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In this study, an immersed boundary method developed for compressible

viscous flows (Ramakrishnan, R., Girdhar, A., & Ghosh, S. (2016). Immersed

Boundary Methods for Compressible Laminar Flows) is modified to improve

their stability and robustness. The embedded object is represented as a set of

line segments in two dimensions with their outward unit normal vectors

specified. A forcing method that leverages the finite volume approach is

used, wherein the solution at the cell interfaces that lie near the boundaries

of the embedded solid is reconstructed to implicitly satisfy boundary conditions

at the immersed surface. The proposed immersed boundary method is

validated for transonic inviscid flow past a bump in a channel, supersonic

flow past a circular cylinder, transonic viscous flow past a NACA0012 airfoil,

and supersonic viscous flow past a circular cylinder. The results are compared

with simulations from the literature using contours of flow properties, surface

pressure, or Mach number plots and show good agreement.
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1 Introduction

Immersed boundary methods (IBMs) are a class of computational schemes that

employ (generally) Cartesian grids, with the embedded surface past the flow which is

to be determined rendered using a separate meshed or mesh-less entity, for instance,

as a cloud of points (Choi et al., 2007). Immersed boundary methods gained

importance because of their ability to handle complex geometries and moving

body problems with relative ease compared to grid conforming methods. This

method was initially proposed by Peskin (1972), Peskin (1977), and Peskin and

McQueen (1989) and was used to simulate the flow past heart valves. Peskin’s idea was

to incorporate the effect of the body, which was treated as massless and elastic, onto

the nearby fluid cells by using a problem-specific compactly supported forcing

function. However, the effect of such a forcing, referred to as continuous forcing,

is that the boundary appears to be smeared. Although the idea proposed by Peskin

(1972) was designed for flexible immersed boundaries, the same approach has been
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used by Goldstein et al. (1993), by using feedback forcing, to

implement the desired boundary conditions for almost rigid

boundaries. Another method was proposed by Mohd-Yusof

(1997) wherein the forcing term is determined by the

difference between the interpolated velocity at the

boundary point and the desired boundary velocity. Fadlun

et al. (2000) extended the same to solve unsteady three-

dimensional incompressible flows. The method proposed by

Mohd-Yusof (1997) and extended by Fadlun et al. (2000) is

commonly known as the direct forcing method (one of the

sharp interface methods), in which the boundary condition is

enforced directly through the reconstruction of the velocity

and pressure field in the fluid cells near the immersed

boundary without explicit evaluation of a forcing term.

Various other immersed boundary formulations have been

devised subsequently using the direct forcing approach (Kim

et al., 2001; Uhlmann, 2005). The ghost-cell-based immersed

boundary (GCIB) method (Tseng and Ferziger, 2003; Gao

et al., 2007; Mittal et al., 2008; Berthelsen and Faltinsen, 2008;

Chi et al., 2017) is one of the direct forcing approaches

wherein one or multiple layers of the interior cell(s) near

the IB surface are reconstructed to enforce specific boundary

conditions. In contrast to the other direct forcing methods, as

mentioned earlier, no forcing function is used. In the recent

past, a sharp interface method using a finite volume approach

and the constrained moving least-squares method (CMLS) for

interpolating the boundary values was proposed by Qu et al.

(2018). Along similar lines, a ghost-point immersed boundary

method for a compressible fluid flow regime, using high-order

summation-by-parts (SBP) difference operators was proposed

by Ehsan Khalili et al. (2018) in which bi-linear interpolation

was used. A level set approach was used by Chi et al. (2017) to

determine the image point of the ghost cells further away from

the surface to attain a higher order of accuracy through

extrapolation/interpolation. In this ghost-cell-based

approach, emphasis was made on the sensitivity of the

location of the image point on the solution.

Extensive work has been carried out in the incompressible

flow regime using immersed boundary methods. However, the

development of sharp interface immersed boundary methods

for compressible flows was relatively less in the early years of

development in this field, as discussed by Ghosh and Anand

Bharadwaj (2020), with the earliest method proposed by De

Palma et al. (2006). In this work, an all-speed formulation was

presented using the direct forcing approach proposed by

Fadlun et al. (2000). Subsequently, Ghias et al. (2007)

developed a ghost-cell IBM for subsonic compressible

flows, which could be used for both Cartesian and general

curvilinear meshes. In the same year, de Tullio et al. (2007)

presented a Cartesian grid-based IB for compressible

turbulent flows in which they used a local grid refinement

(LGR) strategy. Edwards et al. (2010) extended the IB method

by Choi et al. (2007) to compressible flows on generalized 3D

curvilinear grids. In order to improve mass conservation, the

authors also integrated continuity equations to solve for

density in the immediate neighborhood of the surface,

while the other variables were reconstructed (forcing) by

interpolation. More recently, Brehm et al. (2015) presented

a second-order accurate IBM suitable for compressible viscous

flows with improved stability on Cartesian grids. The method

improves the stability by investigating the finite difference

coefficients involved in the solution reconstruction at the

irregular fluid nodes in the immediate (external)

neighborhood of the IB.

Although boundary conditions are implicitly satisfied in

immersed boundary methods either by direct reconstruction

of the solution in the neighborhood of the immersed boundary

(Fadlun et al., 2000) or the more indirect method of

momentum forcing (Mohd-Yusof, 1997), the lack of mass

conservation is an issue that affects all approaches (Kim et al.,

2001). Attempts in the literature to fix this have included the

addition of mass source/sink terms (Kim et al., 2001), using a

cut cell approach for improving geometric conservation (Seo

and Mittal, 2011) or solving the discretized continuity

equation to obtain the density in the cells neighboring the

immersed boundary (where the velocity is reconstructed)

(Ghosh et al., 2010). Another interesting approach by

Capizzano (2007) first proposed the use of a solution

forcing at the cell face shared by a fluid IB cell and a solid

IB cell, termed the IB face, that makes use of the finite volume

framework and solves the Euler equations to evolve the

solution in the fluid IB cells. This allows the integration of

the discretized equations in all the fluid cells, thus allowing

better adherence to the conservation of mass, momentum, and

energy. The solution is reconstructed at the face center of the

IB face by linearly interpolating the nearby fluid cell data and

satisfying the boundary condition at the IB. The direction of

interpolation is along the line joining the face center to the

fluid cell center perpendicular to the interface. The same

methodology of face-based reconstruction was extended to

viscous flows in Capizzano (2011); the difference is that the

direction of interpolation is along the wall normal of the IB

surface. Subsequent use of solution forcing at the cell face has

been adopted by Takahashi et al. (2014) and Ramakrishnan

et al. (2016) among others.

The present work builds on a finite volume-based immersed

boundary method by Ramakrishnan et al. (2016) that uses face-

based forcing in the neighborhood of the immersed surface. The

immersed boundary is rendered as a set of line segments. The

basic idea presented by Ramakrishnan et al. (2016) was to

reconstruct the data at the face center shared by an interior

cell and fluid cell using the immediate fluid cell data

(Ramakrishnan et al., 2016). However, this resulted in a

situation wherein the solution stability was sensitive to the

relative location of the cell face (where solution forcing is

performed) to the immersed boundary. To overcome this
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deficiency, the reconstruction methodology proposed in

Ramakrishnan et al. (2016) is reworked to attain robust and

locally second-order accurate velocity forcing for the immersed

boundary method. The modified and relatively robust algorithm

for face reconstruction is explained in the following sections.

The proposed IB method is integrated into an in-house finite

volume solver named Finite-Volume Explicit STructured 3-

Dimensional (FEST-3D) (Sandhu et al., 2020). This solver

discretizes the variable density, 3D Navier–Stokes equations to

simulate compressible laminar flows, and Favre-averaged

Navier–Stokes equations for compressible turbulent flow. The

IB method being proposed has been formulated for 2D

compressible laminar flows. At present, the IBM will be used

for flow control studies at low Re and compressible Mach

numbers. Further extension(s) will be focused on improving the

geometric conservation of the method, modifying solution forcing

for application to moving boundary simulations and turbulent

flows.

The rest of the study is structured as follows: governing

equations and an overview of the flow solver used are discussed in

Section 2; details of the proposed immersed boundary method

are discussed in Section 3, and the results of the test cases are

presented in Section 4; finally, conclusions are presented in

Section 5.

2 Computational framework

In this work, the Navier–Stokes equations are discretized

using a finite volume method and solved on structured grids. The

governing equations and an overview of the solver are briefly

discussed in this section.

2.1 Governing equations

The governing equations used in the finite volume solver for

laminar flows on structured grids are presented here. The mass,

momentum, and energy conservation laws for the compressible

fluid flow in conservative differential form are

z �qc
zt

+ ∇ · �FI − �FV( ) � 0. (1)

In the aforementioned equation, �FI constitutes the inviscid

fluxes, and �FV constitutes viscous fluxes. The vector �qc
consists of the conservative variables which includes mass,

momentum, and energy per unit volume.

�qc �

ρ
ρu
ρv
ρw
ρEt,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2)

�FI �

ρu
ρu2 + p
ρuv
ρuw
ρuHt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠nx +

ρv
ρuv

ρv2 + p
ρvw
ρvHt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ny +

ρw
ρuw
ρvw

ρw2 + p
ρwHt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠nz, (3)

�FV �

0
txx
txy
txz

utxx + vtxy + wtxz − qx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠nx

+

0
txy
tyy
tyz

utyx + vtyy + wtyz − qy

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ny

+

0
tzx − τzx
tzy − τzy
tzz − τzz

utzx + vtzy + wtzz − qz

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠nz. (4)

In the aforementioned equations, u, v, and w are the Cartesian

components of velocity along the X, Y, and Z directions,

respectively, ρ is the fluid density, p is the fluid pressure, and

Ht is the total specific enthalpy. Also, ~̃t is the laminar stress

tensor, and �q is the laminar heat flux. The quantities nx, ny, and nz

are the projections of the cell face area (vector) along the X, Y,

and Z axes, respectively. In order to close the equations, the

equation of state for an ideal gas is used as follows:

P � ρRT, (5)

where R is the specific gas constant for air.

2.2 Flow solver

FEST-3D (Sandhu et al., 2020), an in-house developed

parallel code for structured grids based on a finite volume

framework, is used. The capabilities of this solver range from

laminar to turbulent regimes comprising various spatial and

time-discretization schemes. In the present work, the solver is

run with the advection upstream splitting method (AUSM) (Liou

and Steffen, 1993), which is an upwind scheme, for inviscid flux

calculation, MUSCL for second-order reconstruction (spatial) as

presented in Hirsch (2007), and preconditioned LUSGS

(Kitamura et al., 2011)/RK4 for time integration. The use of

upwind schemes for inviscid flux formulation with MUSCL

reconstruction can be seen in the works of Hartmann et al.

(2009), Tamaki and Imamura (2018), Qu et al. (2018), Anand

Bharadwaj and Ghosh (2020), and Luo et al. (2006). All the

simulations presented in this work are 2D computations.

Molecular viscosity is modeled with Sutherland’s law, and a

laminar Prandtl number of 0.72 is used for air. The scope of

the work presented in this study is specific to laminar and two-

dimensional flows.
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3 Immersed boundary method

The IBM presented in this work uses face-based solution

forcing as first proposed by Capizzano (2007) for inviscid flows

and later extended to viscous flows (Capizzano, 2011) in the

compressible regime. This idea of face-based reconstruction

allows developing the flow solution through the solution of

the discretized Navier–Stokes equations for all the fluid cells.

Details of the method are discussed in the following subsections.

3.1 Cell classification

As mentioned in Ramakrishnan et al. (2016), the immersed

boundary is represented by a set of line segments, wherein an

outward normal is also specified along with the coordinates of its

endpoints. The cells in the entire domain are classified as field

cells (white), band cells (blue), and interior cells (red) based on

the distance of their centers with respect to the immersed surface

determined using a signed distance approach, as shown for a

NACA0012 airfoil in Figure 1. In addition, the cell faces shared

by a band and field cell are designated as band faces.

The solution at the band faces is then reconstructed (solution

forcing) to implicitly obey the desired boundary conditions at the

immersed surface. Specifically, the boundary conditions

considered for velocity forcing are no-slip and no-penetration

conditions for viscous flows and only no-penetration

conditions for inviscid flows. The variable reconstruction at

the band face center is performed by first constructing an

interpolation point normal to the immersed surface, as

discussed as follows. This is different from the approach

adopted in the work of Ramakrishnan et al. (2016),

wherein only the solution at the nearest field cell to the

band face was used for the solution reconstruction at the

band face. The modification in the solution forcing approach

was carried out to avoid the dependence of the forcing

method on the relative location of the band face center

with respect to the immersed surface, as required in the

previous method. The velocity reconstruction strategy

adopted in Ramakrishnan et al. (2016) is described as

follows for the benefit of the reader.

3.2 Velocity reconstruction: Early effort

This section describes the velocity reconstruction methodology

proposed by Ramakrishnan et al. (2016), which is henceforward

referred to as IBM(A). This velocity forcing at the band face is

loosely based on the boundary conditions applied at ghost cells

adjacent to walls in finite volume solvers on body-fitted grids. The

reconstruction for the slip- and no-slip wall is outlined as follows.

3.2.1 Slip wall
The velocity reconstruction for the slip-wall case is as follows:

�uface � �uF − 1 −
dface

dF

( ) �uF.n̂IB( )n̂IB, (6)

dface � min 0, dface( ). (7)

Here, �uface refers to the velocity at a band-face center, �uF is the

velocity at the field cell center adjacent to the band face, and

n̂IB is the outward normal vector to the IB line segment closest

to the band face. Also, dface and dF are the minimum distances

from a band face center and its adjacent field cell center,

respectively, to the IB line segment nearest to the band face, as

shown in Figure 2. As mentioned in the work by

Ramakrishnan et al. (2016), when the band face center lies

FIGURE 1

Cell classification.
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within the immersed boundary as shown in (Figure 3), this

formulation tends to become unstable, and hence, a limiter

was used (Eq. 7). However, as shown subsequently in this

work, the method with the limiter still shows grid sensitivity,

which is undesirable.

3.2.2 No-slip wall
The velocity reconstruction for the no-slip wall case

(Ramakrishnan et al., 2016) is as follows:

�uface �

�u‖F
dF

+
�u‖IB
dIB

1
dF
+ 1

dIB

, (8)

where

�u‖F � �uF − �uF.n̂IB( )n̂IB (9)

and

�u‖IB � �uIB − �uIB.n̂IB( )n̂IB. (10)

An inverse distance-based approach is used for the parallel

component of velocity, whereas the perpendicular component

of the velocity was considered zero (Ramakrishnan et al., 2016).

The parallel and perpendicular directions considered are with

respect to the nearest IB line to the band face. Here, �uface and �uF

are as defined in the previous section, and �uIB refers to the

velocity of the IB, which is zero for stationary boundaries.

The present work aims to avoid the use of any ad hoc limiting

used in the aforementioned formulation (Eq. 7) for slip-wall cases

and also presents a no-slip wall formulation that accounts for the

perpendicular component of the velocity. A fix provided in the

work by Rangan and Ghosh (2021) that avoids the use of the

limiter led to the use of non-local forcing for some “band” faces

and associated complexities with different treatments of band

faces based on their relative location to the immersed boundary.

In addition, the present formulation is devised such that the

interpolation stencil used includes more number of cells than

that used by Rangan and Ghosh (2021). The proposed

formulation is explained in the following section(s).

3.3 Determination of the interpolation
point

In this work, we construct an interpolation point on the line

passing through the band-face center and normal to the nearest

immersed surface (line segment). The distance of the interpolation

point from the solution forcing point (which can be a face center or

cell center) is often fixed for the entire domain as a function of local

grid spacing(s) (Chi et al., 2017) or a fixed value as in the study by

Capizzano (2011). In this work, however, to determine the position

of the interpolation point, an interpolation stencil of nine cells is

constructed, which consists of the field cell that has the band face

and its eight neighbors. This ensures that more number of field

cells are used in interpolating the primitive variables at the

interpolation point. An inverse distance approach proposed by

Ghosh et al. (2010) is then used to first determine the location of

the interpolation point.

To do this, the perpendicular distances of the field cell centers

from the line passing through the band face center and normal to

the nearest IB line segment (for instance, dpi
), as shown in Figure 4,

are determined. Using the inverse of these distances as weights and

FIGURE 2

Distance nomenclature for the slip wall case.

FIGURE 3

Distance nomenclature for the no-slip wall case.
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the distance along the line (for instance, dni) as the variable, the

distance of the interpolation point from the band face center along

the line is determined. Finally, the primitive variables are also

interpolated at the interpolation point based on the same

algorithm by using the nearby fluid cell data.

The formulation is as shown as follows, wherein k is the total

number of field cells in the 3 × 3 stencil considered. Here, dn,IP is

the distance of the interpolation point from the band face center

along the normal line; ϕIP and ϕi are scalars (velocity

components, pressure, and density) at the interpolation point

and the field cell centers in the stencil, respectively.

dn,IP �
∑k

i�1widni∑k
i�1wi

, (11)

ϕIP �
∑k

i�1wiϕi∑k
i�1wi

, (12)

wi �
1

dpi

, i � 1: k.

3.4 Solution reconstruction at the band
face center

The basic idea here is to reconstruct the state at the band face

such that the presence of the immersed boundary is “felt” by the

rest of the flow. This is carried out by using the state (or some

gradient information) of the flow variable at the immersed

boundary and the data reconstructed at the interpolation point.

3.4.1 Velocity reconstruction–slip wall
For the reconstruction of the velocity at any band face, the

velocity vector is split into components parallel and

perpendicular to the nearest immersed surface. The velocity

vector at some arbitrary point (ξ) in the neighborhood of the

immersed surface is split into components shown as follows.

�uξ � �u‖,ξ + �u⊥,ξ ,

where

�u⊥,ξ � �uξ · n̂IB( )n̂IB
and

�u‖,ξ � �uξ − �u⊥,ξ .

Here, n̂IB is the unit vector drawn at a band face center along the

line normal to the nearest immersed surface.

For the slip wall, the parallel component of the velocity at the

band face is kept the same as the parallel component at the

interpolation point, and the perpendicular component of the

velocity is linearly interpolated to satisfy no penetration

boundary condition on the IB surface. Thus,

�u‖face � �u‖IP, (13)

�u⊥face �
dface

dIP

�u⊥IP. (14)

This leads to the following equation for the velocity vector at the

band face for the slip-wall case:

�uface � �uIP − 1 −
dface

dIP

( ) �uIP · n̂IB( )n̂IB. (15)

3.4.2 Velocity reconstruction–no-slip wall
In the case of the no-slip wall, both the parallel and

perpendicular components of the velocity on the IB surface

should be zero. To achieve the same, a linear interpolation of

the velocity components along the normal line is considered in

this case to determine the solution forcing at the band face shown

as follows.

�uface �
dface

dIP

�uIP. (16)

FIGURE 4

Stencil for the determination of the interpolation point.
FIGURE 5

Schematic representation showing the distances used in face

reconstruction.
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A point to note is that the distances considered for the velocity

reconstruction, in Eqs. 15, 16, are signed distances. The same is

shown in Figure 5.

3.4.3 Pressure and density reconstruction
Both the pressure and density at the face are set equal to

the values at the fluid cell that shares the band face. This

enforces the adiabatic wall boundary condition at the

immersed surface.

pface � pF,

ρface � ρF.

3.4.4 Gradient at band faces
Since the primitive variables are reconstructed at the band

face center, gradients are to be updated accordingly using the

reconstructed band-face data. For viscous flows, the gradients at

band faces are recomputed for the velocity components and

temperature. The gradient is constructed as

�∇ϕ �
2 ϕF − ϕface( )
0.5 VF + VB( )

Afacen̂face, (17)

ϕ � u, v, T.

VF = Volume of the field cell

VB = Volume of the band cell

Here, the direction of the normal vector n̂face is from the

band-face center to the field cell center.

3.4.5 Higher-order spatial reconstruction
Implementation of higher-order data reconstruction at

the cell faces near the immersed boundary needs some

attention. This is so, as reconstruction at the faces using a

second- or higher-order method uses at least the two

adjacent cell data for any interface. This can pose a

problem in IB methods since not all the cells contain

physically correct data. In the present method, higher-

order reconstruction at a cell face opposite to a band face

requires the use of interior cell data, which needs to be

addressed. In this work, we revert to first-order data

FIGURE 6

Standard stencil used for MUSCL (A) and MUSCL with the IBM (B).

TABLE 1 Summary of test cases.

Body Reynolds number Mach number Flow type

Bump in a channel − 0.675 Transonic inviscid flow

Cylinder − 3 Supersonic inviscid flow

NACA0012 500 0.8 Transonic viscous flow

Cylinder 300 2 Supersonic viscous flow

FIGURE 7

Schematic representation of the domain with boundary

conditions indicated: transonic flow over bump in a channel.
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reconstruction at such cell faces. To illustrate the same, the

schematics shown in Figure 6 are considered. To reconstruct

the data at face (i + 1
2
), the solution at the cells on either sides

of the face is considered in general. However, for the present

IB method, as shown in Figure 6, reconstructing the data at

(i + 1
2
), L would require at least the adjacent band cell (i − 1)

and possibly also the interior cell (i − 2) data, which is not

appropriate. Hence, first-order reconstruction is adopted in

this case.

Standard MUSCL reconstruction (Hirsch, 2007) is

mentioned in Eqs 18 and 19, wherein the left and right

states of a face are reconstructed using three adjacent cells.

Here, ϕ is a higher-order switch, κ is a parameter that

determines the order of the accuracy of the reconstruction,

and ψ is the limiter function that limits the solution gradients

to prevent oscillations in the solution. However, in the present

IBM, the MUSCL algorithm is implemented as per Eqs 20 and

21 at the i + 1/2 interface (shown in Figure 6) to avoid using

any interior cell data. This reduces the order of accuracy of

reconstruction to first order at these faces.

qLi+1
2
� qi +

ϕ

4
1 − κ( )ψ

Δiq

∇iq
( )∇jq + 1 + κ( )ψ

∇iq

Δiq
( )Δjq[ ], (18)

qRi+1
2
� qi+1 +

ϕ

4
1 + κ( )ψ

Δiq

∇iq
( )∇jq + 1 − κ( )ψ

∇iq

Δiq
( )Δjq[ ],

(19)

qLi+1
2
� qi, (20)

qRi+1
2
� qi+1 +

ϕ

4
1 + κ( )ψ

Δiq

∇iq
( )∇jq + 1 − κ( )ψ

∇iq

Δiq
( )Δjq[ ],

(21)

where

Δiq � qi+1 − qi,

∇iq � qi − qi−1,

q � ρ, u, v, w, P[ ].

FIGURE 8

Non-uniform mesh used for transonic flow over a bump in a

channel of size (192 × 64) in x and y directions, respectively

(alternate grid lines are shown in both directions for clarity); IB

shown by the yellow line.

FIGURE 9

Pressure contour comparison for transonic flow over a bump using the present IBM and IBM(A). The present IBM (top) and IBM(A) (bottom); grid

size: 130 × 42 (left) and 180 × 64 (right).
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4 Results and discussion

The performance of the proposed IBM is assessed on the

test cases listed in Table 1 by comparing it with the results

from the existing literature. These include two transonic and

two supersonic cases. For all the cases, Cartesian grids have

been used. However, first, the performance comparison of the

method in Ramakrishnan et al. (2016) and the present IBM is

evaluated for flow past a bump in a channel. The

computations are carried out on two grid sizes to

investigate whether the grid size affects the stability of the

algorithms.

4.1 Bump in a channel

This test case simulates the inviscid transonic flow past a

bump in a channel. The channel is 3.0 m long and 1.0 m in

height. The bump is located halfway along the length of the lower

wall. The thickness-to-chord ratio of the bump is 10%.

This internal flow test case was performed on a structured

body-fitted grid by Favini et al. (1996), and the solution is

compared with the same work. This simulation is carried out on

grids with dimensions 130 × 42 and 180 × 64, for comparison of

the present method with that presented in Ramakrishnan et al.

(2016), and a sequence of successively refined grids 48 × 16,

96 × 32, 192 × 64, and 384 × 128 in the x and y directions,

respectively, with clustering near the ends of the bump and

minimum grid spacing—Δxmin = Δymin = 0.005 m for the 192 ×

64 grid—same as in Kumar et al. (2020). The inlet Mach

number, pressure, and temperature are equal to 0.675, 1.0e5

Pa, and 300 K, respectively.

Boundary conditions applied are shown in Figure 7. The non-

uniform mesh is shown in Figure 8 with the IB rendered as a yellow

FIGURE 10

Mach number distribution on the upper and lower walls for transonic flow over a bump. (A) Different grid levels using present IBM. (B) Present

IBM with Favini et al. (1996).

FIGURE 11

Pressure contours using the present IBM (A) and CUS-IBM

(Kumar et al., 2020) (B) for the transonic flow over a bump.
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curve. The pressure contours obtained using the IBM from

Ramakrishnan et al. (2016), referred to henceforward as IBM(A),

and the present IBM are compared in Figure 9.

The contours indicate that both the IBM(A) and the

proposed IBM produce similar results with the 130 ×

42 grid. However, as the number of grid points is increased

to 180 × 64, the solution using IBM(A) becomes non-physical

whereas the present IBM generates physically correct results.

It is to be noted that this incorrect behavior of the

IBM(A) is present in spite of using the limiting

function Eq. 7. Without the limiting function, the solution

diverges.

The solution convergence with grid refinement can be

observed from the surface plots of the Mach number in

Figure 10A with the 192 × 64 grid and 384 × 128 grids

having virtually identical surface Mach number distribution.

Also, as shown in Figure 10B, the Mach number plots along

the lower and upper surfaces of the domain (192 × 64) show

TABLE 2 Summary of the quantitative comparison of specific quantities obtained using the proposed IBM with the literature.

Test case Quantity Proposed IBM Literature Reference

Bump (Section 4.1) Exit Mach number (top) 0.687 0.670 Favini et al. (1996)

Exit Mach number (bottom) 0.601 0.615

Cylinder (Section 4.2) Stagnation pressure (× 1e5 Pa) 12.391 12.462 Analytical value

NACA0012 (Section 4.3) cl 0.4317 0.4363 Swanson and Langer (2016)

cd 0.2679 0.2752

Cylinder (Section 4.4) cd 1.5205 1.5265 Takahashi et al. (2014)

FIGURE 12

Schematic representation of the domain with boundary

conditions indicated (A) and near-view of the grid showing every

other pair of grid lines (B); IB shown by the yellow line.

FIGURE 13

Comparison of the pressure coefficient; X-axis represents the azimuth anglemeasured clockwise from the leading edge. (A)Different grid levels

using present IBM. (B) Present IBM with Kumar et al. (2020).
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overall excellent agreement with the results obtained by Favini

et al. (1996).

Figure 11 shows the pressure contour plots for the present

computations and the CUS-IBM (Kumar et al., 2020) solution on

the 192 × 64 grid. The shock structure and location show good

agreement between the solvers, with the present solver producing

a somewhat smeared shock foot.

The exit Mach number is probed at the lower and upper

surfaces (listed in Table 2) and is compared against the body-

fitted grid values obtained by Favini et al. (1996). The percentage

errors for the lower and upper surfaces are 2.3 % and 2.54%,

respectively.

4.2 Inviscid supersonic flow past a circular
cylinder

This is an external flow computation of flow over a cylinder.

A supersonic flow ofMinlet = 3, Pinlet = 103320 Pa, and T = 300 K

over a half-cylinder is simulated. The computational domain is

[ −1 m, 0 m] × [ −2 m, 2 m]. The cylinder is centered at (0 m,

0 m) with a radius of 0.5 m.

Uniform Cartesian grids are chosen with grid sizes 50 × 200,

100 × 400, and 200 × 800 along the x and y directions,

respectively, which are the same as reported in Kumar et al.

(2020). A symmetry or slip-wall boundary condition is used for

the top and bottom boundaries as the flow is expected to be

parallel near these boundaries, with the bow shock exiting the

right boundary. Boundary conditions used are as shown in

Figure 12.

Figure 13A plots the pressure coefficient along the surface of

the upper-right quarter of the cylinder on different grids. It can

be observed that the pressure distribution on the fine and

medium grids is close to each other compared to that on the

coarse grid, which suggests that the solution on the fine grid can

be considered to be grid-converged. A comparison is also made

between the grid-converged solution on the fine grid (200 × 800)

using the present IBM and the results of the CUS-IBM (Kumar

et al., 2020) on the same grid. Good agreement between the

predictions can be seen, as shown in Figure 13B.

Furthermore, post-shock stagnation pressure in the

computational domain is also probed at y = 0 and compared

FIGURE 14

Mach number contour comparison–present IBM (A) and

CUS-IBM (Kumar et al., 2020) (B).

FIGURE 15

Schematic representation of the domain with boundary conditions indicated: flow past airfoil NACA0012 (A) and close-up view of the 648 ×

1,024 non-uniform mesh (B) (showing alternate grid lines in both directions); IB shown by the yellow line.
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to the calculated analytical value (listed in Table 2). The

percentage error of the computed value is determined to be

about 0.57%. The contour plot of the Mach number is shown in

Figure 14, and a comparison is also made with the CUS-IBM

(Kumar et al., 2020). The contour plots are in good agreement. It

can be seen from the contours that there is a detached bow shock

formed in front of the cylinder, and the solutions on the two

different IBM solvers compare well.

4.3 Transonic viscous flow past the
NACA0012 airfoil

This is a laminar flow simulation with a large

separation vortex near the trailing edge of

the airfoil. Free stream flow parameters are M∞ = 0.8,

p∞ = 103320 Pa, T∞ = 300 K, and Re∞ = 500, and the

angle of attack is 10°.

FIGURE 16

Comparison of surface pressure distribution for transonic flow over the airfoil. (A) Different grid levels using present IBM. (B) Present IBM with

Swanson and Langer (2016).

FIGURE 17

Comparison of Mach number contours for the transonic flow past the NACA0012 airfoil. Present IBM (A) and the IBM of Swanson and Langer

(2016) (B).
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This test case is chosen as the flow is transonic and involves

flow separation with a recirculation bubble forming on the

suction side of the airfoil. This tests whether the IBM can

accurately predict flow separation, which is very important for

the reliable prediction of viscous flows.

The computations for this case are carried out on the non-

uniform grids of sizes 162 × 256, 324 × 512, and 648 ×

1,024 along x and y directions, respectively. The size of the

grid 648 × 1,024 is based on the grid used in Kumar et al.

(2020), with a minimum grid spacing of Δxmin = Δymin =

0.005 m at the leading edge. Boundary conditions considered

and the zoomed-in view of the grid used are shown in

Figure 15. The solution of the present IB method is

compared with the body-fitted grid simulation by Swanson

and Langer (2016).

Figure 16A shows the grid convergence results obtained

using the presented IB method. It can be observed that the

surface pressure coefficient predictions on both the medium and

fine grids overlap, and the solution on the 648 × 1,024 grid can be

considered as grid-converged. In Figure 16B, pressure coefficient

distribution on the airfoil with the present IBM (648 × 1,024) is

further compared with the 1,280 × 512 C grid computations by

Swanson and Langer (2016). The Cp distributions for the two

methods match closely, indicating that the computations with the

present IBM produce accurate surface pressure with a grid having

a similar size as used for a body-fitted simulation.

As can be seen from Figure 17, which presents the Mach

number contour plots using the present IBM and body-fitted grid

simulations (Swanson and Langer, 2016), there is good

agreement between the predicted solutions. In Figure 18,

FIGURE 18

Streamlines showing separation bubbles for the transonic viscous flow past the NACA0012 airfoil: present IBM (A) and the IBM of Swanson and

Langer (2016) (B).

FIGURE 19

Schematic representation of the domain with boundary conditions indicated (A) and close-up view of the non-uniform grid (B) (showing

alternate grid line in both directions); IB shown by the yellow line.

Frontiers in Mechanical Engineering frontiersin.org13

Kasturi Rangan and Ghosh 10.3389/fmech.2022.903492



streamlines are shown in a zoomed-in view of the region near the

trailing edge to compare the predictions of the recirculation zone

between the present IBM and body-fitted simulation by Swanson

and Langer (2016). It can be observed that the location and size of

the recirculation regions look very similar. Furthermore, the

errors in the lift coefficient cl and the drag coefficient cd,

between the present computation and value reported by

Swanson and Langer (2016) using body-fitted grid

simulations, are determined to be about 1.07% and 2.6%,

respectively. The exact values of the lift and drag coefficients

are listed in Table 2.

4.4 Supersonic viscous flow past the
cylinder

Flow conditions for this external flow simulation are M∞ =

2.0, p∞ = 103320 Pa, T∞ = 300 K, and Re = 300. The domain

FIGURE 20

Comparison of surface pressure distribution for the supersonic flow over a cylinder. (A) Different grid levels using present IBM. (B) Present IBM

with Takahashi et al. (2014).

FIGURE 21

Density contour plot using the present IBM (A) and the IBM of Takahashi et al. (2014) (B).
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extent is 60 D × 40 D (D = 1 m), the same as in Kumar et al.

(2020) and Qiu et al. (2016), and the cylinder is centered at

(24,20).

Non-uniform meshes with grid sizes 158 × 108, 316 × 216,

and 632 × 432 along x and y directions, respectively, were used

for the grid convergence study. There is a uniform mesh region

around the cylinder of size 1.7 D × 1.7 D with a grid spacing of

0.1 D, 0.05 D, and 0.025 D for three levels of grids as in

Takahashi et al. (2014). This grid spacing of the finest grid

used is considered sufficient to capture the boundary layer

effects for the specific Reynolds number. The domain with the

boundary conditions employed and the grid are shown in

Figure 19.

As shown in Figure 20A, it can be observed that the predicted

pressures on the medium and fine grids are virtually overlapping,

and thus, the solution on the 632 × 432 grid can be considered as

grid-converged.

The pressure coefficient on the cylinder surface plotted in

Figure 20B compares the converged solution on the finer grid

with the published results by Takahashi et al. (2014) and shows

excellent agreement.

Furthermore, the error in the drag coefficient, cd, between

the present computation and the value reported by Takahashi

et al. (2014) for Cartesian grid simulations is determined to be

about 0.4%. The exact values of the lift and drag coefficients

are listed in Table 2. Contour plots of the density ratio in

Figure 21 show that the bow shock is captured well

with the present IBM and the flow field is

qualitatively similar to that predicted by Takahashi et al.

(2014).

4.5 Performance study

This section discusses the performance of the proposed IB

solver by performing grid convergence tests on three grids of

different sizes for two of the test cases presented earlier in this

work: inviscid Mach 3 flow past a circular cylinder and viscous

Mach 2.0 flow past a circular cylinder at Re of 300. For the

inviscid flow test case, the three grids considered are 50 × 200,

100 × 400, and 200 × 800 on the computational domain of

[−1,0]×[−2,2] with uniform grid spacing. For the

viscous flow simulations, the three grid sizes chosen are

158 × 108, 316 × 216, and 632 × 432 with a uniform

grid spacing of 0.1 D, 0.05 D, and 0.025 D,

respectively, in the rectangular region 1.7 × 1.7 around the

cylinder.

For the inviscid test case, post-shock stagnation pressure

along the line y = 0 is considered to determine the error in the

computation. The reference value in this case is the theoretical

post normal-shock value at Mach 3.0 for air. For the viscous test

case, the error in the solution is calculated by computing the

drag coefficient Cd. An error function is computed as

ϵh �
|ϕ−ϕref |

ϕref , where ϕ = [P0, CD] and ϕref is the zero-grid-

spacing reference value, obtained using Richardson’s

extrapolation (Slater, 2022, Roache, 1994). The plot shown in

Figure 22 shows the variation of the error function (ϵh) epsilon

versus the grid spacing parameter (r). The grid spacing

parameter r is defined as the ratio of the average grid

spacing of a grid with respect to the average grid spacing

for the finest grid. The observed order of convergence

obtained is in the range of 1.4–1.6, which is determined

using that of Slater (2022). This suggests that the solution

obtained from the proposed IBM is less than second-order

accurate, although the finite volume method used here is

second-order accurate. This can be attributed to the reduced

order of solution reconstruction at cell faces in the

neighborhood of the immersed surface, as discussed in

Section 3.4.5. Furthermore, although linear interpolation

is used for forcing the velocity at the band face, density and

pressure are extrapolated, which can also

contribute to the overall reduction in the accuracy of the

solver.

5 Conclusion

An immersed boundary method designed for the finite

volume solver of the equations of the fluid flow is presented

in this work. Specifically, this work presents a robust face-

based solution forcing methodology in the immediate

vicinity of the immersed surface, which enables the

integration of the discretized equations in all the fluid

cells, thus allowing better adherence to the conservation of

mass, momentum, and energy. An interpolation point is

FIGURE 22

Variation of ϵ with an average grid spacing parameter (r) for

the supersonic inviscid flow past the cylinder (red) and the viscous

flow past the cylinder (green).
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constructed along the normal to the immersed surface, and

data are interpolated from the surrounding fluid cells onto

the interpolation point using inverse distances as weights.

The proposed methodology has been validated with

simulations of the flow past a bump, cylinder, and airfoil

with speeds ranging from transonic to supersonic regime,

both laminar and inviscid. The results presented indicate that

the flow predictions away from the immersed surface and

surface pressure compare well with results reported in the

literature. Quantitative comparison with results from the

literature/theoretical values shows that the errors in the

present method are less than 3%. Subsequent development

will be aimed at moving boundary modifications,

extending to three dimensions, and improving geometric

conservation.
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