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Abstract: Recently, Semenova [12] considered a derivative free iterative method for nonlinear ill-posed oper-

ator equations with amonotone operator. In this paper, a modiőed form of Semenova’s method is considered

providing simple convergence analysis under more realistic nonlinearity assumptions. The paper also pro-

vides a stopping rule for the iteration based on an a priori choice of the regularization parameter and also

under the adaptive procedure considered by Pereverzev and Schock [11].
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1 Introduction

In this paper, we consider the problem of approximately solving the operator equation

F(x) = y, (1.1)

where F : D(F) ⊆ X → X is a monotone operator, i.e.,

⟨F(v) − F(w), v − w⟩ ≥ 0 for all v, w ∈ D(F),
which is, in general, nonlinear, X is a real Hilbert space and y ∈ X. We denote the inner product and the

corresponding norm in X by ⟨ ⋅ , ⋅ ⟩ and ‖ ⋅ ‖ respectively, and B(x, r) denotes the closed ball in X with center

x ∈ X and radius r > 0.
It is assumed that (1.1) has a solution, namely x†, and that the data y is known only approximately, say yδ

such that

‖y − yδ‖ ≤ δ
for some error level δ > 0. Equation (1.1) is, in general, ill-posed, in the sense that a small perturbation in

the data can cause large deviations in the solution. Thus, for obtaining stable approximations for the solu-

tion x† from noisy data yδ, some regularization method has to be employed. As the operator F is monotone,

a regularizationmethodwhich has beenwidely used in the literature is the Lavrentiev regularizationmethod

(see [6, 8, 14, 15]). In thismethod the regularized approximation xδα is obtained by solving the operator equa-

tion

F(x) + α(x − x0) = yδ , (1.2)

where x0 is an initial guess of x
†, say ‖x0 − x†‖ ≤ r0 for some r0 > 0.
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It is known that equation (1.2) has a unique solution for every right-hand side provided F is Fréchet

differentiable in some open ball centered at x† contained in D(F) and x0 belongs to that open ball (cf. [2,

Theorem 11.2] or [14, Theorem 1.1]). However, the nonlinearity of the operator involved in (1.2) can cause

difficulties in solving them numerically.

Another alternative is to consider iterative procedures alongwith stopping rules to obtain approximations

to x†. Such procedures are available in the literature. However, in all such procedures, the iterations involve
the Fréchet derivative of the operator F (see, e.g., [1, 5, 7]). In [12], Semenova considered a derivative-free

iterative method,

xδn+1,α = xδn,α − γ[F(xδn,α) + α(xδn,α − x0) − yδ] (1.3)

for őxed α, δ by assuming that F is Lipschitz continuous with Lipschitz constant R and with γ satisfying

0 < γ < min{1
α
,

2α

α2 + R2 },
and also an additional nonlinearity condition (see [12, Assumption 3]) on the Fréchet derivative F� involving
the unknown solution x†. The convergence of the iterates in (1.3) to the solution xδα of (1.2) is proved by

showing it to be a Cauchy sequence by using contraction mapping arguments.

The purpose of this paper is to consider the iterative procedure (1.3), but with a γ independent of the

regularizationparameter α andalsowith anonlinearity condition on F�which is independent of theunknown
solution x†. Further, our convergence analysis is also simpler in the sense that it does not make use of the

contraction mapping arguments as in [12].

In a recent paper, Shubha, George and Jidesh [13] have introduced a derivative-free iterative method

which required a simpler nonlinearity condition on F�. However, the convergence analysis in [13] makes use

of a condition on the second Fréchet derivative F��. Moreover, the iterative procedure in [13] itself is a bit more

cumbersome than (1.3) .

The remainder of the paper is organized as follows: In Section 2, we present the method and its error

analysis without speciőcation of any source condition. In Section 3 we consider the error estimates under

a general source condition with an appropriate stopping rule involving α and δ. In the őnal section, Sec-

tion 4, we present an a priori choice of the parameter α and also an adaptive strategy based on the balancing

principle considered in Pereverzev and Schock [11].

2 The method and the convergence analysis

Taking

r ≥ 2(r0 + 1) with r0 := ‖x† − x0‖,
we assume that the following conditions hold:

(i) B(x0, r) ⊆ D(F),
(ii) F has self-adjoint Fréchet derivatives F�(x) for every x ∈ B(x0, r),
(iii) there exists β0 > 0 such that

‖F�(x)‖ ≤ β0 for all x ∈ B(x0, r).
Let xδα ∈ D(F) be the unique solution (1.2) for every δ ∈ (0, d] and α ∈ [δ, a) for some positive constants a, d

with d < a. In particular, by taking yδ = y, there is a unique xα ∈ D(F) such that
F(xα) + α(xα − x0) = y. (2.1)

The method: Let δ ∈ (0, d] and α ∈ [δ, a). As in [12], we consider the sequence {xδn,α} deőned iteratively by
xδn+1,α = xδn,α − β[F(xδn,α) + α(xδn,α − x0) − yδ], (2.2)

where

xδ0,α = x0 and β := 1

β0 + a .
We observe that if {xδn,α} converges as n →∞, then the limit is xδα, the solution of (1.2).
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We shall make use of the following known result (see [14]). For the sake of completion of the exposition,

we provide its proof as well.

Lemma 2.1. Let xα and x
δ
α be as in equations (2.1) and (1.2), respectively. Then,

‖xα − x†‖2 ≤ ⟨x0 − x†, xα − x†⟩, ‖xδα − xα‖ ≤ δα .
In particular,

‖x† − xδα‖ ≤ ‖x† − xα‖ + δα , ‖x
† − xα‖ ≤ ‖x† − x0‖.

Proof. Since y = F(x†), we have
F(xα) + α(xα − x0) = F(x†),

so that

F(xα) − F(x†) + α(xα − x0) = 0,
i.e.,

F(xα) − F(x†) + α(xα − x†) = α(x0 − x†).
Hence,

⟨F(xα) − F(x†), xα − x†⟩ + α⟨xα − x†, xα − x†⟩ = α⟨x0 − x†, xα − x†⟩.
By monotonicity of F, we have ⟨F(xα) − F(x†), xα − x†⟩ ≥ 0. Thus, we obtain,

‖xα − x†‖2 ≤ ⟨x0 − x†, xα − x†⟩.
Next, we observe that

F(xδα) − F(xα) + α(xδα − xα) = yδ − y.
Hence,

⟨F(xδα) − F(xα), xδα − xα⟩ + α⟨xδα − xα , xδα − xα⟩ = ⟨yδ − y, xδα − xα⟩.
Again, using the monotonicity of F, we have

α‖xδα − xα‖2 ≤ ⟨yδ − y, xδα − xα⟩ ≤ δ‖xδα − xα‖.
Thus,

‖xδα − xα‖ ≤ δα .
The particular cases are obvious from the previous estimates.

Remark 2.2. In Section 3, under a source condition on x† − x0, we obtain an estimate for ‖xδα − x†‖. Then,
using an appropriate choice of the parameter α := αδ, we obtain the convergence xδαδ → x† as well as an esti-
mate for ‖xδαδ − x†‖.
Theorem 2.3. For each δ ∈ (0, d] and α ∈ [δ, a) the sequence {xδn,α} is in B(x0, r) and it converges to xδα as
n →∞. Further,

‖xδn,α − xδα‖ ≤ κqnα ,
where qα := 1 − βα and κ ≥ r0 + 1 with β := 1/(β0 + a).
Proof. Clearly, xδ0,α = x0 ∈ B(x0, r). Also, by Lemma 2.1, we have

‖x0 − xδα‖ ≤ ‖x0 − xα‖ + ‖xα − xδα‖ ≤ r0 + δα ≤ r0 + 1 < r.

Hence, xδα ∈ B(x0, r). By the fundamental theorem of integration, we have

F(x) − F(u) = [
1

∫
0

F�(u + t(x − u)) dt](x − u)
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whenever x and u are in a ball contained in D(F). We show iteratively that xδn,α ∈ B(x0, r), that the operator

An :=
1

∫
0

F�(xδα + t(xδn,α − xδα)) dt

is a well-deőned positive self-adjoint operator and that

‖xδn+1,α − xδα‖ ≤ (1 − βα)‖xδn,α − xδα‖
for n = 0, 1, 2, . . . , which will complete the proof since ‖x0 − xδα‖ < r.

Formally, we have

xδn+1,α − xδα = xδn,α − xδα − β[F(xδn,α) − F(xδα) + α(xδn,α − xδα)].
Since

F(xδn,α) − F(xδα) =
1

∫
0

F�(xδα + t(xδn,α − xδα))(xδn,α − xδα) dt,

we have

xδn+1,α − xδα = [I − β(An + α)](xδn,α − xδα). (2.3)

Now let n = 0. We have already seen that ‖x0 − xδα‖ < r so that xδα ∈ B(x0, r) and A0 is a well-deőned positive
self-adjoint operator with ‖A0‖ ≤ β0.

Next assume that for some n ≥ 0 we have xδn,α ∈ B(x0, r) and An is a well-deőned positive self-adjoint

operator with ‖An‖ ≤ β0. Then from (2.3), we have

‖xδn+1,α − xδα‖ ≤ ‖I − β(An + αI)‖‖(xδn,α − xδα)‖.
Since An is a positive self-adjoint operator, we have (cf. [9])

‖I − β(An + αI)‖ = sup
‖x‖=1
!!!!⟨[(1 − βα)I − βAn]x, x⟩!!!! = sup‖x‖=1

!!!!(1 − βα) − β⟨Anx, x⟩!!!!,

and since ‖An‖ ≤ β0 for all n ∈ ℕ and β = 1/(β0 + a), we have
0 ≤ β⟨Anx, x⟩ ≤ β‖An‖ ≤ ββ0 < 1 − βα

for all α ∈ (0, a). Therefore,
‖I − β(An + αI)‖ ≤ 1 − βα.

Thus,

‖xδn+1,α − xδα‖ ≤ ‖I − β(An + α)‖‖xδn,α − xδα‖ ≤ (1 − βα)‖xδn,α − xδα‖.
Hence,

‖xδn+1,α − xδα‖ ≤ ‖x0 − xδα‖ ≤ r0 + δα ≤ r0 + 1
and

‖xδn+1,α − x0‖ ≤ ‖xδn+1,α − xδα‖ + ‖xδα − x0‖ ≤ 2‖x0 − xδα‖ ≤ 2(r0 + 1) ≤ r.
Thus, xδn+1,α ∈ B(x0, r). Also, for 0 ≤ t ≤ 1, we have

""""[xδα + t(xδn+1,α − xδα)] − x0"""" = """"(xδα − x0) + t(xδn+1,α − xδα)"""" ≤ 2(r0 + 1) ≤ r.
Hence, An+1 is a well-deőned positive self-adjoint operator with ‖An+1‖ ≤ β0. This completes the proof.
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Theorem 2.4. Let δ ∈ (0, d], α ∈ (δ, a]with d < a. Let xδα and xα be as in equations (1.2) and (2.1), respectively,
and for each δ ∈ (0, d] and α ∈ [δ, a) let the sequence {xδn,α} be deőned as in (2.2). Let

nα,δ := min{n ∈ ℕ : αqnα ≤ δ}.
Then,

‖xδnα,δ+1,α − x†‖ = (κ + 1)(‖x† − xα‖ +
δ

α
),

where κ ≥ r0 + 1.
Proof. By Lemma 2.1 and Theorem 2.3, we have

‖xδn+1,α − x†‖ = ‖xδnα,δ+1,α − xδα‖ + ‖xδα − xα‖ + ‖xα − x†‖ = κqnα +
δ

α
+ ‖xα − x†‖.

Now for n = nα,δ we have qnα ≤ δ/α. Thus, we obtain the required estimate in the theorem.

3 Error bounds under source conditions

For obtaining an estimate for ‖x† − xα‖we have to impose some nonlinearity conditions on F and assume that

x0 − x† belongs to some source set. For this purpose, we use the following two assumptions. The őrst one is

a simpliőed form of the standard nonlinear assumptions in the literature, whereas the second one regarding

the source condition is exactly the same considered earlier (cf. [7, 8]). These conditions are also assumed in

the paper [13].

Assumption 3.1. There exists a constant k0 ≥ 0 such that for every x ∈ B(x0, r) and v ∈ X there exists an

element Φ(x, x0, v) ∈ X such that

[F�(x) − F�(x0)]v = F�(x0)Φ(x, x0, v)
and

‖Φ(x, x0, v)‖ ≤ k0‖v‖‖x − x0‖
for all x, v ∈ B(x0, r).
Assumption 3.2. There exists a continuous and strictly monotonically increasing function

φ : (0, a0] → (0,∞)
with a0 ≥ ‖F�(x0)‖ satisfying the following conditions:
(i) limλ→0 φ(λ) = 0,
(ii) supλ≥0

αφ(λ)
λ+α ≤ φ(α) for all λ ∈ (0, a0],

(iii) there exists v ∈ X with ‖v‖ ≤ 1 such that
x0 − x† = φ(F�(x0))v.

The proof of the following theorem is given in [13] with less details. For the sake of completeness of the

presentation, we give the details of the proof here as well.

Theorem 3.3. For δ ∈ (0, d], α ∈ (δ, a]with d < a let xδα and xα be as in equations (1.2) and (2.1), respectively,
and let Assumptions 3.1 and 3.2 be satisőed. Then,

‖xα − x†‖ ≤ k0r0‖xα − x†‖ + φ(α).
Proof. Since F(xα) + α(xα − x0) = y and y = F(x†), we have

F(xα) − F(x†) + α(xα − x†) = α(x0 − x†). (3.1)
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But, by the fundamental theorem of integration,

F(xα) − F(x†) = Mα(xα − x†),
where Mα := ∫10 F�(x† + t(xα − x†)) dt. Note that, by Lemma 2.1, we have

‖x† + t(xα − x†) − x0‖ ≤ 2r0 ≤ r.
Thus, x† + t(xα − x†) ∈ B(x0, r) so thatMα is a well-deőned positive self-adjoint operator. Let us rewrite equa-

tion (3.1) as

F�(x0)(xα − x†) + α(xα − x†) = (F�(x0) −Mα)(xα − x†) + α(x0 − x†).
Then, by Assumption 3.1, we have

xα − x† = (F�(x0) + αI)−1[(F�(x0) −Mα)(xα − x†) + α(x0 − x†)]

= (F�(x0) + αI)−1F�(x0)
1

∫
0

Φ(x† + t(xα − x†), x0, (xα − x†)) dt + α(F�(x0) + αI)−1(x0 − x†).

Since F�(x0) is a positive self-adjoint operator, we have
‖(F�(x0) + αI)−1F�(x0)‖ ≤ 1,

and by Assumption 3.2, we have

""""α(F�(x0) + αI)−1(x0 − x†)"""" = """"α(F�(x0) + αI)−1φ(F�(x0))v"""" ≤ ‖v‖ sup
λ≥0

αφ(λ)
λ + α ≤ φ(α).

Also, Assumption 3.1 yields

""""Φ(x† + t(xα − x†), x0, (xα − x†))"""" ≤ k0‖xα − x†‖""""x† + t(xα − x†) − x0"""".
Since ‖xα − x†‖ ≤ ‖x0 − x†‖, we have

""""x† + t(xα − x†) − x0"""" ≤ """"(x† − x0) + t[(xα − x0) + (x0 − x†)]""""
≤ """"(1 − t)(x† − x0) + t(xα − x0)""""
≤ ‖x† − x0‖.

Thus, we obtain

‖xα − x†‖ ≤ k0r0‖xα − x†‖ + φ(α).
Now Theorems 2.4 and 3.3 lead to the following theorem.

Theorem 3.4. Let δ ∈ (0, d], α ∈ (δ, a]with d < a, and let Assumptions 3.1 and 3.2 be satisőed. Assume further
that q := k0r0 < 1. Let

nα,δ := min{n ∈ ℕ : αqnα ≤ δ}. (3.2)

Then,

‖xδnα,δ+1,α − x†‖ = C̃(φ(α) +
δ

α
), (3.3)

where C̃ = min{κ + 1, 1
1−q } with κ ≥ r0 + 1.

In order to choose the regularization parameter α, one may use an a priori choice by requiring

αφ(α) = δ
or the adaptive method considered in [11] by Pereverzev and Schock which has been further investigated in

various papers including [4, 10].
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4 Parameter choice and stopping rules

4.1 A priori rule

Note that, given δ, the quantity φ(α) + δα in (3.3) is least if α satisőes the equation
αφ(α) = δ.

Now using the function ψ(λ) := λφ−1(λ), 0 < λ ≤ a0, we have
αφ(α) = ψ(φ(α)),

so that αδ := φ−1(ψ−1(δ)) satisőes
αδφ(αδ) = δ

and
δ

αδ
= φ(αδ) = ψ−1(δ).

Hence from Theorem 3.4 we obtain the following theorem.

Theorem 4.1. Let δ ∈ (0, d], α ∈ (δ, a]with d < a, and let Assumptions 3.1 and 3.2 be satisőed. Assume further
that q := k0r0 < 1. Let αδ = φ−1(ψ−1(δ)), where ψ(λ) := λφ−1(λ) for 0 < λ ≤ a0 and

nδ := min{n ∈ ℕ : αδq
n
αδ ≤ δ}.

Then

‖xδnδ ,αδ − x†‖ ≤ 2C̃ψ−1(δ),
where C̄ = min{κ + 1, 1

1−q } with κ ≥ r0 + 1.

4.2 Adaptive scheme and stopping rule

Wemodify the procedure of Pereverzev and Schock [11] slightly to suit the present context as has been done

in [3, 4, 10, 13].

Let α0 > δ and for i = 1, . . . , N let αi := μiα0 with μ > 1. Then we have α0 < α1 < ⋅ ⋅ ⋅ < αN . For given α, δ
let nα,δ be as in (3.2). For notational convenience, let us denote

ni := nαi ,δ , xδi := xδni ,αi , i = 0, 1, . . . , N.
We assume that

{i : φ(αi) ≤ δ
αi
} ̸= 0 and max{i : φ(αi) ≤ δ

αi
} < N.

Now, we can state the following known result (see [4]) on the choice of regularization parameter.

Theorem 4.2. Let

k := max{i : ‖xδi − xδj ‖ ≤ 4C̃ δαj , j = 0, 1, 2, . . . , i},

with C̄ = min{κ + 1, 1
1−q }. Then,

‖x† − xδk‖ ≤ 6C̄μψ−1(δ).
As per Theorem 4.2 , the choice of the regularization parameter involves the following steps:

(1) Set i = 0.
(2) Choose ni := min{n : αiqnαi ≤ δ}.
(3) Solve xδi := xδni ,αi by using iteration (2.2).
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(4) If

‖xδi − xδj ‖ > 4C̄ δαj , j < i,
then take k = i − 1 and return xk.

(5) Else set i = i + 1 and go to (2).
Next, we present an academic example which satisőes Assumption 3.1.

Example 4.3. Consider a nonlinear operator equation F : L2[0, 1]→ L2[0, 1] deőned by F(u) := (arctan(u))3.
Since u → (arctan(u))3 is increasing onℝ, we have

⟨(arctan(u))3 − (arctan(v))3, u − v⟩ ≥ 0 for all u, v ∈ L2[0, 1],
i.e., F is monotone. The Fréchet derivative of F is

F�(u)w = 3(arctan(u))
2

1 + u2 w.

If u(x) vanishes on a set of positive Lebesgue measure, then F�(u) is not boundedly invertible. If u ∈ C[0, 1]
vanishes even at one point x0, then F

�(u) is not boundedly invertible in L2[0, 1].
Note that

F�(u)w = F�(u0)G(u, u0)w,
where

G(u, u0) = 1 + u
2
0

1 + u2
(arctan(u))2
(arctan(u0))2 .

Further, for u0 ̸= 0, we have
[F�(u) − F�(u0)]w = F�(u0)[G(u, u0) − I]w

and

""""[G(u, u0) − I]w"""" ≤
""""""
(1 + u20)((arctan(u))2 − (arctan(u0))2) − (arctan(u0))2(u2 − u20)

(1 + u2)(arctan(u))2 w
""""""

≤ 1 + ‖u0‖2
(1 + ‖u‖2)‖(arctan(u0))2‖ ‖(arctan(u))

2 − (arctan(u0))2‖‖w‖ + 1

1 + ‖u‖2 ‖u
2 − u20‖‖w‖

≤ 1 + ‖u0‖2
(1 + ‖u‖2)‖(arctan(u0))2‖ ‖arctan(u) + arctan(u0)‖

× ‖arctan(u) − arctan(u0)‖‖w‖ + 1

1 + ‖u‖2 ‖u + u0‖‖u − u0‖‖w‖

≤ [2max{‖arctan(u)‖, ‖arctan(u0)‖}
‖(arctan(u0))2‖ + 2max{‖û‖, ‖u0‖}]‖w‖‖û − u0‖.

The last but one step follows from the inequality

‖arctan(u) − arctan(u0)‖ ≤ ‖u‖ − ‖u0‖
1 + ‖u0‖2 .

Thus, Assumption 3.1 is satisőed.
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