Research Article

Santhosh George* and M. Thamban Nair

A derivative-free iterative method for nonlinear ill-posed equations with monotone operators

DOI: 10.1515/jiip-2014-0049
Received July 17, 2014; revised June 16, 2016; accepted September 27, 2016

Abstract

Recently, Semenova [12] considered a derivative free iterative method for nonlinear ill-posed operator equations with a monotone operator. In this paper, a modified form of Semenova's method is considered providing simple convergence analysis under more realistic nonlinearity assumptions. The paper also provides a stopping rule for the iteration based on an a priori choice of the regularization parameter and also under the adaptive procedure considered by Pereverzev and Schock [11].

Keywords: Iterative method, derivative free method, nonlinear ill-posed equations, Lavrentiev regularization, adaptive method

MSC 2010: 41H25, 65F22, 65J15, 65J22, 47A52

1 Introduction

In this paper, we consider the problem of approximately solving the operator equation

$$
\begin{equation*}
F(x)=y \tag{1.1}
\end{equation*}
$$

where $F: D(F) \subseteq X \rightarrow X$ is a monotone operator, i.e.,

$$
\langle F(v)-F(w), v-w\rangle \geq 0 \quad \text { for all } v, w \in D(F),
$$

which is, in general, nonlinear, X is a real Hilbert space and $y \in X$. We denote the inner product and the corresponding norm in X by $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$ respectively, and $\overline{B(x, r)}$ denotes the closed ball in X with center $x \in X$ and radius $r>0$.

It is assumed that (1.1) has a solution, namely x^{\dagger}, and that the data y is known only approximately, say y^{δ} such that

$$
\left\|y-y^{\delta}\right\| \leq \delta
$$

for some error level $\delta>0$. Equation (1.1) is, in general, ill-posed, in the sense that a small perturbation in the data can cause large deviations in the solution. Thus, for obtaining stable approximations for the solution x^{\dagger} from noisy data y^{δ}, some regularization method has to be employed. As the operator F is monotone, a regularization method which has been widely used in the literature is the Lavrentiev regularization method (see $[6,8,14,15]$). In this method the regularized approximation x_{α}^{δ} is obtained by solving the operator equation

$$
\begin{equation*}
F(x)+\alpha\left(x-x_{0}\right)=y^{\delta}, \tag{1.2}
\end{equation*}
$$

where x_{0} is an initial guess of x^{\dagger}, say $\left\|x_{0}-x^{\dagger}\right\| \leq r_{0}$ for some $r_{0}>0$.

[^0]It is known that equation (1.2) has a unique solution for every right-hand side provided F is Fréchet differentiable in some open ball centered at x^{\dagger} contained in $D(F)$ and x_{0} belongs to that open ball (cf. [2, Theorem 11.2] or [14, Theorem 1.1]). However, the nonlinearity of the operator involved in (1.2) can cause difficulties in solving them numerically.

Another alternative is to consider iterative procedures along with stopping rules to obtain approximations to x^{\dagger}. Such procedures are available in the literature. However, in all such procedures, the iterations involve the Fréchet derivative of the operator F (see, e.g., [1, 5, 7]). In [12], Semenova considered a derivative-free iterative method,

$$
\begin{equation*}
x_{n+1, \alpha}^{\delta}=x_{n, \alpha}^{\delta}-\gamma\left[F\left(x_{n, \alpha}^{\delta}\right)+\alpha\left(x_{n, \alpha}^{\delta}-x_{0}\right)-y^{\delta}\right] \tag{1.3}
\end{equation*}
$$

for fixed α, δ by assuming that F is Lipschitz continuous with Lipschitz constant R and with y satisfying

$$
0<\gamma<\min \left\{\frac{1}{\alpha}, \frac{2 \alpha}{\alpha^{2}+R^{2}}\right\}
$$

and also an additional nonlinearity condition (see [12, Assumption 3]) on the Fréchet derivative F^{\prime} involving the unknown solution x^{\dagger}. The convergence of the iterates in (1.3) to the solution x_{α}^{δ} of (1.2) is proved by showing it to be a Cauchy sequence by using contraction mapping arguments.

The purpose of this paper is to consider the iterative procedure (1.3), but with a y independent of the regularization parameter α and also with a nonlinearity condition on F^{\prime} which is independent of the unknown solution x^{\dagger}. Further, our convergence analysis is also simpler in the sense that it does not make use of the contraction mapping arguments as in [12].

In a recent paper, Shubha, George and Jidesh [13] have introduced a derivative-free iterative method which required a simpler nonlinearity condition on F^{\prime}. However, the convergence analysis in [13] makes use of a condition on the second Fréchet derivative $F^{\prime \prime}$. Moreover, the iterative procedure in [13] itself is a bit more cumbersome than (1.3).

The remainder of the paper is organized as follows: In Section 2, we present the method and its error analysis without specification of any source condition. In Section 3 we consider the error estimates under a general source condition with an appropriate stopping rule involving α and δ. In the final section, Section 4, we present an a priori choice of the parameter α and also an adaptive strategy based on the balancing principle considered in Pereverzev and Schock [11].

2 The method and the convergence analysis

Taking

$$
r \geq 2\left(r_{0}+1\right) \quad \text { with } r_{0}:=\left\|x^{\dagger}-x_{0}\right\|,
$$

we assume that the following conditions hold:
(i) $\overline{B\left(x_{0}, r\right)} \subseteq D(F)$,
(ii) F has self-adjoint Fréchet derivatives $F^{\prime}(x)$ for every $x \in \overline{B\left(x_{0}, r\right)}$,
(iii) there exists $\beta_{0}>0$ such that

$$
\left\|F^{\prime}(x)\right\| \leq \beta_{0} \quad \text { for all } x \in \overline{B\left(x_{0}, r\right)}
$$

Let $x_{\alpha}^{\delta} \in D(F)$ be the unique solution (1.2) for every $\delta \in(0, d]$ and $\alpha \in[\delta, a)$ for some positive constants a, d with $d<a$. In particular, by taking $y^{\delta}=y$, there is a unique $x_{\alpha} \in D(F)$ such that

$$
\begin{equation*}
F\left(x_{\alpha}\right)+\alpha\left(x_{\alpha}-x_{0}\right)=y . \tag{2.1}
\end{equation*}
$$

The method: Let $\delta \in(0, d]$ and $\alpha \in[\delta, a)$. As in [12], we consider the sequence $\left\{x_{n, \alpha}^{\delta}\right\}$ defined iteratively by

$$
\begin{equation*}
x_{n+1, \alpha}^{\delta}=x_{n, \alpha}^{\delta}-\beta\left[F\left(x_{n, \alpha}^{\delta}\right)+\alpha\left(x_{n, \alpha}^{\delta}-x_{0}\right)-y^{\delta}\right], \tag{2.2}
\end{equation*}
$$

where

$$
x_{0, \alpha}^{\delta}=x_{0} \quad \text { and } \quad \beta:=\frac{1}{\beta_{0}+a}
$$

We observe that if $\left\{x_{n, \alpha}^{\delta}\right\}$ converges as $n \rightarrow \infty$, then the limit is x_{α}^{δ}, the solution of (1.2).

We shall make use of the following known result (see [14]). For the sake of completion of the exposition, we provide its proof as well.
Lemma 2.1. Let x_{α} and x_{α}^{δ} be as in equations (2.1) and (1.2), respectively. Then,

$$
\left\|x_{\alpha}-x^{\dagger}\right\|^{2} \leq\left\langle x_{0}-x^{\dagger}, x_{\alpha}-x^{\dagger}\right\rangle, \quad\left\|x_{\alpha}^{\delta}-x_{\alpha}\right\| \leq \frac{\delta}{\alpha}
$$

In particular,

$$
\left\|x^{\dagger}-x_{\alpha}^{\delta}\right\| \leq\left\|x^{\dagger}-x_{\alpha}\right\|+\frac{\delta}{\alpha}, \quad\left\|x^{\dagger}-x_{\alpha}\right\| \leq\left\|x^{\dagger}-x_{0}\right\| .
$$

Proof. Since $y=F\left(x^{\dagger}\right)$, we have

$$
F\left(x_{\alpha}\right)+\alpha\left(x_{\alpha}-x_{0}\right)=F\left(x^{\dagger}\right)
$$

so that

$$
F\left(x_{\alpha}\right)-F\left(x^{\dagger}\right)+\alpha\left(x_{\alpha}-x_{0}\right)=0
$$

i.e.,

$$
F\left(x_{\alpha}\right)-F\left(x^{\dagger}\right)+\alpha\left(x_{\alpha}-x^{\dagger}\right)=\alpha\left(x_{0}-x^{\dagger}\right)
$$

Hence,

$$
\left\langle F\left(x_{\alpha}\right)-F\left(x^{\dagger}\right), x_{\alpha}-x^{\dagger}\right\rangle+\alpha\left\langle x_{\alpha}-x^{\dagger}, x_{\alpha}-x^{\dagger}\right\rangle=\alpha\left\langle x_{0}-x^{\dagger}, x_{\alpha}-x^{\dagger}\right\rangle
$$

By monotonicity of F, we have $\left\langle F\left(x_{\alpha}\right)-F\left(x^{\dagger}\right), x_{\alpha}-x^{\dagger}\right\rangle \geq 0$. Thus, we obtain,

$$
\left\|x_{\alpha}-x^{\dagger}\right\|^{2} \leq\left\langle x_{0}-x^{\dagger}, x_{\alpha}-x^{\dagger}\right\rangle
$$

Next, we observe that

$$
F\left(x_{\alpha}^{\delta}\right)-F\left(x_{\alpha}\right)+\alpha\left(x_{\alpha}^{\delta}-x_{\alpha}\right)=y^{\delta}-y .
$$

Hence,

$$
\left\langle F\left(x_{\alpha}^{\delta}\right)-F\left(x_{\alpha}\right), x_{\alpha}^{\delta}-x_{\alpha}\right\rangle+\alpha\left\langle x_{\alpha}^{\delta}-x_{\alpha}, x_{\alpha}^{\delta}-x_{\alpha}\right\rangle=\left\langle y^{\delta}-y, x_{\alpha}^{\delta}-x_{\alpha}\right\rangle .
$$

Again, using the monotonicity of F, we have

$$
\alpha\left\|x_{\alpha}^{\delta}-x_{\alpha}\right\|^{2} \leq\left\langle y^{\delta}-y, x_{\alpha}^{\delta}-x_{\alpha}\right\rangle \leq \delta\left\|x_{\alpha}^{\delta}-x_{\alpha}\right\| .
$$

Thus,

$$
\left\|x_{\alpha}^{\delta}-x_{\alpha}\right\| \leq \frac{\delta}{\alpha}
$$

The particular cases are obvious from the previous estimates.
Remark 2.2. In Section 3, under a source condition on $x^{\dagger}-x_{0}$, we obtain an estimate for $\left\|x_{\alpha}^{\delta}-x^{\dagger}\right\|$. Then, using an appropriate choice of the parameter $\alpha:=\alpha_{\delta}$, we obtain the convergence $x_{\alpha_{\delta}}^{\delta} \rightarrow x^{\dagger}$ as well as an estimate for $\left\|x_{\alpha_{\delta}}^{\delta}-x^{\dagger}\right\|$.

Theorem 2.3. For each $\delta \in(0, d]$ and $\alpha \in[\delta, a)$ the sequence $\left\{x_{n, \alpha}^{\delta}\right\}$ is in $\overline{B\left(x_{0}, r\right)}$ and it converges to x_{α}^{δ} as $n \rightarrow \infty$. Further,

$$
\left\|x_{n, \alpha}^{\delta}-x_{\alpha}^{\delta}\right\| \leq \kappa q_{\alpha}^{n}
$$

where $q_{\alpha}:=1-\beta \alpha$ and $\kappa \geq r_{0}+1$ with $\beta:=1 /\left(\beta_{0}+a\right)$.
Proof. Clearly, $x_{0, \alpha}^{\delta}=x_{0} \in \overline{B\left(x_{0}, r\right)}$. Also, by Lemma 2.1, we have

$$
\left\|x_{0}-x_{\alpha}^{\delta}\right\| \leq\left\|x_{0}-x_{\alpha}\right\|+\left\|x_{\alpha}-x_{\alpha}^{\delta}\right\| \leq r_{0}+\frac{\delta}{\alpha} \leq r_{0}+1<r
$$

Hence, $x_{\alpha}^{\delta} \in \overline{B\left(x_{0}, r\right)}$. By the fundamental theorem of integration, we have

$$
F(x)-F(u)=\left[\int_{0}^{1} F^{\prime}(u+t(x-u)) d t\right](x-u)
$$

whenever x and u are in a ball contained in $D(F)$. We show iteratively that $x_{n, \alpha}^{\delta} \in \overline{B\left(x_{0}, r\right)}$, that the operator

$$
A_{n}:=\int_{0}^{1} F^{\prime}\left(x_{\alpha}^{\delta}+t\left(x_{n, \alpha}^{\delta}-x_{\alpha}^{\delta}\right)\right) d t
$$

is a well-defined positive self-adjoint operator and that

$$
\left\|x_{n+1, \alpha}^{\delta}-x_{\alpha}^{\delta}\right\| \leq(1-\beta \alpha)\left\|x_{n, \alpha}^{\delta}-x_{\alpha}^{\delta}\right\|
$$

for $n=0,1,2, \ldots$, which will complete the proof since $\left\|x_{0}-x_{\alpha}^{\delta}\right\|<r$.
Formally, we have

$$
x_{n+1, \alpha}^{\delta}-x_{\alpha}^{\delta}=x_{n, \alpha}^{\delta}-x_{\alpha}^{\delta}-\beta\left[F\left(x_{n, \alpha}^{\delta}\right)-F\left(x_{\alpha}^{\delta}\right)+\alpha\left(x_{n, \alpha}^{\delta}-x_{\alpha}^{\delta}\right)\right] .
$$

Since

$$
F\left(x_{n, \alpha}^{\delta}\right)-F\left(x_{\alpha}^{\delta}\right)=\int_{0}^{1} F^{\prime}\left(x_{\alpha}^{\delta}+t\left(x_{n, \alpha}^{\delta}-x_{\alpha}^{\delta}\right)\right)\left(x_{n, \alpha}^{\delta}-x_{\alpha}^{\delta}\right) d t
$$

we have

$$
\begin{equation*}
x_{n+1, \alpha}^{\delta}-x_{\alpha}^{\delta}=\left[I-\beta\left(A_{n}+\alpha\right)\right]\left(x_{n, \alpha}^{\delta}-x_{\alpha}^{\delta}\right) . \tag{2.3}
\end{equation*}
$$

Now let $n=0$. We have already seen that $\left\|x_{0}-x_{\alpha}^{\delta}\right\|<r$ so that $x_{\alpha}^{\delta} \in \overline{B\left(x_{0}, r\right)}$ and A_{0} is a well-defined positive self-adjoint operator with $\left\|A_{0}\right\| \leq \beta_{0}$.

Next assume that for some $n \geq 0$ we have $x_{n, \alpha}^{\delta} \in \overline{B\left(x_{0}, r\right)}$ and A_{n} is a well-defined positive self-adjoint operator with $\left\|A_{n}\right\| \leq \beta_{0}$. Then from (2.3), we have

$$
\left\|x_{n+1, \alpha}^{\delta}-x_{\alpha}^{\delta}\right\| \leq\left\|I-\beta\left(A_{n}+\alpha I\right)\right\|\left\|\left(x_{n, \alpha}^{\delta}-x_{\alpha}^{\delta}\right)\right\| .
$$

Since A_{n} is a positive self-adjoint operator, we have (cf. [9])

$$
\left\|I-\beta\left(A_{n}+\alpha I\right)\right\|=\sup _{\|x\|=1}\left|\left\langle\left[(1-\beta \alpha) I-\beta A_{n}\right] x, x\right\rangle\right|=\sup _{\|x\|=1}\left|(1-\beta \alpha)-\beta\left\langle A_{n} x, x\right\rangle\right|,
$$

and since $\left\|A_{n}\right\| \leq \beta_{0}$ for all $n \in \mathbb{N}$ and $\beta=1 /\left(\beta_{0}+a\right)$, we have

$$
0 \leq \beta\left\langle A_{n} x, x\right\rangle \leq \beta\left\|A_{n}\right\| \leq \beta \beta_{0}<1-\beta \alpha
$$

for all $\alpha \in(0, a)$. Therefore,

$$
\left\|I-\beta\left(A_{n}+\alpha I\right)\right\| \leq 1-\beta \alpha
$$

Thus,

$$
\left\|x_{n+1, \alpha}^{\delta}-x_{\alpha}^{\delta}\right\| \leq\left\|I-\beta\left(A_{n}+\alpha\right)\right\|\left\|x_{n, \alpha}^{\delta}-x_{\alpha}^{\delta}\right\| \leq(1-\beta \alpha)\left\|x_{n, \alpha}^{\delta}-x_{\alpha}^{\delta}\right\| .
$$

Hence,

$$
\left\|x_{n+1, \alpha}^{\delta}-x_{\alpha}^{\delta}\right\| \leq\left\|x_{0}-x_{\alpha}^{\delta}\right\| \leq r_{0}+\frac{\delta}{\alpha} \leq r_{0}+1
$$

and

$$
\left\|x_{n+1, \alpha}^{\delta}-x_{0}\right\| \leq\left\|x_{n+1, \alpha}^{\delta}-x_{\alpha}^{\delta}\right\|+\left\|x_{\alpha}^{\delta}-x_{0}\right\| \leq 2\left\|x_{0}-x_{\alpha}^{\delta}\right\| \leq 2\left(r_{0}+1\right) \leq r .
$$

Thus, $x_{n+1, \alpha}^{\delta} \in \overline{B\left(x_{0}, r\right)}$. Also, for $0 \leq t \leq 1$, we have

$$
\left\|\left[x_{\alpha}^{\delta}+t\left(x_{n+1, \alpha}^{\delta}-x_{\alpha}^{\delta}\right)\right]-x_{0}\right\|=\left\|\left(x_{\alpha}^{\delta}-x_{0}\right)+t\left(x_{n+1, \alpha}^{\delta}-x_{\alpha}^{\delta}\right)\right\| \leq 2\left(r_{0}+1\right) \leq r .
$$

Hence, A_{n+1} is a well-defined positive self-adjoint operator with $\left\|A_{n+1}\right\| \leq \beta_{0}$. This completes the proof.

Theorem 2.4. Let $\delta \in(0, d], \alpha \in(\delta, a]$ with $d<a$. Let x_{α}^{δ} and x_{α} be as in equations (1.2) and (2.1), respectively, and for each $\delta \in(0, d]$ and $\alpha \in[\delta, a)$ let the sequence $\left\{x_{n, \alpha}^{\delta}\right\}$ be defined as in (2.2). Let

$$
n_{\alpha, \delta}:=\min \left\{n \in \mathbb{N}: \alpha q_{\alpha}^{n} \leq \delta\right\}
$$

Then,

$$
\left\|x_{n_{\alpha, \delta}+1, \alpha}^{\delta}-x^{\dagger}\right\|=(\kappa+1)\left(\left\|x^{\dagger}-x_{\alpha}\right\|+\frac{\delta}{\alpha}\right)
$$

where $k \geq r_{0}+1$.
Proof. By Lemma 2.1 and Theorem 2.3, we have

$$
\left\|x_{n+1, \alpha}^{\delta}-x^{\dagger}\right\|=\left\|x_{n_{\alpha, \delta}+1, \alpha}^{\delta}-x_{\alpha}^{\delta}\right\|+\left\|x_{\alpha}^{\delta}-x_{\alpha}\right\|+\left\|x_{\alpha}-x^{\dagger}\right\|=\kappa q_{\alpha}^{n}+\frac{\delta}{\alpha}+\left\|x_{\alpha}-x^{\dagger}\right\|
$$

Now for $n=n_{\alpha, \delta}$ we have $q_{\alpha}^{n} \leq \delta / \alpha$. Thus, we obtain the required estimate in the theorem.

3 Error bounds under source conditions

For obtaining an estimate for $\left\|x^{\dagger}-x_{\alpha}\right\|$ we have to impose some nonlinearity conditions on F and assume that $x_{0}-x^{\dagger}$ belongs to some source set. For this purpose, we use the following two assumptions. The first one is a simplified form of the standard nonlinear assumptions in the literature, whereas the second one regarding the source condition is exactly the same considered earlier (cf. [7, 8]). These conditions are also assumed in the paper [13].
Assumption 3.1. There exists a constant $k_{0} \geq 0$ such that for every $x \in \overline{B\left(x_{0}, r\right)}$ and $v \in X$ there exists an element $\Phi\left(x, x_{0}, v\right) \in X$ such that

$$
\left[F^{\prime}(x)-F^{\prime}\left(x_{0}\right)\right] v=F^{\prime}\left(x_{0}\right) \Phi\left(x, x_{0}, v\right)
$$

and

$$
\left\|\Phi\left(x, x_{0}, v\right)\right\| \leq k_{0}\|v\|\left\|x-x_{0}\right\|
$$

for all $x, v \in \overline{B\left(x_{0}, r\right)}$.
Assumption 3.2. There exists a continuous and strictly monotonically increasing function

$$
\varphi:\left(0, a_{0}\right] \rightarrow(0, \infty)
$$

with $a_{0} \geq\left\|F^{\prime}\left(x_{0}\right)\right\|$ satisfying the following conditions:
(i) $\lim _{\lambda \rightarrow 0} \varphi(\lambda)=0$,
(ii) $\sup _{\lambda \geq 0} \frac{\alpha \varphi(\lambda)}{\lambda+\alpha} \leq \varphi(\alpha)$ for all $\lambda \in\left(0, a_{0}\right]$,
(iii) there exists $v \in X$ with $\|v\| \leq 1$ such that

$$
x_{0}-x^{\dagger}=\varphi\left(F^{\prime}\left(x_{0}\right)\right) v
$$

The proof of the following theorem is given in [13] with less details. For the sake of completeness of the presentation, we give the details of the proof here as well.
Theorem 3.3. For $\delta \in(0, d], \alpha \in(\delta, a]$ with $d<a$ let x_{α}^{δ} and x_{α} be as in equations (1.2) and (2.1), respectively, and let Assumptions 3.1 and 3.2 be satisfied. Then,

$$
\left\|x_{\alpha}-x^{\dagger}\right\| \leq k_{0} r_{0}\left\|x_{\alpha}-x^{\dagger}\right\|+\varphi(\alpha)
$$

Proof. Since $F\left(x_{\alpha}\right)+\alpha\left(x_{\alpha}-x_{0}\right)=y$ and $y=F\left(x^{\dagger}\right)$, we have

$$
\begin{equation*}
F\left(x_{\alpha}\right)-F\left(x^{\dagger}\right)+\alpha\left(x_{\alpha}-x^{\dagger}\right)=\alpha\left(x_{0}-x^{\dagger}\right) \tag{3.1}
\end{equation*}
$$

But, by the fundamental theorem of integration,

$$
F\left(x_{\alpha}\right)-F\left(x^{\dagger}\right)=M_{\alpha}\left(x_{\alpha}-x^{\dagger}\right),
$$

where $M_{\alpha}:=\int_{0}^{1} F^{\prime}\left(x^{\dagger}+t\left(x_{\alpha}-x^{\dagger}\right)\right) d t$. Note that, by Lemma 2.1, we have

$$
\left\|x^{\dagger}+t\left(x_{\alpha}-x^{\dagger}\right)-x_{0}\right\| \leq 2 r_{0} \leq r
$$

Thus, $x^{\dagger}+t\left(x_{\alpha}-x^{\dagger}\right) \in \overline{B\left(x_{0}, r\right)}$ so that M_{α} is a well-defined positive self-adjoint operator. Let us rewrite equation (3.1) as

$$
F^{\prime}\left(x_{0}\right)\left(x_{\alpha}-x^{\dagger}\right)+\alpha\left(x_{\alpha}-x^{\dagger}\right)=\left(F^{\prime}\left(x_{0}\right)-M_{\alpha}\right)\left(x_{\alpha}-x^{\dagger}\right)+\alpha\left(x_{0}-x^{\dagger}\right) .
$$

Then, by Assumption 3.1, we have

$$
\begin{aligned}
x_{\alpha}-x^{\dagger} & =\left(F^{\prime}\left(x_{0}\right)+\alpha I\right)^{-1}\left[\left(F^{\prime}\left(x_{0}\right)-M_{\alpha}\right)\left(x_{\alpha}-x^{\dagger}\right)+\alpha\left(x_{0}-x^{\dagger}\right)\right] \\
& =\left(F^{\prime}\left(x_{0}\right)+\alpha I\right)^{-1} F^{\prime}\left(x_{0}\right) \int_{0}^{1} \Phi\left(x^{\dagger}+t\left(x_{\alpha}-x^{\dagger}\right), x_{0},\left(x_{\alpha}-x^{\dagger}\right)\right) d t+\alpha\left(F^{\prime}\left(x_{0}\right)+\alpha I\right)^{-1}\left(x_{0}-x^{\dagger}\right) .
\end{aligned}
$$

Since $F^{\prime}\left(x_{0}\right)$ is a positive self-adjoint operator, we have

$$
\left\|\left(F^{\prime}\left(x_{0}\right)+\alpha I\right)^{-1} F^{\prime}\left(x_{0}\right)\right\| \leq 1,
$$

and by Assumption 3.2, we have

$$
\left\|\alpha\left(F^{\prime}\left(x_{0}\right)+\alpha I\right)^{-1}\left(x_{0}-x^{\dagger}\right)\right\|=\left\|\alpha\left(F^{\prime}\left(x_{0}\right)+\alpha I\right)^{-1} \varphi\left(F^{\prime}\left(x_{0}\right)\right) v\right\| \leq\|v\| \sup _{\lambda \geq 0} \frac{\alpha \varphi(\lambda)}{\lambda+\alpha} \leq \varphi(\alpha) .
$$

Also, Assumption 3.1 yields

$$
\left\|\Phi\left(x^{\dagger}+t\left(x_{\alpha}-x^{\dagger}\right), x_{0},\left(x_{\alpha}-x^{\dagger}\right)\right)\right\| \leq k_{0}\left\|x_{\alpha}-x^{\dagger}\right\|\left\|x^{\dagger}+t\left(x_{\alpha}-x^{\dagger}\right)-x_{0}\right\| .
$$

Since $\left\|x_{\alpha}-x^{\dagger}\right\| \leq\left\|x_{0}-x^{\dagger}\right\|$, we have

$$
\begin{aligned}
\left\|x^{\dagger}+t\left(x_{\alpha}-x^{\dagger}\right)-x_{0}\right\| & \leq\left\|\left(x^{\dagger}-x_{0}\right)+t\left[\left(x_{\alpha}-x_{0}\right)+\left(x_{0}-x^{\dagger}\right)\right]\right\| \\
& \leq\left\|(1-t)\left(x^{\dagger}-x_{0}\right)+t\left(x_{\alpha}-x_{0}\right)\right\| \\
& \leq\left\|x^{\dagger}-x_{0}\right\| .
\end{aligned}
$$

Thus, we obtain

$$
\left\|x_{\alpha}-x^{\dagger}\right\| \leq k_{0} r_{0}\left\|x_{\alpha}-x^{\dagger}\right\|+\varphi(\alpha) .
$$

Now Theorems 2.4 and 3.3 lead to the following theorem.
Theorem 3.4. Let $\delta \in(0, d], \alpha \in(\delta, a]$ with $d<a$, and let Assumptions 3.1 and 3.2 be satisfied. Assume further that $q:=k_{0} r_{0}<1$. Let

$$
\begin{equation*}
n_{\alpha, \delta}:=\min \left\{n \in \mathbb{N}: \alpha q_{\alpha}^{n} \leq \delta\right\} . \tag{3.2}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\left\|x_{n_{\alpha, \delta}+1, \alpha}^{\delta}-x^{\dagger}\right\|=\tilde{C}\left(\varphi(\alpha)+\frac{\delta}{\alpha}\right) \tag{3.3}
\end{equation*}
$$

where $\tilde{C}=\min \left\{\kappa+1, \frac{1}{1-q}\right\}$ with $\kappa \geq r_{0}+1$.
In order to choose the regularization parameter α, one may use an a priori choice by requiring

$$
\alpha \varphi(\alpha)=\delta
$$

or the adaptive method considered in [11] by Pereverzev and Schock which has been further investigated in various papers including $[4,10]$.

4 Parameter choice and stopping rules

4.1 A priori rule

Note that, given δ, the quantity $\varphi(\alpha)+\frac{\delta}{\alpha}$ in (3.3) is least if α satisfies the equation

$$
\alpha \varphi(\alpha)=\delta
$$

Now using the function $\psi(\lambda):=\lambda \varphi^{-1}(\lambda), 0<\lambda \leq a_{0}$, we have

$$
\alpha \varphi(\alpha)=\psi(\varphi(\alpha))
$$

so that $\alpha_{\delta}:=\varphi^{-1}\left(\psi^{-1}(\delta)\right)$ satisfies

$$
\alpha_{\delta} \varphi\left(\alpha_{\delta}\right)=\delta
$$

and

$$
\frac{\delta}{\alpha_{\delta}}=\varphi\left(\alpha_{\delta}\right)=\psi^{-1}(\delta)
$$

Hence from Theorem 3.4 we obtain the following theorem.
Theorem 4.1. Let $\delta \in(0, d], \alpha \in(\delta, a]$ with $d<a$, and let Assumptions 3.1 and 3.2 be satisfied. Assume further that $q:=k_{0} r_{0}<1$. Let $\alpha_{\delta}=\varphi^{-1}\left(\psi^{-1}(\delta)\right)$, where $\psi(\lambda):=\lambda \varphi^{-1}(\lambda)$ for $0<\lambda \leq a_{0}$ and

$$
n_{\delta}:=\min \left\{n \in \mathbb{N}: \alpha_{\delta} q_{\alpha_{\delta}}^{n} \leq \delta\right\}
$$

Then

$$
\left\|x_{n_{\delta}, \alpha_{\delta}}^{\delta}-x^{\dagger}\right\| \leq 2 \tilde{C} \psi^{-1}(\delta),
$$

where $\bar{C}=\min \left\{\kappa+1, \frac{1}{1-q}\right\}$ with $\kappa \geq r_{0}+1$.

4.2 Adaptive scheme and stopping rule

We modify the procedure of Pereverzev and Schock [11] slightly to suit the present context as has been done in $[3,4,10,13]$.

Let $\alpha_{0}>\delta$ and for $i=1, \ldots, N$ let $\alpha_{i}:=\mu^{i} \alpha_{0}$ with $\mu>1$. Then we have $\alpha_{0}<\alpha_{1}<\cdots<\alpha_{N}$. For given α, δ let $n_{\alpha, \delta}$ be as in (3.2). For notational convenience, let us denote

$$
n_{i}:=n_{\alpha_{i}, \delta}, \quad x_{i}^{\delta}:=x_{n_{i}, \alpha_{i}}^{\delta}, \quad i=0,1, \ldots, N
$$

We assume that

$$
\left\{i: \varphi\left(\alpha_{i}\right) \leq \frac{\delta}{\alpha_{i}}\right\} \neq \emptyset \quad \text { and } \quad \max \left\{i: \varphi\left(\alpha_{i}\right) \leq \frac{\delta}{\alpha_{i}}\right\}<N .
$$

Now, we can state the following known result (see [4]) on the choice of regularization parameter.
Theorem 4.2. Let

$$
k:=\max \left\{i:\left\|x_{i}^{\delta}-x_{j}^{\delta}\right\| \leq 4 \tilde{C} \frac{\delta}{\alpha_{j}}, j=0,1,2, \ldots, i\right\}
$$

with $\bar{C}=\min \left\{\kappa+1, \frac{1}{1-q}\right\}$. Then,

$$
\left\|x^{\dagger}-x_{k}^{\delta}\right\| \leq 6 \bar{C} \mu \psi^{-1}(\delta)
$$

As per Theorem 4.2 , the choice of the regularization parameter involves the following steps:
(1) Set $i=0$.
(2) Choose $n_{i}:=\min \left\{n: \alpha_{i} q_{\alpha_{i}}^{n} \leq \delta\right\}$.
(3) Solve $x_{i}^{\delta}:=x_{n_{i}, \alpha_{i}}^{\delta}$ by using iteration (2.2).
(4) If

$$
\left\|x_{i}^{\delta}-x_{j}^{\delta}\right\|>4 \bar{C} \frac{\delta}{\alpha_{j}}, \quad j<i
$$

then take $k=i-1$ and return x_{k}.
(5) Else set $i=i+1$ and go to (2).

Next, we present an academic example which satisfies Assumption 3.1.
Example 4.3. Consider a nonlinear operator equation $F: L^{2}[0,1] \rightarrow L^{2}[0,1]$ defined by $F(u):=(\arctan (u))^{3}$. Since $u \rightarrow(\arctan (u))^{3}$ is increasing on \mathbb{R}, we have

$$
\left\langle(\arctan (u))^{3}-(\arctan (v))^{3}, u-v\right\rangle \geq 0 \quad \text { for all } u, v \in L^{2}[0,1]
$$

i.e., F is monotone. The Fréchet derivative of F is

$$
F^{\prime}(u) w=\frac{3(\arctan (u))^{2}}{1+u^{2}} w
$$

If $u(x)$ vanishes on a set of positive Lebesgue measure, then $F^{\prime}(u)$ is not boundedly invertible. If $u \in C[0,1]$ vanishes even at one point x_{0}, then $F^{\prime}(u)$ is not boundedly invertible in $L^{2}[0,1]$.

Note that

$$
F^{\prime}(u) w=F^{\prime}\left(u_{0}\right) G\left(u, u_{0}\right) w
$$

where

$$
G\left(u, u_{0}\right)=\frac{1+u_{0}^{2}}{1+u^{2}} \frac{(\arctan (u))^{2}}{\left(\arctan \left(u_{0}\right)\right)^{2}}
$$

Further, for $u_{0} \neq 0$, we have

$$
\left[F^{\prime}(u)-F^{\prime}\left(u_{0}\right)\right] w=F^{\prime}\left(u_{0}\right)\left[G\left(u, u_{0}\right)-I\right] w
$$

and

$$
\begin{aligned}
\left\|\left[G\left(u, u_{0}\right)-I\right] w\right\| & \leq\left\|\frac{\left(1+u_{0}^{2}\right)\left((\arctan (u))^{2}-\left(\arctan \left(u_{0}\right)\right)^{2}\right)-\left(\arctan \left(u_{0}\right)\right)^{2}\left(u^{2}-u_{0}^{2}\right)}{\left(1+u^{2}\right)(\arctan (u))^{2}} w\right\| \\
& \leq \frac{1+\left\|u_{0}\right\|^{2}}{\left(1+\|u\|^{2}\right)\left\|\left(\arctan \left(u_{0}\right)\right)^{2}\right\|}\left\|(\arctan (u))^{2}-\left(\arctan \left(u_{0}\right)\right)^{2}\right\|\|w\|+\frac{1}{1+\|u\|^{2}}\left\|u^{2}-u_{0}^{2}\right\|\|w\| \\
& \leq \frac{1+\left\|u_{0}\right\|^{2}}{\left(1+\|u\|^{2}\right)\left\|\left(\arctan \left(u_{0}\right)\right)^{2}\right\|}\left\|\arctan (u)+\arctan \left(u_{0}\right)\right\| \\
& \times\left\|\arctan (u)-\arctan \left(u_{0}\right)\right\|\|w\|+\frac{1}{1+\|u\|^{2}}\left\|u+u_{0}\right\|\left\|u-u_{0}\right\|\|w\| \\
& \leq\left[\frac{2 \max \left\{\|\arctan (u)\|,\left\|\arctan \left(u_{0}\right)\right\|\right\}}{\left\|\left(\arctan \left(u_{0}\right)\right)^{2}\right\|}+2 \max \left\{\|\hat{u}\|,\left\|u_{0}\right\|\right\}\right]\|w\|\left\|\hat{u}-u_{0}\right\| .
\end{aligned}
$$

The last but one step follows from the inequality

$$
\left\|\arctan (u)-\arctan \left(u_{0}\right)\right\| \leq \frac{\|u\|-\left\|u_{0}\right\|}{1+\left\|u_{0}\right\|^{2}}
$$

Thus, Assumption 3.1 is satisfied.

References

[1] A. Bakushinsky and A. Smirnova, On application of generalized discrepancy principle to iterative methods for nonlinear ill-posed problems, Numer. Funct. Anal. Optim. 26 (2005), 35-48.
[2] K. Deimling, Nonlinear Functional Analysis, Springer, New York, 1985.
[3] S. George, On convergence of regularized modified Newton's method for non-linear ill-posed problems, J. Inverse Ill-Posed Probl. 18 (2010), no. 2, 133-146.
[4] S. George and M. T. Nair, A modified Newton-Lavrentiev regularization for non-linear ill-posed Hammerstein-type operator equations, J. Complexity 24 (2008), no. 2, 228-240.
[5] S. George and S. Pareth, An application of Newton type iterative method for the approximate implementation of Lavrentiev regularization, J. Appl. Anal. 19 (2013), 181-196.
[6] J. Janno and U. Tautenhahn, On Lavrentiev regularization for ill-posed problems in Hilbert scales, Numer. Funct. Anal. Optim. 24 (2003), no. 5-6, 531-555.
[7] P. Mahale and M. T. Nair, Iterated Lavrentiev regularization for non-linear ill-posed problems, ANZIAM J. 51 (2009), 191-217.
[8] P. Mahale and M. T. Nair, Lavrentiev regularization of non-linear ill-posed equations under general source condition, J. Nonlinear Anal.Optim. 4 (2013), no. 2, 193-204.
[9] M. T. Nair, Functional Analysis: A First Course, Prentice-Hall of India, New Delhi, 2002.
[10] M. T. Nair and S. Pereverzev, Regularized collocation method for Fredholm integral equations of the first kind, J. Complexity 23 (2007), no. 4-6, 454-467.
[11] S. Pereverzev and E. Schock, On the adaptive selection of the parameter in regularization of ill-posed problems, SIAM J. Numer. Anal. 43 (2005), 2060-2076.
[12] E. V. Semenova, Lavrentiev regularization and balancing principle for solving ill-posed problems with monotone operators, Comput. Methods Appl. Math. 10 (2010), no. 4, 444-454.
[13] V. S. Shubha, S. George and P. Jidesh, A derivative free iterative method for the implementation of Lavrentiev regularization method for ill-posed equations, Numer. Algorithms 68 (2015), no. 2, 289-304.
[14] U. Tautenhahn, On the method of Lavrentiev regularization for non-linear ill-posed problems, Inverse Problems 18 (2002), 191-207.
[15] V. Vasin and S. George, An analysis of Lavrentiev regularization method and Newton type process for non-linear ill-posed problems, Appl. Math. Comput. 230 (2014), 406-413.

[^0]: *Corresponding author: Santhosh George: Department of Mathematical and Computational Sciences, NIT Karnataka, Surathkal 575 025, India, e-mail: sgeorge@nitk.ac.in
 M. Thamban Nair: Department of Mathematics, IIT Madras, Chennai 600 036, India, e-mail: mtnair@iitm.ac.in

