Km̃+1).

Theorem 4.2. Under assumptions (4.5) and (4.6), the estimate

‖s− sδα+,k(α+),l‖ 6 6p2
√
qc3φ(θ

−1(Kε)) (4.7)

holds, where θ(λ) := c3φ(λ)
√
λ.

Proposition 4.1 and Theorem 4.2 can be proved by taking the additional parameter κ as
1 in the counterparts in [5] or fixing the stability exponent ν as 1/2 in [4].

Theorem 4.2 suggests that α+ renders a regularized solution sδα+,k(α+),ℓ with order optimal
accuracy. At the same time, we obtain Km̃+1 as a reliable estimate to constant K. If the
index function φ in source condition (2.10) is taken as φ(λ) = cλν , 0 < ν 6 1, then one
can prove that, under the parameter chosen by the balancing principle, the estimate (4.7)
coincides with the classical rate for Tikhonov regularization,

‖s− sδα+,k(α+),l‖ 6 cε
2ν

2ν+1 .

5. Numerical Tests

In this section, we present numerical test results for two examples given in [14] to illustrate
the results of the above sections. Here we use MATLAB-code in the one-dimensional case,
where Ω = (0, 1), and the equations in (1.1) remain as

(aux)x = 0 in (0, 1), u(0) = 0, u(1) = 1.

We fix initial guess a0 ≡ 1, which implies u0(x) = x.

Brought to you by | University of Iowa Libraries

Authenticated

Download Date | 5/24/15 1:44 PM



A Fast Algorithm for Parameter Identification Problems 359

Example 5.1.

a(x) =

{

1 + 1
3
sin2(π x−0.5

0.2
) if x ∈ [0.3, 0.7],

1 otherwise.

u(x) =







x
1−0.2(2−

√
3)

if x ∈ [0, 0.3],

0.3+ 0.2
√
3

2π

(

arctan(
√
3 tan(π

2

x−0.5
0.2

))+arctan( 1√
3
tan(π

2

x−0.5
0.2

))+π
)

1−0.2(2−
√
3)

if x ∈ [0.3, 0.7],

x−0.2(2−
√
3)

1−0.2(2−
√
3)

if x ∈ [0.7, 1],

Example 5.2.

a(x) =

{

1 + sin(π
2
x−0.5
0.45

+ 1) if x ∈ [0.05, 0.95],

1 otherwise.

u(x) =







x
1−0.45(2− 4

π
)

if x ∈ [0, 0.05],

0.05+ 0.9
π

(tan(π
4

x−0.5
0.45

))

1−0.45(2− 4

π
)

if x ∈ [0.05, 0.95],

x−0.45(2− 4

π
)

1−0.45(2− 4

π
)

if x ∈ [0.95, 1],

In fact, for this special case, since a0 ≡ 1, the implicit definition of operator A in (2.4)
can be rewritten in an explicit way as

(As)(x) = −
∫ x

0

s(t)(uδ
sm
(t))′dt+ x

∫ 1

0

s(t)(uδ
sm
(t))′dt

so that the considered numerical tests have a similar feature to the Volterra integral equation
of the second type. For this reason, we take the same wavelets basis functions as in [8,11,12].
In this setting, we choose basis functions for the X0 as

w00(t) = 2− 3t and w01(t) = −1 + 3t,

and basis functions for the space W1 as

w10(t) =

{

1− 9
2
t if t ∈ [0, 1

2
],

−1 + 3
2
t if t ∈ [1

2
, 1],

and w11(t) =

{
1
2
− 3

2
t if t ∈ [0, 1

2
],

−7
2
+ 9

2
t if t ∈ [1

2
, 1].

Then Wi, i = 2, 3, . . . , n can be recursively constructed. In the tests, we put additional
noise directly to the right-hand side r of the linearized equation, i.e., we construct rδ = r+δξ,
where ξ has uniformly distributed random values with ‖ξ‖ 6 1 and δ = ‖r‖δ̃ with δ̃ = 0.05
or 0.1. The data mollification is done by piecewise linear interpolation. As in [3], we have
the noise level ε ∼

√
δ. The test results are summarized in Tables 1 and 2.

From the results obtained in Section 3 and 4, one can find that the suitable initial level
k for the MAM algorithm depends on α. When α increases, the corresponding regularized
problem becomes more stable and correspondingly k can be chosen relatively smaller. How-
ever, by far there are no theoretical results suggesting specific (quantized) relations between
k and α. In the numerical test, we fix the initial level as k = 16 and k = 32. In these
cases, one can observe that the simulated solutions sδα,k,ℓ obtained by MAM methods have

Brought to you by | University of Iowa Libraries

Authenticated

Download Date | 5/24/15 1:44 PM



360 Hui Cao, M. Thamban Nair

δ̃ k ℓ ‖s− sδα,k,ℓ‖ ‖s−sδα,k+ℓ‖ α+ K

5%
16

48 0.0560 0.0561 0.017 17.44
112 0.0495 0.0492 0.0012 2.14

32
32 0.0262 0.0260 3× 10−4 23.23
96 0.0212 0.0190 2× 10−4 0.67

10%
16

48 0.0613 0.0612 0.0023 10.83
112 0.0627 0.0625 0.0025 1.21

32
32 0.0480 0.0479 0.0011 0.47
96 0.0478 0.0477 0.011 0.51

Table 1. Test results for Example 5.1.

δ̃ k ℓ ‖s− sδα,k,ℓ‖ ‖s−sδα,k+ℓ‖ α+ K

5%
16

48 0.0036 0.0034 0.0079 1.74
112 0.0030 0.0028 0.0072 2.55

32
32 0.0022 0.0022 0.0034 6.80
96 0.0020 0.0020 0.0042 2.38

10%
16

48 0.0040 0.0038 0.0096 0.90
112 0.0046 0.0044 0.0106 1.31

32
32 0.0039 0.0037 0.0097 1.85
96 0.0088 0.0088 0.0194 0.51

Table 2. Test results for Example 5.2.

very slight differences with sδα,k+ℓ, which verifies the estimation in Lemma 3.2. On the other
hand, in the calculations of MAM, one only needs to invert a stiff matrix with size deter-
mined by initial level k = 16 or k = 32, instead of a large matrix with size k + ℓ = 64 or
k + ℓ = 128 obtained by direct discretization. The remaining computations in the MAM al-
gorithm are the multiplications of matrices and vectors, which are well-posed. In this sense,
the computational cost is dramatically reduced. Besides the numerical illustration presented
in this paper, the MAM algorithm will become more instructive when higher dimensional
numerical applications are considered.

During the process of the parameter choice balancing principle, we can also obtain an
estimate Km̃+1 of constant K in (4.2) in an adaptive way. From (4.1) and (3.7), one can find
that K combines the influence of both initial noise level and discretization level. Therefore,
it varies with quantities δ (δ̃), k and ℓ. The variation of K has also been detected by the
balancing principle as shown in Tables 1 and 2.

Figure 1 shows one of the best simulations to coefficient a(x) in Example 5.1 with k = 32,
ℓ = 96 and α+ = 2× 10−4.
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Figure 1. A simulated solution s
δ
α,k,ℓ + a0 in Example 5.1 with δ̃ = 5%, k = 32, ℓ = 96 and α+ = 2× 10−4.
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